BEYOND THE STANDARD MODEL

 LEC3A: PIONS!LEC3B: AXIONS!
LEC3C: WIMPS!

Flip Tanedo

UC Riverside Particle Theory

References

Just a Taste: Lectures on Flavor Physics
Grossman \& F.T. arXiv: 1711.03624
Javier Redondo's lectures on axions e.g. ("3 hours with axions")

Cahn, "The eighteen arbitrary parameters of the standard model in your everyday life" RMP 68951 (1996)

Axion Analogy

The Pool-Table Analogy with Axion Physics (Sikivie)

The Pool-Table Analogy with Axion Physics (Sikivie)

Physics Today 49, 12, 22 (1996); doi: 10.1063/1.881573
5

The Pool-Table Analogy with Axion Physics (Sikivie)

Physics Today 49, 12, 22 (1996); doi: 10.1063/1.881573
6

The Pool-Table Analogy with Axion Physics (Sikivie)

Physics Today 49, 12, 22 (1996); doi: 10.1063/1.881573

WIMPs

Preventing Proton Decay: R-parity

$$
P_{R}=(-)^{3(B-L)+2 s}
$$

$\mathrm{P}_{\mathrm{R}}[$ ordinary matter] $=+$ $\mathrm{P}_{\mathrm{R}}[$ superpartner $]=-$

Added bonus:
lightest superpartner is stable.

Known Unknowns

m_{h}
 ?

Missing Mass

The story so far: SUSY

m_{h}
 ?

Missing Mass

SUSY

New Particles

p+ stability ?

R-parity

Weakly-Interacting Massive Particle

m_{h} ?

Missing Mass

Weak scale mass ~100 GeV Weak scale interaction strength GF No additional parameters (roughly)

Dark Matter

One thing that we do know: density

How much DARK MATER/ is
in My ICOPFEE? @FlipTa
THE MOTION OF NEARBY STARS Missing Mass DARK MATER DENSITY IN OUR GALACTIC NEIGHBORHOOD:
$\varlimsup^{\rho_{\mathrm{DM}}^{\text {local }}=(0.39 \pm 0.03) \cdot(1.2 \pm 0.2) \cdot\left(1 \pm \delta_{\text {triad }}\right) \frac{\mathrm{GeV}}{\mathrm{cm}^{3}} \approx \frac{1}{2} \frac{\mathrm{GeV}}{\mathrm{cm}^{3}},{ }^{\text {a }} \text {. }}$

IF DARK MATIER HAS MASS M_{x}, THEN THE NUMBER DENSITY OF DARK MATIER IS
$n_{D M}=\rho_{D M} / m_{X}+50$ GeV \approx MASS of TITANIUM ATOM
$=\frac{\rho_{D M}}{50 G e V} \cdot\left(\frac{50 G e V}{m_{x}}\right)$
$\approx \frac{0.01}{\mathrm{~cm}} \cdot\left(\frac{50 \mathrm{GeV}}{m_{x}}\right)_{1}$
REFERENCE

OBSERVE: HEAVIER DARK MATTER \rightarrow LESS DENSE

WIKIPEDIA:
Coffee mug volume
LETS ASAME ONLY 100

THEN THE AVCREGE I of DRRE IN MY COFFE is
$\sim \mathrm{GeV} / \mathrm{cm}^{3}$
Approx. 1 WIMP per mug of coffee

\section*{| Dark Matter |
| :---: | :---: | :---: |
| Dater |}

$$
\approx 1 \times\left(\frac{5^{0} G e V}{m x}\right)
$$

$1 \times\left(\frac{5 \cdot q x)}{m x}\right.$

Weakly-Interacting Massive Particle

m_{h}

Missing Mass

Weak scale mass ~100 GeV
Weak scale interaction strength G_{F} No additional parameters (roughly)

How much dark matter do we predict?

Dark Matter

How much dark matter is there?

How much dark matter is there?

 WIMP prediction: relic abundance of dark matter[neutralino \& cousins]

The "WIMP Miracle"

 automatically get the correct abundance (almost)
expansion of universe
"WEAK SCALE" MASS

The story so far: SUSY

m_{h} ?

 \downarrowSUSY

New Particles

p^{+}stability ?

R-parity

extra dimensions

compositeness

m_{h} $?$

\downarrow
composite

New Particles

precision observables

?

T-parity

Dark Matter

 with correct abundance
WIMP story

21

