BEYOND THE STANDARD MODEL LEC2A: SUSY, IN ACTION

Flip Tanedo

UC Riverside Particle Theory

Unfinished Business

Last time: Why don't we just introduce a righthanded neutrino into the Standard Model?

Unfinished Business

Last time: Why don't we just introduce a righthanded neutrino into the Standard Model?

It's not actually necessary!

$$
\frac{1}{\Lambda}|H L|^{2} \supset \frac{v^{2}}{\Lambda} \nu_{L} \nu_{L}
$$

Review of Last Time SUSY qualitatively

Hierarchy problem

$$
\delta m_{H}^{2}=\frac{\lambda_{S}}{16 \pi^{2}}\left[\Lambda_{\mathrm{UV}}^{2}-2 m_{S}^{2} \ln \left(\frac{\Lambda_{\mathrm{UV}}}{m_{S}}\right)+(\text { finite })\right]
$$

The Higgs is quadratically sensitive to the mass scale of any new physics that couples to it.

$$
\uparrow_{\text {nothing to do wl REGULARIZATION! }}
$$

quantum contributions to Higgs mass

Cancellations in SUSY

additional particles
"just right" coupling
superpartners also contribute to Higgs mass

MSSM Particle Content

MSSM Particle Content

Interactions

Crude estimate: take SM vertex, promote two lines to sparticles. (Sufficient for cocktail parties)

Systematic: supersymmetric action
e.g. superpotential

$$
W^{\text {(good) }}=y_{u}^{i j} Q^{i} H_{u} \bar{U}^{j}+y_{d}^{i j} Q^{i} H_{d} \bar{D}+y_{e}^{i j} L^{i} H_{d} \bar{E}^{j}+\mu H_{u} H_{d}
$$

Superpotential

$$
W^{(\text {good })}=y_{u}^{i j} Q^{i} H_{u} \bar{U}^{j}+y_{d}^{i j} Q^{i} H_{d} \bar{D}+y_{e}^{i j} \frac{L^{i}}{\frac{A}{C}} \frac{H_{d}}{\bar{C}} \frac{\bar{E}^{j}}{B}+\mu H_{u} H_{d}
$$

W = [coupling] A B C
gauge invariant combinations of superfields

Superpotential

$$
W^{\text {(good) }}=y_{u}^{i j} Q^{i} H_{u} \bar{U}^{j}+y_{d}^{i j} Q^{i} H_{d} \bar{D}+y_{e}^{i j} L^{i} H_{d} \bar{E}^{j}+\mu H_{u} H_{d}
$$

$$
H_{u, d}----->---H_{u, d}
$$

Bilinear term gives mass.

More generally

$$
\mathcal{L}=\sqrt{\substack{ \\
\text { Kähler potential }}} \begin{gathered}
\left(\int d^{2} \theta W(\Phi)+\text { h.c. }\right) \\
\text { superpotential }
\end{gathered}
$$

Why quartic/Yukawa couplings are just so: they come from the same object.
Kähler potential gives scalar quartics + derivative interactions. We'll stick to superpotential.

SUSY as a symmetry

where it comes from

Angular Momentum Algebra

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}
$$

Gives us representations of $\operatorname{SU}(2)$. e.g. 3-vector has three components

Generalizes to Poincaré group.
e.g. spinor representation ("induced reps")

$$
\text { Poincaré: } \quad P^{\mu}, M^{\mu \nu}
$$

SUSY Algebra

$$
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} P_{\mu}
$$

Fermionic generators, only allowed extension to spacetime symmetry with mass gap.

Exception to "no-go" theorerm (Coleman-Mandula)

For induced representations: see Weinberg QFT vol 1, chapter 2
For 2-component spinors: see Haber TASI lectures 1205.4076

Action of symmetry on fields

$$
\begin{array}{r}
g=\exp \left(i\left(\omega^{\mu \nu} M_{\mu \nu}+a^{\mu} P_{\mu}+\left(\theta^{\alpha} Q_{\alpha}+\bar{\theta}_{\dot{\alpha}} \bar{Q}^{\dot{\alpha}}\right)\right)\right. \\
\text { anticommuting }
\end{array}
$$

Write generators as differential operators, e.g.

$$
\begin{aligned}
\exp \left(-i a_{\mu} \mathcal{P}^{\mu}\right) \varphi\left(x^{\mu}\right) & =: \varphi\left(x^{\mu}-a^{\mu}\right) \\
\Longrightarrow \mathcal{P}_{\mu} & =-i \partial_{\mu}
\end{aligned}
$$

