BEYOND THE STANDARD MODEL LEC2A: SUSY, IN ACTION

Flip Tanedo UC Riverside Particle Theory

ASTRONOMY

29 JULY 2019

flip.tanedo@ucr.edu

Last time: Why don't we just introduce a righthanded neutrino into the Standard Model?

Last time: Why don't we just introduce a righthanded neutrino into the Standard Model?

By the way, I don't think RH neutrinos have a protected mass term

flip.tanedo@ucr.edu

Review of Last Time SUSY qualitatively

Hierarchy problem

$$\delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{\rm UV}^2 - 2m_S^2 \ln\left(\frac{\Lambda_{\rm UV}}{m_S}\right) + (\text{finite}) \right]$$

The Higgs is quadratically sensitive to the mass scale of any new physics that couples to it.

quantum contributions to Higgs mass

Cancellations in SUSY

superpartners also contribute to Higgs mass

MSSM Particle Content

MSSM Particle Content

Spectrum: sparticles are typically heavier.

flip.tanedo@ucr.edu

9 ⁄24 Crude estimate: take SM vertex, promote two lines to sparticles. (Sufficient for cocktail parties)

Systematic: supersymmetric action e.g. superpotential

 $W^{(\text{good})} = y_u^{ij} Q^i H_u \bar{U}^j + y_d^{ij} Q^i H_d \bar{D} + y_e^{ij} L^i H_d \bar{E}^j + \mu H_u H_d$

Superpotential

$$W^{(\text{good})} = y_u^{ij} Q^i H_u \bar{U}^j + y_d^{ij} Q^i H_d \bar{D} + y_e^{ij} L^i H_d \bar{E}^j + \mu H_u H_d$$

W = [coupling] A B C gauge invariant combinations of superfields

Superpotential

 $W^{(\text{good})} = y_u^{ij}Q^iH_u\bar{U}^j + y_d^{ij}Q^iH_d\bar{D} + y_e^{ij}L^iH_d\bar{E}^j + \mu H_uH_d$

Bilinear term gives mass.

More generally
real function holomorphic function
$$\mathcal{L} = \int d^4\theta \ K(\Phi, \Phi^{\dagger}) + \left(\int d^2\theta \ W(\Phi) + \text{h.c.} \right)$$
Kähler potential superpotential

Why quartic/Yukawa couplings are *just so*: they come from the same object. Kähler potential gives scalar quartics + derivative interactions. We'll stick to superpotential.

SUSY as a symmetry where it comes from

Angular Momentum Algebra

$$[J_i, J_j] = i\epsilon_{ijk}J_k$$

Gives us representations of SU(2). e.g. 3-vector has three components

Generalizes to Poincaré group. e.g. spinor representation ("induced reps")

Poincaré:
$$P^{\mu}, M^{\mu
u}$$

For induced representations: see Weinberg QFT vol 1, chapter 2

flip.tanedo@ucr.edu

SUSY Algebra

$$\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\} = 2\left(\sigma^{\mu}\right)_{\alpha\dot{\beta}}P_{\mu}$$

Fermionic generators, only allowed extension to spacetime symmetry with mass gap.

Exception to "no-go" theorerm (Coleman-Mandula)

For induced representations: see Weinberg QFT vol 1, chapter 2 For 2-component spinors: see Haber TASI lectures 1205.4076

flip.tanedo@ucr.edu

Action of symmetry on fields

$$g = \exp\left(i\left(\omega^{\mu\nu}M_{\mu\nu} + a^{\mu}P_{\mu} + \theta^{\alpha}Q_{\alpha} + \bar{\theta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}}\right)\right)$$

anticommuting

Write generators as differential operators, e.g.

$$\exp(-ia_{\mu} \mathcal{P}^{\mu}) \varphi(x^{\mu}) =: \varphi(x^{\mu} - a^{\mu})$$
$$\implies \mathcal{P}_{\mu} = -i\partial_{\mu}$$

17

flip.tanedo@ucr.edu

Translations in superspace

18

flip.tanedo@ucr.edu

Grassmann Numbers 101 $\{\theta, \theta\} = 0$

Taylor series truncates:

$$f(\theta) = \sum_{k=0}^{\infty} f_k \theta^k = \int_{0}^{1} f_0 + f_1 \theta + f_2 \frac{\theta^2}{\theta} + \dots = 0$$

NTEGRATION'' IS TRIVIAL!

$$\int d\theta \frac{df}{d\theta} := 0 \qquad \int d\theta \theta := 1$$

$$\int d\theta (f_0 + f_1 \theta) = f_1 = \frac{df}{d\theta}$$

TRISEP SUMMER SCHOOL 2019

Grassmann Numbers 102

Now provide spin indices:

