A new search for dark matter axions using quantum technologies

Jack A. Devlin

j.devlin11@imperial.ac.uk

Imperial College London

TRIUMF

9/4/2023

Science and Technology Facilities Council

Our Strategy

Centre for Cold Matter @ Imperial College

Science Museum

Hyde Park

Imperial College Physics Department

The Centre for Cold Matter uses cold atoms, molecules and ions to test fundamental physics, measure tiny forces, control quantum systems and develop quantum technologies Also involved in this work

Ion trapping Group

Richard Thompson

Dr. Kanika

Marios Telemachou & Mingyao Xu Maddie Fisher Horacio Septien-Gonzalez

Quantum Enhanced Particle Astrophysics

- 1. Why QCD axions?
- 2. Detection techniques
- 3. Challenges for high m_a haloscopes and how we plan to solve them
 - a) Volume problem
 - b) Noise problem
- 4. Long term goals and other measurements

1. Why QCD axions?

- 2. Detection techniques
- 3. Challenges for high m_a haloscopes and how we plan to solve them
 - a) Volume problem
 - b) Noise problem
- 4. Long term goals and other measurements

Many, many dark matter candidates

Figure adapted from US Cosmic Visions: New Ideas in Dark Matter 2017 arXiv:1707.04591

The "strong"-CP problem

There is a QCD term which could break CP symmetry, if $\bar{\theta} \neq 0$:

$$\mathcal{L}_{\overline{\theta}} = \overline{\theta} \frac{g^2}{32\pi^2} F_a^{\mu\nu} \widetilde{F}_{a\mu\nu}$$
The (complex) quark mass matrix
$$\overline{\theta} = \theta - \operatorname{ArgDet}[M]$$
Electroweak contribution

From neutron EDM $d_n < 1.8 \times 10^{-26} \text{ e} \cdot \text{cm} \rightarrow |\bar{\theta}| < 10^{-9}$

no CP violation

Working <u>hypothesis</u>: something is forcing $\bar{\theta} \rightarrow 0$

The Strong CP Problem and Axions R. D. Peccei, in *Axions* (Springer, Berlin Heidelberg 2008) C. Abel et al., Phys. Rev. Lett. **124**, 081803 (2020) $\bar{\theta}$ terms relaxed to zero by extra global symmetry with associated particle, the **axion**

Axion: pseudo-scalar, spin-0 boson, with couplings to photons and fermions.

$$\mathcal{L} = \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Big unknown: f_a , an energy scale which determines m_a and (essentially) $g_{a\gamma\gamma}$

Any value of f_a solves strong CP problem, but not all values consistent with experiment

"invisible" axions as dark matter

Goal. Search $m_a > 120 \,\mu ev$ @ DFSZ Sensiti

Top: limits from <u>cajohare.github.io/AxionLimits/docs/ap.html</u> Bottom: Theory plot adapted from Javier Redondo's talk at TAUP 2021, reproduced with permission

1. Why QCD axions?

2. Detection techniques

- 3. Challenges for high m_a haloscopes and how we plan to solve them
 - a) Volume problem
 - b) Noise problem
- 4. Long term goals and other measurements

How to look for axions from the DM halo

For $m_a = 100 \ \mu {\rm eV}$ and DM energy density, number of axions in de Broglie volume > 10^{20}

 \rightarrow DM halo behaves like new "classical" field

Modifies Maxwell's Equations:

$$\begin{split} \vec{\nabla} \cdot \vec{D} &= \rho_f + g_{a\gamma\gamma} \sqrt{\frac{\epsilon_0}{\mu_0}} \vec{B} \cdot \vec{\nabla} a, \\ \vec{\nabla} \times \vec{H} &= \vec{J_f} + \frac{\partial \vec{D}}{\partial t} - g_{a\gamma\gamma} \sqrt{\frac{\epsilon_0}{\mu_0}} \left(\vec{B} \frac{\partial a}{\partial t} + \vec{\nabla} a \times \vec{E} \right), \\ \vec{\nabla} \cdot \vec{B} &= 0, \\ \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t}, \end{split}$$

Signal using a resonant cavity

Imagine some cavity in an external B_e field:

Cavity resonant frequency must be scanned until it matches the unknown axion frequency, then

Extracted resonant power at optimum cavity coupling is

$$P = \frac{1}{2}c^2\epsilon_0 g_{a\gamma\gamma}^2 \frac{Q}{\omega} V_m B_e^2 \rho_{DM}$$

$$V_m = \frac{\left|\int E \cdot B_e dV\right|^2}{\int |E \cdot B_e|^2 dV} \approx \text{Cavity volume}$$

Q : Cavity Q-factor

How do the cavities look in practice?

ADMX: min frequency ~640 MHz RADES: min frequency ~8.4 GHz

A. Melcón et al. J. High Energ. Phys. 2021, 75 (2021)S. K. Lamoreaux, et al., Phys. Rev. D 88, 035020 (2013)

- 1. Why QCD axions?
- 2. Detection techniques
- 3. Challenges for high m_a haloscopes and how we plan to solve them with
 - a) Volume problem
 - b) Noise problem
- 4. Long term goals and other measurements

Problem 1: Decreasing volume

A cavity haloscope converts $m_a \rightarrow \nu_a = m_a c^2 / h$ $P = \frac{1}{2} c^2 \epsilon_0 g_{a\gamma\gamma}^2 \frac{Q}{\omega} V_m B_e^2 \rho_{DM}$ $V_m \propto \frac{1}{\nu_a^3}$ Rate $[s^{-1}] = 10^{-3} C_{a\gamma\gamma}^2 Q V_m B^2$ typically, $Q \propto \frac{1}{\nu_a^{2/3}}$ (for copper)

For a cylindrical cavity, DFSZ axion:

C. Boutan et al., Phys. Rev. Lett. **121** (2018)

Many creative ideas >30 GHz

Dielectric cavities

ORGAN QDM lab (Univ. Western Australia) Lead by Dr. Michael Tobar

TEM_{00q} Fabry-Perot ORPHEUS Rybka et al.