Translations in superspace

$$
\begin{aligned}
\mathcal{Q}_{\alpha} & =-i \frac{\partial}{\partial \theta^{\alpha}}-c\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} \bar{\theta}^{\dot{\beta}} \frac{\partial}{\partial x^{\mu}} \\
\overline{\mathcal{Q}}_{\dot{\alpha}} & =+i \frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}}+c^{*} \theta^{\beta}\left(\sigma^{\mu}\right)_{\beta \dot{\alpha}} \frac{\partial}{\partial x^{\mu}}
\end{aligned}
$$

$$
\text { PJCK } C=1
$$

Grassmann Numbers $101\{\theta, \theta\}=0$

Taylor series truncates:

$$
\begin{aligned}
& f(\theta)=\sum_{k=0}^{\infty} f_{k} \theta^{k}=f_{0}+f_{1} \theta+f_{2} \underbrace{\theta^{2}}_{0}+\underbrace{?}_{0} \\
& \text { "NTEERATION" IS TRINIAL! } \\
& \int \mathrm{d} \theta \frac{\mathrm{~d} f}{\mathrm{~d} \theta}:=0 \quad \mathrm{~d} \theta \theta:=1 \\
& \int \mathrm{~d} \theta\left(f_{0}+f_{1} \theta\right)=f_{1}=\frac{\mathrm{d} f}{\mathrm{~d} \theta}
\end{aligned}
$$

Grassmann Numbers 102

Now provide spin indices:

$$
\begin{aligned}
& \left\{\theta_{\alpha}, \bar{\theta}_{\dot{\beta}}\right\}=\left\{\theta_{\alpha}, \theta_{\beta}\right\}=\left\{\bar{\theta}_{\dot{\alpha}}, \bar{\theta}_{\dot{\beta}}\right\}=0 \quad \alpha, \alpha \in\{1,2\} \\
& \theta \theta:=\theta^{\alpha} \theta_{\alpha} \quad \bar{\theta} \bar{\theta}:=\bar{\theta}_{\dot{\alpha}} \bar{\theta} \dot{\alpha} \\
& \int \mathrm{d}^{2} \theta \theta \theta=1 \quad \int \mathrm{~d}^{2} \theta \int \mathrm{~d}^{2} \bar{\theta}(\theta \theta)(\bar{\theta} \bar{\theta})=1
\end{aligned}
$$

$$
\int d^{2} \theta\left[\cdots+F(x) \theta^{2}+\cdots\right]=F(x) \quad \begin{array}{ll}
\text { integrals are } \\
\text { projections }
\end{array}
$$

Putting this all together

$$
\begin{aligned}
\Phi & =\varphi(x)-i \theta \sigma^{\mu} \bar{\theta} \partial_{\mu} \varphi(x)-\frac{1}{4} \theta^{2} \bar{\theta}^{2} \partial^{2} \varphi(x) \\
& +\sqrt{2} \theta \eta+\frac{i}{\sqrt{2}} \theta^{2} \partial_{\mu} \eta \sigma^{\mu} \bar{\theta}+\sqrt{2} \theta^{2} F(x) .
\end{aligned}
$$

chiral superfield: complex scalar, Weyl fermion, auxiliary transforms into itself under a SUSY rotation

Transformation of components

$$
\begin{aligned}
\delta \varphi & =\sqrt{2} \epsilon \psi \\
\delta \psi & =i \sqrt{2} \sigma^{\mu} \bar{\epsilon} \partial_{\mu} \varphi+\sqrt{2} \epsilon F \\
\delta F & =i \sqrt{2} \bar{\epsilon} \bar{\sigma}^{\mu} \partial_{\mu} \psi
\end{aligned}
$$

Check degrees of freedom complex scalar, Weyl fermion, auxiliary

Towards a SUSY'ic Lagrangian

$$
\delta F=i \sqrt{2} \bar{\epsilon} \bar{\sigma}^{\mu} \partial_{\mu} \psi
$$

Transforms as a total derivative. Invariant in S.
Fact: products of XSF are XSF.

Rule: write gauge-invariant product of chiral superfields. Call that W. The auxiliary field component are good potential terms. (+h.c.)

