

The search for neutrinoless double beta decay with nEXO

Caio Licciardi (U Windsor)

Bromont, 16 February 2024

WNPPC 2024

- Standard Model (SM) of Particle Physics
 - New physics beyond SM (BSM)
- Search for violation of the lepton number conservation
 - Neutrinoless double beta decay ($0\nu\beta\beta$)
- The nEXO Experiment

- Successful quantum field theory
- Unifies matter or fermions into two types of particles:
 - Leptons (ψ , $\overline{\psi}$) and quarks (ψ , $\overline{\psi}$)
- Describes particle interactions in terms of gauge bosons
- Lepton number conservation
 - Accidental global symmetry
- Historically driven by neutrinos

- Successful quantum field theory
- Unifies matter or fermions into two types of particles:
 - Leptons (ψ , $\overline{\psi}$) and quarks (ψ , $\overline{\psi}$)
- Describes particle interactions in terms of gauge bosons
- Lepton number conservation
 - Accidental global symmetry
- Historically driven by neutrinos

- Successful quantum field theory
- Unifies matter or fermions into two types of particles:
 - Leptons $(\psi, \overline{\psi})$ and quarks $(\psi, \overline{\psi})$
- Describes particle interactions in terms of gauge bosons
- Lepton number conservation
 - Accidental global symmetry
- Historically driven by neutrinos

nEX®

three generations of matter interactions / force carriers (fermions) (bosons) Ш ≃173.1 GeV/c ≃2.2 MeV/c³ ≈1.28 GeV/c² ≃124.97 GeV/c² 2/3 1/2 t С H u g charm gluon higgs up top ≃4.7 MeV/c ≈96 MeV/c2 ≃4.18 GeV/c2 DUARK d ^{-1/3} b ⁻⁷³ ^{1/2} S Y 1/2 SCALAR BO down strange bottom photon ≃0.511 MeV/c² ≈105.66 MeV/c² ≃1.7768 GeV/c2 ≈91.19 GeV/c2 SONS е Ζ μ τ 1/2 Z boson electron muon tau -EPTONS <1.0 eV/c2 <0.17 MeV/c2 <18.2 MeV/c2 =80.433 GeV/c2 **UGE** TOR BO Vµ Ve Vτ W electron muon tau W boson neutrino neutrino neutrino

- Successful quantum field theory
- Unifies matter or fermions into two types of particles:
 - Leptons (ψ , $\overline{\psi}$) and quarks (ψ , $\overline{\psi}$)
- Describes particle interactions in terms of gauge bosons
- Lepton number conservation
 - Accidental global symmetry
- Historically driven by neutrinos

+ iFØ¥ +h.c

- Successful quantum field theory
- Unifies matter or fermions into two types of particles:
 - Leptons (ψ , $\overline{\psi}$) and quarks (ψ , $\overline{\psi}$)
- Describes particle interactions in terms of gauge bosons
- Lepton number conservation
 - Accidental global symmetry
- Historically driven by neutrinos

- Successful quantum field theory
- Unifies matter or fermions into two types of particles:
 - Leptons (ψ , $\overline{\psi}$) and quarks (ψ , $\overline{\psi}$)
- Describes particle interactions in terms of gauge bosons
- Lepton number conservation
 - Accidental global symmetry
- Historically driven by neutrinos

Neutrino Oscillations

- Our most direct evidence for BSM physics comes from neutrinos
- neutrinos have non-zero masses Observation of neutrino oscillations – Nobel Prize in Physics 2015:

A.B. McDonald (SNO), T. Kajita (Super-K)

Neutrino Oscillations

- Our most direct evidence for BSM physics comes from neutrinos
- Observation of neutrino oscillations

 neutrinos have non-zero masses

Nobel Prize in Physics 2015:

A.B. McDonald (SNO), T. Kajita (Super-K)

Neutrino
mixing matrix:

$$\downarrow \not (\downarrow) \downarrow (\downarrow) (\downarrow) \downarrow (\downarrow) \downarrow$$