DOTED/UNDOTED INDICES: $d, \bar{q} \in \{1, 2\}$

$$\{\theta_{\alpha}, \bar{\theta}_{\dot{\beta}}\} = \{\theta_{\alpha}, \theta_{\beta}\} = \{\bar{\theta}_{\dot{\alpha}}, \bar{\theta}_{\dot{\beta}}\} = 0$$

 $\theta\theta := \theta^{\alpha} \theta_{\alpha} \qquad \qquad \bar{\theta}\bar{\theta} := \bar{\theta}_{\dot{\alpha}} \bar{\theta}^{\dot{\alpha}}$

$$\int d^2\theta \ \theta\theta = 1 \qquad \int d^2\theta \int d^2\bar{\theta} \ (\theta\theta) \ (\bar{\theta}\bar{\theta}) = 1$$

 $\int d^2\theta \left[\dots + F(x)\theta^2 + \dots \right] = F(x) \qquad \text{integrals are} \\ \text{projections}$

Putting this all together

$$\begin{split} \Phi = & \varphi(x) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\varphi(x) - \frac{1}{4}\theta^{2}\bar{\theta}^{2}\partial^{2}\varphi(x) \\ + & \sqrt{2}\theta\eta + \frac{i}{\sqrt{2}}\theta^{2}\partial_{\mu}\eta\sigma^{\mu}\bar{\theta} + \sqrt{2}\theta^{2}F(x) \,. \end{split}$$

chiral superfield: complex scalar, Weyl fermion, auxiliary transforms into itself under a SUSY rotation

Transformation of components

$$\begin{split} \delta \varphi &= \sqrt{2} \epsilon \psi \\ \delta \psi &= i \sqrt{2} \sigma^{\mu} \bar{\epsilon} \partial_{\mu} \varphi + \sqrt{2} \epsilon F \\ \delta F &= i \sqrt{2} \bar{\epsilon} \bar{\sigma}^{\mu} \partial_{\mu} \psi \,. \end{split}$$

Check degrees of freedom complex scalar, Weyl fermion, auxiliary

Towards a SUSY'ic Lagrangian

$$\delta F = i\sqrt{2}\,\bar{\epsilon}\,\bar{\sigma}^{\mu}\,\partial_{\mu}\psi\,.$$

Transforms as a total derivative. Invariant in S.

Fact: products of XSF are XSF.

Rule: write gauge-invariant product of chiral superfields. Call that *W*. The auxiliary field component are good potential terms. (+h.c.)

The Wess-Zumino Model The ϕ^4 theory of SUSY

crayon: an example of what SUSY calcs are like

The Wess-Zumino lagangian

$$W = \frac{m}{2}\Phi^2 + \frac{\lambda}{3}\Phi^3 \qquad \qquad \underbrace{\text{WANT}}_{\text{TERM}}: \underbrace{\bigcirc_{(\Theta^2)}}_{\text{TERM}}$$

$$\begin{split} \Phi = & \varphi(x) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\varphi(x) - \frac{1}{4}\theta^{2}\bar{\theta}^{2}\partial^{2}\varphi(x) \\ & +\sqrt{2}\theta\eta + \frac{i}{\sqrt{2}}\theta^{2}\partial_{\mu}\eta\sigma^{\mu}\bar{\theta} + \sqrt{2}\theta^{2}F(x) \,. \end{split}$$

complex scalar, Weyl fermion, auxiliary field

flip.tanedo@ucr.edu

Superpotential to ordinary potential

$$\mathcal{L} = \int d^2\theta W(\Phi_i) + \cdots$$

WANT: $O(9^2)$ TERM

$$= \frac{1}{2} \frac{\partial^2 W}{\partial \Phi_i \partial \Phi_j} \eta_i \eta_j - \frac{\partial W}{\partial \Phi_i} F_i$$

$$\Phi = \varphi(x) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\varphi(x) - \frac{1}{4}\theta^{2}\bar{\theta}^{2}\partial^{2}\varphi(x) + \sqrt{2}\theta\eta + \frac{i}{\sqrt{2}}\theta^{2}\partial_{\mu}\eta\sigma^{\mu}\bar{\theta} + \sqrt{2}\theta^{2}F(x).$$