The Wess-Zumino Model The ϕ^{4} theory of SUSY

crayon: an example of what SUSY calcs are like

The Wess-Zumino lagangian

$$
\begin{aligned}
W & =\frac{m}{2} \Phi^{2}+\frac{\lambda}{3} \Phi^{3} \quad \text { WANT }: ~ Q\left(\theta^{2}\right) \\
\Phi & =\varphi(x)-i \theta \sigma^{\mu} \bar{\theta} \partial_{\mu} \varphi(x)-\frac{1}{4} \theta^{2} \bar{\theta}^{2} \partial^{2} \varphi(x) \\
& +\sqrt{2} \theta \eta+\frac{i}{\sqrt{2}} \theta^{2} \partial_{\mu} \eta \sigma^{\mu} \bar{\theta}+\sqrt{2} \theta^{2} F(x) .
\end{aligned}
$$

complex scalar, Weyl fermion, auxiliary field

Superpotential to ordinary potential

$$
\begin{aligned}
\mathcal{L} & =\int d^{2} \theta W\left(\Phi_{i}\right)+\cdots \cdot \quad \text { WANT }: \underset{\text { TERM }}{Q}\left(\theta^{2}\right) \\
& =\frac{1}{2} \frac{\partial^{2} W}{\partial \Phi_{i} \partial \Phi_{i}} \eta_{i} \eta_{j}-\frac{\partial W}{\partial \Phi_{i}} F_{i} . \\
\Phi & =\varphi(x)-i \theta \sigma^{\mu} \bar{\partial} \partial_{\mu} \varphi(x)-\frac{1}{4} \theta^{2} \bar{\theta}^{2} \partial^{2} \varphi(x) \\
& +\sqrt{2} \theta \eta+\frac{i}{\sqrt{2}} \theta^{2} \partial_{\mu} \eta \sigma^{\mu} \bar{\theta}+\sqrt{2} \theta^{2} F(x) .
\end{aligned}
$$

More generally

$$
\begin{aligned}
\mathcal{L}= & \int d^{4} \theta K\left(\Phi_{i}\right)+\int d^{2} \theta W\left(\Phi_{i}\right)+\int d^{2} \bar{\theta} W\left(\Phi_{i}^{\dagger}\right) \\
= & g^{i j}\left(\partial \varphi_{i}^{*} \partial \varphi_{j}+i \eta_{i}^{*} \partial_{\mu} \bar{\sigma}^{\mu} \eta_{j}+F_{i}^{*} F_{j}\right) \\
& -\left(\frac{1}{2} \frac{\partial^{2} W}{\partial \Phi_{i} \partial \Phi_{i}} \eta_{i} \eta_{j}-\frac{\partial W}{\partial \Phi_{j}} F_{i}+\text { h.c. }\right) \\
F & \text { EOM: } \frac{\partial \mathcal{L}}{\delta(\partial F)}-\frac{\delta \mathcal{L}}{\partial F}=F^{*}-\frac{\partial W}{\partial \Phi}=0
\end{aligned}
$$

Superpotential to ordinary potential

$$
\begin{aligned}
\mathcal{L} \supset & -\frac{1}{2} \frac{\partial^{2} W}{\partial \Phi \partial \Phi} \eta \eta+\frac{1}{2}\left|\frac{\partial W}{\partial \Phi}\right|^{2}+\text { h.c. } \\
& \mathbf{W}
\end{aligned}
$$

Building a SUSY model ingredients for the MSSM

Vector superfields \& gauge invariance

$$
\begin{array}{clc}
\Phi & \mapsto \exp (i q \Lambda) \Phi & \Phi^{\dagger} \exp (2 q V) \Phi \\
V & \mapsto V-\frac{i}{2}\left(\Lambda-\Lambda^{\dagger}\right) & \begin{array}{c}
\text { gauge invariant term } \\
\text { (Kähler potential) }
\end{array} \\
V & =-\theta \sigma^{\mu} \bar{\theta} V_{\mu}(x)+i \theta^{2} \bar{\theta} \widehat{\lambda}(x)-i \bar{\theta}^{2} \theta \lambda(x)+\frac{1}{2} \theta^{2} \bar{\theta}^{2} D(x)
\end{array}
$$

Vector superfield: force superfield spin-1, Majorana fermion, auxiliary field
$S \operatorname{Tr} m^{2}=0$

OUE DOESNOT SINTHI

Hithe susy

imgfilp.com

SUSY breaking

Typical assumption: SUSY is broken in a different sector.

