

Design of a cryogenic capacitive liquid level sensor

Sandhya Rottoo McGill University WNPPC 2024 – Bromont, Québec

The end goal: nEXO

nEXO will search for $0\nu\beta\beta$ using a liquid xenon (LXe) time-projection chamber and silicon photomultipliers (SiPMs).

If found, $0\nu\beta\beta$ would demonstrate physics beyond the Standard Model.

nEXO: 40-50k SiPMs

L-ġ-LX

😵 The Light-only Liquid Xenon experiment

The LoLX experiment is

Studying scintillation light in LXe

Characterizing SiPMs in LXe

Photos: Stéphanie Bron

τό-LX

Why do we need a liquid level sensor?

- To know if the SiPMs are working properly, we need to know which of them are submerged
- A liquid level sensor would tell us what to expect from the SiPM responses and confirm temperature uniformity

Constraints on the liquid level sensor

Space See picture

Liquid xenon Cryogenic environment Low dielectric constant

Purity Low outgassing required

Prototyping

How do we meet all these constraints? How do we test the sensor outside the LoLX cryostat?

- A capacitor which would adhere to the wall
- Un-modelable if electrodes are too wide

Interdigitated coplanar capacitor

Sinusoidal interdigitated capacitor

- With a sinusoid, we can have thinner, fewer electrodes for same capacitance – better modeling
- Edges are less sharp softer discontinuities at top and bottom
- Two questions:
 - Will the capacitance-liquid height relationship be linear?
 - Can we model this well?

"Homemade" prototypes on FR1

Tests in non-cryogenic dielectric

sensor

Modeling this capacitor

- Calculate parallel plate capacitance for infinitesimal section
- Integrate over length of sinusoid
- Iterate over only adjacent pairs
 - If you don't believe me, draw a Gaussian surface

• Find a way to model PCB thickness

- Multiple prototypes, varying:
 - Number of electrodes
 - Width

- Length
- Separation

 Still working on the model, this is its present accuracy

From capacitor to sensor

Final version manufactured by PCBway

Electronics readout by FDC1004, Arduino Uno and MIDAS

- FDC1004 capacitance-to-digital evaluation board
 - Can offset 96 pF
 - Reads a range of 15 pF

Liquid level readout from a pilot sensor in LN2

The final design

- Multilayer Kapton PCB
- 30 cm long, above the level of liquid xenon
- Projected capacitive sensitivity of 0.1889 ± 0.0001 pF/cm in LXe
 - This corresponds to a liquid level resolution of < 1 mm
- Calibration
 - Temperature-sensitive resistors
- Cabling and feedthrough
 - Kapton-insulated twisted pair
 - Pin feedthrough flange

Choosing an adhesive

We cooled various tapes down to 165K in a mixture of LN2 and dry ice

Kapton tapes delaminated...

But Al and Cu tapes stick!

Conclusions

Summary

- We developed a custom capacitive liquid xenon level sensor due to our constraints
- Thin, flat capacitor with sinusoidal electrodes that adheres to the cryostat wall
- Electronics readout using available-to-purchase materials

- Installation at the next run of LoLX, in March
- Improving the model of the capacitance
- Make code and design publicly available on <u>BvL GitHub page</u>

What's next?

Thank you!

Acknowledgements:

Thomas Brunner, Lucas Darroch, Brandon Ruffolo, Eamon Egan, David Gallacher McGill Faculty of Science, McGill Physics Department

Capacitor of thickness *t*, width *w*, plate separation *d*, length *L*, submerged in dielectric *k* to height *h*

$$C = ((k-1)h + L)\frac{\epsilon_0(w+t)}{d}$$

$$L = \int_0^l \sqrt{1 + (b\cos(bx))^2} \, dx = \frac{2\sqrt{b^2 + 1}(E(bx|\frac{b^2}{b^2 + 1}))}{b}$$