More generally

$$\mathcal{L} = \int d^{4}\theta \, K(\Phi_{i}) + \int d^{2}\theta W(\Phi_{i}) + \int d^{2}\bar{\theta}W(\Phi_{i}^{\dagger})$$

$$= g^{ij} \left(\partial\varphi_{i}^{*}\partial\varphi_{j} + i\eta_{i}^{*}\partial_{\mu}\bar{\sigma}^{\mu}\eta_{j} + F_{i}^{*}F_{j}\right)$$

$$- \left(\frac{1}{2}\frac{\partial^{2}W}{\partial\Phi_{i}\partial\Phi_{j}}\eta_{i}\eta_{j} - \frac{\partial W}{\partial\Phi_{j}}F_{i} + \text{h.c.}\right)$$

$$\vdash \text{EPM: } \partial \frac{S\mathcal{L}}{S(\mathsf{OF})} - \frac{S\mathcal{L}}{\mathsf{OF}} = \mathsf{F}^{*} - \frac{\mathsf{SW}}{\mathsf{OF}} = \mathsf{O}$$

27 9 27 24

flip.tanedo@ucr.edu

Superpotential to ordinary potential

$$\mathcal{L} \supset -\frac{1}{2} \frac{\partial^2 W}{\partial \Phi \partial \Phi} \eta \eta + \frac{1}{2} \left| \frac{\partial W}{\partial \Phi} \right|^2 + \text{h.c.}$$

 $W > \frac{2}{3} \Phi_3$

flip.tanedo@ucr.edu

Building a SUSY model ingredients for the MSSM

flip.tanedo@ucr.edu

Vector superfields & gauge invariance

$$\Phi \mapsto \exp(iq\Lambda) \Phi$$

$$V \mapsto V - \frac{i}{2} \left(\Lambda - \Lambda^{\dagger} \right)$$

$$\Phi^{\dagger} \exp(2qV) \Phi$$

gauge invariant term (Kähler potential)

$$V = -\theta \sigma^{\mu} \bar{\theta} V_{\mu}(x) + i \theta^2 \bar{\theta} \bar{\lambda}(x) - i \bar{\theta}^2 \theta \lambda(x) + \frac{1}{2} \theta^2 \bar{\theta}^2 D(x)$$

Vector superfield: force superfield spin-1, Majorana fermion, auxiliary field

$STr m^2 = 0$

https://imgflip.com/memegenerator/One-Does-Not-Simply

Typical assumption: SUSY is broken in a different **sector.**

Mediated to SM by additional fields.

Soft SUSY breaking effective terms

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} \right) + \text{h.c.} - \left(a_u \widetilde{Q} H_u \widetilde{\overline{u}} + a_d \widetilde{Q} H_d \widetilde{\overline{d}} + a_e \widetilde{L} H_d \widetilde{\overline{e}} \right) + \text{h.c.} - \widetilde{Q}^{\dagger} m_Q^2 \widetilde{Q} - \widetilde{L}^{\dagger} m_L^2 \widetilde{L} - \widetilde{u}^{\dagger} m_u^2 \widetilde{\overline{u}} - \widetilde{d}^{\dagger} m_d^2 \widetilde{\overline{d}} - \widetilde{e}^{\dagger} m_e^2 \widetilde{\overline{e}} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - \left(b H_u H_d + \text{h.c.} \right) \right).$$

All terms that break SUSY but do not re-introduce a hierarchy between Higgs and Planck scale. Specific SUSY breaking prescription predicts patterns in these terms.

Little Hierarchy

common to all BSM

 $\Delta m_{H_u}^2 = \frac{3y_t^2}{4\pi^2} m_{\tilde{t}}^2 \ln\left(\frac{\Lambda_{\rm UV}}{m_{\tilde{t}}}\right).$

flip.tanedo@ucr.edu

Flavor

common to all BSM

Indirect constraints on sparticles... often suggestive of flavor patterns (MFV)

Why theorists [still] love SUSY

Non-renormalization theorems (Not true for Kahler potential)

Powerful non-perturbative results in gauge theory e.g. electromagnetic duality

The "spherical cow" of field theory

see lectures by Strassler on SUSY

BEYOND THE STANDARD MODEL LEC2B: EXTRA DIMENSIONS & COMPOSITENESS

Flip Tanedo UC Riverside Particle Theory

ASTRONOMY

29 JULY 2019

flip.tanedo@ucr.edu

Extra Dimensions & the Hierarchy Problem

flip.tanedo@ucr.edu

SUSY vs extra dimensions

 $\{x_{\mu}, \theta^{\alpha}, \theta_{\dot{\alpha}}\}$

 $\psi(x)$

 $\varphi(x)$

 $\{x_{\mu}, z\}$

flip.tanedo@ucr.edu

More particles, no cancellations

HIERARCHY PROBLEM

Why isn't **Higgs mass = Planck mass**?

largeness of M_{PI} is the weakness of gravity

$$G_N = \frac{1}{8\pi M_{\rm Pl}^2}$$

Maybe Planck mass isn't actually that big.