Mediated to SM by additional fields.

Soft SUSY breaking effective terms

$$
\begin{aligned}
\mathcal{L}_{\text {soft }}= & -\frac{1}{2}\left(M_{3} \widetilde{g} \widetilde{g}+M_{2} \widetilde{W} \widetilde{W}+M_{1} \widetilde{B} \widetilde{B}\right)+\text { h.c. } \\
& -\left(a_{u} \widetilde{Q} H_{u} \widetilde{\bar{u}}+a_{d} \widetilde{Q} H_{d} \widetilde{\bar{d}}+a_{e} \widetilde{L} H_{d} \widetilde{\bar{e}}\right)+\text { h.c. } \\
& -\widetilde{Q}^{\dagger} m_{Q}^{2} \widetilde{Q}-\widetilde{L}^{\dagger} m_{L}^{2} \widetilde{L}-\widetilde{u}^{\dagger} m_{u}^{2} \widetilde{\bar{u}}-\widetilde{d}^{\dagger} m_{d}^{2} \widetilde{\bar{d}}-\widetilde{e}^{\dagger} m_{e}^{2} \widetilde{\bar{e}}-m_{H_{u}}^{2} H_{u}^{*} H_{u}-m_{H_{d}}^{2} H_{d}^{*} H_{d} \\
& \left.-\left(b H_{u} H_{d}+\text { h.c. }\right)\right) .
\end{aligned}
$$

All terms that break SUSY but do not re-introduce a hierarchy between Higgs and Planck scale. Specific SUSY breaking prescription predicts patterns in these terms.

Little Hierarchy

$\Delta m_{H_{u}}^{2}=\frac{3 y_{t}^{2}}{4 \pi^{2}} m_{\widetilde{t}}^{2} \ln \left(\frac{\Lambda_{\mathrm{UV}}}{m_{\widetilde{t}}}\right)$.

Flavor

$$
\begin{aligned}
& \mathcal{M}_{K K}^{\mathrm{MSSM}} \sim \alpha_{\mathrm{s}}^{2}\left(\frac{\Delta m_{d s}^{2}}{m_{\mathrm{SUSY}}^{2}}\right)^{2} \frac{1}{m_{\mathrm{SUSY}}^{2}} \\
& \frac{\Delta m_{d s}^{2}}{m_{\mathrm{SUSY}}^{2}} \lesssim 4 \cdot 10^{-3}\left(\frac{m_{\mathrm{SUSY}}}{500 \mathrm{GeV}}\right)
\end{aligned}
$$

Indirect constraints on sparticles...
often suggestive of flavor patterns (MFV)

Why theorists [still] love SUSY

Non-renormalization theorems
(Not true for Kahler potential)
Powerful non-perturbative results in gauge theory e.g. electromagnetic duality

The "spherical cow" of field theory

BEYOND THE STANDARD MODEL

 L EC 2 B: EXTRA DIMENSIONS \& COMPOSITENESS
Flip Tanedo

UC Riverside Particle Theory

Extra Dimensions \& the Hierarchy Problem

SUSY vs extra dimensions

$$
\begin{aligned}
& \left\{x_{\mu}, \theta^{\alpha}, \bar{\theta}_{\dot{\alpha}}\right\} \\
& \psi(x) \\
& \varphi(x)
\end{aligned}
$$

More particles, no cancellations

HIERARCHY PROBLEM
Why isn't Higgs mass = Planck mass?
largeness of $M_{p ı}$ is the weakness of gravity

$$
G_{N}=\frac{1}{8 \pi M_{\mathrm{Pl}}^{2}}
$$

Maybe Planck mass isn't actually that big.

Field theory in 5D

$$
\begin{aligned}
& S=\int d^{5} x \frac{1}{2} \partial_{M} \phi(x, y) \partial^{M} \phi(x, y) \quad \\
&=\int d^{5} x \frac{1}{2}\left[\partial_{\mu} \phi(x, y) \partial^{\mu} \phi(x, y)-\overparen{\left.\left(\partial_{y} \phi(x, y)\right)^{2}\right]}\right. \\
& \eta=(+, \cdots,-,-)
\end{aligned}
$$

Assume y is compact; Fourier:
$y \in(0,2 \pi)$

$$
\phi(x, y)=\frac{1}{\sqrt{2 \pi R}} \sum_{n=-\infty}^{\infty} \phi^{(n)}(x) e^{i \frac{n}{R} y}
$$