Plasma haloscope

ALPHA Frank Wilczek et al.

"Magnetized mirrors"...

with dielectric boost	
BREAD	Cambridge/Fermilab, higher m _a
BRASS	University of Hamburg

MADMAX Big effort at DESY, lower m_a initially

Many, more new ideas between 5-30 GHz

Our converter concept

Large mode area Fabry Perot cavity operating in TEM₀₀₁ mode

See ORPHEUS for alternative F-P TEM_{00q} concept G. Rybka et al., Phys. Rev. D **91**, 011701 (2015)

Why a Fabry Perot?

Rate $[s^{-1}] = 10^{-3} C_{a\gamma\gamma}^2 V_m Q B^2$

Other considerations: Frequency adjustment easy, relatively compact, broad tuning range

- 1. Why QCD axions?
- 2. Detection techniques
- 3. Challenges for high m_a haloscopes and how we plan to solve them
 - a) Volume problem
 - b) Noise problem
- 4. Long term goals and other measurements

Problem 2: Increasing noise

Classical readout: linearly amplify signal and use a signal analyzer

S. K. Lamoreaux, et al., Phys. Rev. D 88, 035020 (2013)

Solution: Count photons to beat SQL

S. K. Lamoreaux, et al., Phys. Rev. D 88, 035020 (2013)

Options for single photon counting

Solid-state devices

At 100-300 GHz LCKIDs are used for astrophysics (not single photon sensitivity)

A. V. Dixit, et al., Phys. Rev. Lett. **126** 141302 (2021) A. Ghirri et al., Sensors **20(14)**, 4010 (2020)

Alternative AMO devices

CARRACK I & II Rydberg atoms

Good performance, ultimately effort was not sustained Now Rydberg Axions at Yale (RAY) D. Speller, & S. Ghosh

M. Tada et al., Nuclear Physics B (Proc. Suppl.) **72** 164 (1999) M. Tada et al., Physics Letters A **349 6** 488 (2006)

Enter the Penning trap

1-2 T B field from solenoid

Voltages applied to ring-shaped electrodes

Detecting photons with a single trapped electron

S. Peil and G. Gabrielse Phys. Rev. Lett. **83**, 1287 (1999) D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, PRA **83**, 052122 (2011)

Turning this into an efficient, frequency adjustable, photon counter

In the electron g-2 measurement, cyclotron frequency deliberately tuned far off resonance to inhibit spontaneous emission.

Can't use this as a single photon counter: far off resonant cavity will reflect almost all incoming photons Need to operate onresonance, but then cyclotron lifetime reduced:

Much faster axial frequency detection method is needed

X. Fan et al., PRL 130 071801 (2023)

Fast phase sensitive detection

Microwave absorption causes a detectable phase jump $\Delta \phi$ in the final axial signal

$$\Delta \nu_z = \frac{h\nu_+ B_2}{4\pi^2 m_e \nu_z B_0} \Delta n_+$$
$$\Delta \phi = 2\pi \Delta \nu_z t$$

 $\langle t \rangle =$ cyclotron lifetime

E. A. Cornell et al., PRA **41** 312 (1990) S. Stahl et al., J. Phy. B **38** 297 (2005) The photon-electron interaction can be treated with simple Cavity QED model for coupled harmonic oscillators

 $H = H_0 + H_{int}$ $H_0 = \hbar \omega_+ (b^{\dagger}b + \frac{1}{2}) + \hbar \omega (a^{\dagger}a + \frac{1}{2})$ $H_{int} = \hbar g (ab^{\dagger} + a^{\dagger}b)$ $g = e \sqrt{\frac{1}{2\epsilon_0 m_e \tilde{V}}}$ $\tilde{V} = \frac{\int |E|^2 dV}{|E(0,0)|^2}$ $\dot{\rho} = -\frac{\iota}{\hbar} [H_{int}, \rho] + \frac{\omega_+}{0} \mathcal{L}[\rho]$

 $\frac{\text{Short term aim:}}{\text{Q=100,000 at 30 GHz}}$ $\text{g} = 2\pi \times 11,000 \text{ Hz}$

Cyclotron lifetime: 1 ms B2 = 82,000 T/m²

Overall detection efficiency ~0.5%

Longer term aim: Increase Q to 10^6 Work with small clouds of particles B2>500,000 T/m² Overall detection efficiency >30%

Even modest detection efficiencies are useful

- 1. Why QCD axions?
- 2. Detection techniques
- 3. Challenges for high m_a haloscopes and how we plan to solve them
 - a) Volume problem
 - b) Noise problem
- 4. Long term goals and other measurements

The eventual experiment

Some long term numbers

Many, many dark matter candidates

Figure adapted from US Cosmic Visions: New Ideas in Dark Matter 2017 arXiv:1707.04591

Other applications – millicharged particles

Look for collisions between millicharged particles (mCPs) and electrons that change the magnetron mode

Stage-I: magnetron heating, cyclotron coupling Stage-II: cyclotron-magnetron coupling to resolve lower heating rates

Thank you listening

Any Questions?

Also involved in this work

Marios Telemachou & Mingyao Xu Maddie Fisher Horacio Septien-Gonzalez

Quantum Enhanced Particle Astrophysics

37/15