Field theory in 5D

$$S = \int d^5x \frac{1}{2} \partial_M \phi(x, y) \partial^M \phi(x, y) \int d^4 \phi(x, y) d^4 \phi(x, y) d^4 \phi(x, y) d^4 \phi(x, y) - (\partial_y \phi(x, y))^2 d^2 d^4 \phi(x, y) d$$

$$\phi(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=-\infty}^{\infty} \phi^{(n)}(x) e^{i\frac{n}{R}y}$$

41

KK Masses

$$S = \int d^5x \, \frac{1}{2} \left[\partial_\mu \phi(x, y) \partial^\mu \phi(x, y) - (\partial_y \phi(x, y))^2 \right]$$

$$= \int d^4x \sum_{n>0} \left[\left(\partial_\mu \phi^{(n)} \right)^{\dagger} \partial^\mu \phi^{(n)} - \frac{n^2}{R^2} |\phi^{(n)}|^2 \right]$$
$$\mathcal{M}_{(n)}^2 = \frac{\Omega^2}{R^2}$$

flip.tanedo@ucr.edu

Gauge fields

flip.tanedo@ucr.edu

Dimensional Analysis

$$D_{\mu} = \partial_{\mu} - ig_5 A_{\mu} = \partial_{\mu} - i\frac{g_5}{\sqrt{2\pi R}}A^{(0)}_{\mu} + \cdots$$

$$g_4 = \frac{g_5}{\sqrt{2\pi R}}$$
 $\left(\begin{array}{c} g_4^2 = \frac{g_{(4+n)}^2}{\text{Vol}_n} \end{array} \right)$

volume suppression

$$A_M(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_n A_M^{(n)}(x) e^{i\frac{n}{R}y}.$$

Braneworld

flip.tanedo@ucr.edu

Phenomenology

4D physics is the same, fields in the **bulk** have **Kaluza-Klein resonances**. What if Standard Model fields were also in the bulk?

Compositeness & the Hierarchy Problem

... really just an interlude about pions

flip.tanedo@ucr.edu

Maybe the Higgs is like a pion. There's no *pion* hierarchy problem.

Why there's no π hierarchy problem

1. The pion is **composite.**

At small scales/high energies, it stops behaving like a scalar and starts behaving like two fermions.

2. The pion is a **goldstone boson**.

It is protected by a shift symmetry. (c.f. axion)

Exercise: what symmetry is broken spontaneously? Exercise: what is breaking that symmetry?

flip.tanedo@ucr.edu

Exercises

- 1. Why do pions have mass?
- 2. Why do some pions have charge?
- 3. Why are charged pions slightly heavier?
- 4. What about kaons?
- 5. Why don't we have top mesons?

Pions in the Standard Model

 $SU(2)_L \times U(1)_Y \to U(1)_{\rm EM}$ $SU(2)_L \times SU(2)_R \to SU(2)_V$

GLOBAL SYMMETRY $SU(2)_H \times SU(2)'_L \times U(1)_H$

> Mass from explicit breaking of global sym. FROM QUARK MASSES

Pions as effective theory

53 24

flip.tanedo@ucr.edu

Why XD ~ compositeness

flip.tanedo@ucr.edu

A hypothetical conversation

Theorist

I have a new $\mathcal{L}_{BSM}!$

A tower of resonances coming from Kaluza-Klein excitations of fields living in an extra dimension. These include same-spinnpartners of the Standard Model identified with the φ ω, q onts/Ge/ J/W ations. This solves n by introducing a 104 103 netric... 102

Experimentalist

Neat! What's the signal?

Oh, we already found that. It's QCD.

55

The Randall-Sundrum Model

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

56

holography: geometerize RG flow

$$ds^{2} = \left(\frac{R}{z}\right)^{2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2})$$

$$x \to \alpha x$$

$$z \to \alpha z$$

$$\iota \frac{\partial}{\partial \mu} j_{i}(x,\mu) = \beta_{i}(j_{j}(x,\mu),\mu)$$

$$Territorialization scale} \mu$$

see e.g. Sundrum TASI lectures

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

57

explicit example: AdS/CFT

 $AdS_5 \times S^5 \qquad \iff \qquad \mathcal{N} = 4 \text{ super Yang-Mills.}$ $\uparrow \mathsf{Many Q, Q}$

- The isometry of the S^5 space is SO(6) \cong SU(4). This is precisely the *R*-symmetry group of the $\mathcal{N} = 4$ gauge theory.
- The isometry of the AdS₅ space is SO(4, 2), which exactly matches the spacetime symmetries of a 4D conformal theory.