KK Masses

$$
\begin{aligned}
S & =\int d^{5} x \frac{1}{2}\left[\partial_{\mu} \phi(x, y) \partial^{\mu} \phi(x, y)-\left(\partial_{y} \phi(x, y)\right)^{2}\right] \\
& =\int d^{4} x \sum_{n>0}\left[\left(\partial_{\mu} \phi^{(n)}\right)^{\dagger} \partial^{\mu} \phi^{(n)}-\frac{n^{2}}{R^{2}}\left|\phi^{(n)}\right|^{2}\right]
\end{aligned}
$$

Gauge fields

$$
\begin{aligned}
& A_{M}(x, y)=\frac{1}{\sqrt{2 \pi R}} \sum_{n} A_{M}^{(n)}(x) e^{i \frac{n}{n} y} . \\
& A_{M}=(\underbrace{\left.A_{0}, A_{1}, A_{2}, A_{3}, A_{s}\right)}_{A_{V}} \uparrow{ }_{4 D \text { SCALAR }}
\end{aligned}
$$

Dimensional Analysis

$$
\begin{aligned}
& D_{\mu}=\partial_{\mu}-i g_{5} A_{\mu}= \\
& g_{4}=\frac{\partial_{5}}{\sqrt{2 \pi R}} \underbrace{\sqrt{2 \pi R}}_{\text {volume suppression }} A_{\mu}^{(0)}+\cdots . \\
& g_{4}^{2}=\frac{g_{(4+n)}^{2}}{\mathrm{Vol}_{n}}
\end{aligned}
$$

$$
A_{M}(x, y)=\frac{1}{\sqrt{2 \pi R}} \sum_{n} A_{M}^{(n)}(x) e^{i \frac{n}{R} y}
$$

Braneworld

Fundamental scale is actually smaller than our perceived MpI

$$
\begin{aligned}
S_{(4+n)} & =-M_{(4+n)}^{2+n} \int d^{4+n} x \sqrt{g} R_{(4+n)} \\
& =-M_{(4+n)}^{2+n} V_{n} \int d^{4} x \sqrt{g_{(4)}} R_{(4)}+\cdots
\end{aligned}
$$

Phenomenology

4D physics is the same, fields in the bulk have Kaluza-Klein resonances.
What if Standard Model fields were also in the bulk?

Compositeness \& the Hierarchy Problem

... really just an interlude about pions

Maybe the Higgs is like a pion. There's no pion hierarchy problem.

Why there's no п hierarchy problem

1. The pion is composite.

At small scales/high energies, it stops behaving like a scalar and starts behaving like two fermions.
2. The pion is a goldstone boson.

It is protected by a shift symmetry. (c.f. axion)
Exercise: what symmetry is broken spontaneously?
Exercise: what is breaking that symmetry?

Exercises

1. Why do pions have mass?
2. Why do some pions have charge?

3. Why are charged pions slightly heavier?
4. What about kaons?
5. Why don't we have top mesons?

Pions in the Standard Model

$S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{\text {EM }}$
$S U(2)_{L} \times S U(2)_{R} \rightarrow S U(2)_{V}$

GLOBAL SYMMETRY
$S U(2)_{H} \times S U(2)_{L}^{\prime} \times U(1)_{H}$

Pions as effective theory

Why XD ~ compositeness

A hypothetical conversation

The Randall-Sundrum Model

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

holography: geometerize RG flow

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

$$
x \rightarrow \alpha x
$$

$$
z \rightarrow \alpha z
$$

$$
\mu \frac{\partial}{\partial \mu} j_{i}(x, \mu)=\beta_{i}\left(j_{j}(x, \mu), \mu\right)
$$

explicit example: AdS/CFT

$$
\operatorname{AdS}_{5} \times S^{5}
$$

$\frac{\mathcal{N}=4 \text { super Yang-Mills. }}{\bigcap_{\text {Many }} Q, \bar{Q}}$

- The isometry of the S^{5} space is $\mathrm{SO}(6) \cong \mathrm{SU}(4)$. This is precisely the R-symmetry group of the $\mathcal{N}=4$ gauge theory.
- The isometry of the AdS_{5} space is $\mathrm{SO}(4,2)$, which exactly matches the spacetime symmetries of a 4D conformal theory.