Neutrino Oscillations

Observation of neutrino oscillations
 neutrinos have non-zero masses

 Nobel Prize in Physics 2015:

A.B. McDonald (SNO), T. Kajita (Super-K)

Flavor eigenstates evolve in time as:

$$\begin{aligned} |\nu_{\alpha}(t)\rangle &= \sum_{i} U_{\alpha i}^{*} e^{-iE_{i}t} |\nu_{i}\rangle \\ \uparrow \\ \alpha &= e, \mu, \tau \quad E_{i}^{2} = p^{2} + m_{i}^{2} \quad i = 1, 2, 3 \end{aligned}$$

Oscillation Experiments

- Oscillation experiments are sensitive only to the mass differences: $\Delta m_{ij}^2 = m_i^2 m_j^2$
- Matter effects are sensitive to the mass ordering
- Global fits to all oscillation data give:
 - $m_2^2 m_1^2 \approx 7.5 \times 10^{-5} \text{ eV}^2$
 - $|m_3^2 m_{1,2}^2| \approx 2.3 \times 10^{-3} \text{ eV}^2$

 m^2 m^2 Normal Inverted ordering ordering m_3^2 m_2^2 $solar~7 \times 10^{-5} eV^2$ atmospheric $\sim 2 \times 10^{-3} eV^2$ atmospheric $\sim 2 \times 10^{-3} eV^2$ m_2^{-2} solar~7×10⁻⁵eV² $-m_{2}^{2}$ m_1 0 0

Mass ordering from oscillation experiments

Oscillation Experiments

- Oscillation experiments are sensitive only to the mass differences: $\Delta m_{ij}^2 = m_i^2 m_j^2$
- Matter effects are sensitive to the mass ordering
- Global fits to all oscillation data give:
 - $\frac{m_2^2 m_1^2}{\sim} \approx 7.5 \times 10^{-5} \text{ eV}^2$ ~ 10 meV
 - $|m_3^2 m_{1,2}^2| \approx 2.3 \times 10^{-3} \text{ eV}^2$ $\sim 50 \text{ meV}$

Mass ordering from oscillation experiments

BSM Physics

- Low energy physics
 - Must be "very" rare events, not yet have been observed
- Main candidates
 - Dark matter: another ψ
 - Majorana particles: $\psi \equiv \bar{\psi}$
 - Majorana neutrinos: $\nu \equiv \bar{\nu}$

Neutrinoless Double Beta Decay

- β decays occur because it brings the atom nuclei into a more stable protons/neutrons ratio
- The SM allows nuclei, for which β decay is energetically forbidden, decay through a second-order transition, the double beta ($\beta\beta$) decay
- Observation of $\beta\beta$ without $\overline{\nu}$ in the final state neutrinoless mode $(0\nu\beta\beta)$ would:
 - Violate lepton number conservation → beyond SM
 - Prove the Majorana nature of neutrinos
 - Constrain the neutrino absolute mass scale
 - Help explain matter existence in the Universe

Neutrinoless Double Beta Decay

- β decays occur because it brings the atom nuclei into a more stable protons/neutrons ratio
- The SM allows nuclei, for which β decay is energetically forbidden, decay through a second-order transition, the double beta ($\beta\beta$) decay
- Observation of $\beta\beta$ without $\overline{\nu}$ in the final state neutrinoless mode $(0\nu\beta\beta)$ would:
 - Violate lepton number conservation → beyond SM
 - Prove the Majorana nature of neutrinos
 - Constrain the neutrino absolute mass scale
 - Help explain matter existence in the Universe

2νββ

Search with Liquid Xenon

- ¹³⁶Xe is one among 35 nuclides that etaeta
 - Q-value: relatively large 2.45 MeV
 - Energy resolution: good
 - Occurrence: 9% of natural xenon
- Distinguishable features
 - Noble gas: easy to purify
 - Liquid phase: high density, self-shielding
 - Single phase: Monolithic
 - Excels: scalability!
- Possibility of run control
- Current experiments set 90% CL limits at $T_{1/2} > 10^{25-26}$ yr
 - ~150 kg, ~1 count / 15 days
- Next generation of experiments aiming at $T_{1/2} > 10^{28}$ yr
 - ~5000 kg, < 1 count / year

The EXO-200 Detector

- Located at WIPP mine, Carlsbad, NM
 - Operational 2011 2018
- 100kg-class radiopure time projection chamber (TPC)
 - Filled with enriched LXe to 80.6% in ¹³⁶Xe
- HV applied between cathode and anodes
 - Uniform electric field ~350-600 V/cm
- Two measurements of energy deposited in event
 - UV scintillation light: large avalanche photo-diodes
 - Ionization: 2 wire grids, induction and collection
- Particle identification
 - Charge/light ratio
 - Event topology of the energy deposits
- ~60,000 observed ¹³⁶Xe $2\nu\beta\beta$ decays

 $0\nu\beta\beta +$

Bremsstrahlung

SS Events

Ονββ

Multi Site

Scintillation energy [keV]

2200

2600

WNPPC 24: $0\nu\beta\beta$ with nEXO, C. Licciardi

nEX®

2200

2600

LXe self-shielding:

2.5MeV γ attenuation length: 8.5cm =

LXe self-shielding:

0 Bkg-like

WNPPC 24: $0\nu\beta\beta$ with nEXO, C. Licciardi

1.0 Sig-like

0.5 0ν discriminator

Final EXO-200 Results

Running EXO-200 taught us a lot!

Very successful project

No statistically significant signal observed.

The nEXO Experiment

- TPC with 5000 kg enriched to 90% liquid ¹³⁶Xe
- Rooted in success of EXO-200
- Intended to be at the Cryopit of SNOLAB

Sensitivity to New Physics

- $0\nu\beta\beta$ half-life sensitivity in 6.5 years:
 - Exclusion >10²⁸ yr at 90 %CL
 - 3σ discovery ~10²⁸ yr, 50% cases

n EX®

Sensitivity to New Physics

- $0\nu\beta\beta$ half-life sensitivity in 6.5 years:
 - Exclusion >10²⁸ yr at 90 %CL
 - 3σ discovery ~10²⁸ yr, 50% cases

 10^{-4}

 10^{-3}

 10^{-4}

 10^{-3}

 10^{-2}

 $m_{\min} \, [eV]$

 10^{-1}

 10^{0}

 10^{-3} 10^{-2} 10^{-1}

 $m_{\min} [eV]$

nEXO Backgrounds

nEXO is fairly robust versus fluctuations in background models

(b)

0.1

[s1.4]

Halflife [$\times 10^{28}$] 1.3 1.2

1.1

1.00.7

Sensitivity, 90% C.L.

- Discovery Potential, 3σ

10

• 90% CL upper limit

 σ/E energy resolution at $Q_{\beta\beta}$ [%]

0.8

1 137 Xe scaling

Background dominated by radon in LXe & all intrinsic radiation from components

nEX®

---- Sensitivity, 90% C.L.

(c)

0.1

 γ background scaling

0.01

0.9 1.0 1.1 1.2 1.3

100

- Discovery Potential, 3σ

Multiparameter Analysis

- 1σ and 2σ contours on signal
- Realizations of nEXO 10 yr dataset at assumption of discovery potential half-life

Multiparameter Analysis

- 1σ and 2σ contours on signal
- Realizations of nEXO 10 yr dataset at assumption of discovery potential half-life

- Potential new physics with neutrinoless double beta decay
 - Lepton number violation beyond SM
- Liquid ¹³⁶Xe TPC is a proved technology
- nEXO will be a tonne-scale detector
 - Fully probe the inverted ordering of neutrino masses
- Majorana neutrinos is an exciting search
 - With a certain answer

Thank you