TRISEP lectures on Gravitational Waves

Djuna Croon, TRIUMF

A new era of astronomy!

- First measurement of a binary black hole merger in 2015 by LIGO
- LIGO/Virgo have detected 11+19 mergers
- Many new experiments planned
- Huge opportunity for (particle) astrophysics and cosmological research!

A new era of particle theory!

(You are here)

Standard Model and Beyond Neutrino Physics Higgs Physics 2016 Dark Mater
Techniques for Particle/Colliders Particle Detection Methods

Gravitational wave timeline

- Proposed in 1905 by Poincaré
- Predicted in 1916 by Einstein
- Indirect evidence in 1974 from the HulseTaylor binary pulsar (1993 Nobel Prize)
- Direct evidence (2015 onwards)
- Interferometer proposals: 1960s
- First detection in 2015 (announced in 2016) by the LIGO collaboration (2017 Nobel Prize)

Current/future experiments

Ground-based interferometers LIGO, Virgo, KAGRA (now) ET, CE (ca. 2030)

Space-based interferometers LISA, Tianqin, Decigo, BBO (ca. 2035+)

Pulsar timing
Arrays
EPTA, IPTA, SKA
(now)

Atom
interferometry
AION, MAGIS
(ca. 2025)

These lectures

- A (brief) note on General Relativity
- Gravitational wave theory
- Binary Mergers
- Detection
- Science opportunities and prospects

A (brief) note on

GENERAL RELATIVITY

Scalars, vectors, and tensors

- I will assume you are familiar with index notation:

A scalar

$A_{\mu} \quad$ Vector
$A_{\mu \nu} \quad$ Tensor (rank 2)

- Our indices will (generally) run over space and time variables: $\mu, \nu=\{t, x, y, z\}$

Einstein notation

- I will also use the following notation:
- Covariant vector: A_{μ}
- Contravariant vector: A^{μ}
- Greek indices (μ, ν) run over spacetime, Latin indices (i, j) run over space
- Repeated indices are summed over,

$$
x^{i} x_{i} \equiv \sum_{i} x^{i} x_{i}
$$

"Spacetime tells matter how to move; matter tells spacetime how to curve"

John A. Wheeler

The Einstein Field Equations

$$
G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

The Einstein Field Equations

Einstein tensor

$$
G_{\mu \nu}^{\downarrow} \equiv \overbrace{\mu \nu}-\frac{1}{2} R_{\text {Ricci scalar }}^{\downarrow} g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

The Einstein Field Equations

Einstein tensor

$$
G_{\mu \nu}^{\downarrow} \equiv \uparrow_{\mu \nu}-\frac{1}{2}{\underset{\sim}{2}}_{\substack{\text { Ricci scalar } \\ \text { Ricci tensor }}}^{\substack{\downarrow \\ \text { Metric }}}=\frac{8 \pi G}{c^{4}} \uparrow_{\mu \nu}
$$

The metric tensor

- Symmetric real rank-2 tensor
$g_{\mu \nu}=g_{\nu \mu}$

$$
g_{\mu \nu}=\left(\begin{array}{llll}
g_{t t} & g_{t x} & g_{t y} & g_{t z} \\
g_{x t} & g_{x x} & g_{x y} & g_{x z} \\
g_{y t} & g_{y x} & g_{y y} & g_{y z} \\
g_{z t} & g_{z x} & g_{z y} & g_{z z}
\end{array}\right)
$$

- Measures distance: $\quad d s^{2}=\sum g_{\mu \nu} d x^{\mu} d x^{\nu}$

Q: How many independent components
does $g_{\mu \nu}$ have (maximally)?

The metric tensor

- Symmetric real rank-2 tensor
$g_{\mu \nu}=g_{\nu \mu}$

$$
g_{\mu \nu}=\left(\begin{array}{llll}
g_{t t} & g_{t x} & g_{t y} & g_{t z} \\
g_{x t} & g_{x x} & g_{x y} & g_{x z} \\
g_{y t} & g_{y x} & g_{y y} & g_{y z} \\
g_{z t} & g_{z x} & g_{z y} & g_{z z}
\end{array}\right)
$$

- Measures distance: $d s^{2}=\sum g_{\mu \nu} d x^{\mu} d x^{\nu}$

Example: 2 spatial dimensions

- Distance measured as:

$$
\mu, \nu=\{x, y\}
$$

$$
\begin{aligned}
d s^{2} & =\sum_{\mu, \nu} g_{\mu \nu} d x^{\mu} d x^{\nu} \\
& =g_{x x} d x^{2}+g_{y y} d y^{2}+2 g_{x y} d x d y
\end{aligned}
$$

- Flat space: $d s^{2}=d x^{2}+d y^{2}$

So, in flat space, $g_{i i}=1, g_{i j}=0$ for $i \neq j$

- Flat space-time has $g_{\mu \nu}=\eta_{\mu \nu}= \pm \operatorname{diag}(-1,1,1,1)$

The Ricci tensor $R_{\mu \nu}$ and scalar R

- Describe the geometry of space-time
- Derived from the Riemann tensor, $R^{\mu}{ }_{v \sigma \rho}$

Ricci tensor: contract the first and the third index Ricci scalar: contract the Ricci tensor (with $g^{\mu \nu}$)

- Flat spacetime: $R_{\mu v}=0=R$
- But, remember the EFE:

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

- Flat spacetime is empty!

Matter $\leftrightarrow>$ curvature

- In reality, space-time is almost flat almost everywhere. Gravity is weak,

$$
\frac{8 \pi G_{N}}{c^{4}}=2.1 \times 10^{-43} \mathrm{~s}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-1}
$$

- For example, consider the sun:
mass density of the sun $=1.4 \mathrm{~g} \mathrm{~cm}^{-3} \times c^{2}$
energy density of the sun $=1.3 \times 10^{20} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$

$$
\begin{aligned}
G_{\mu \nu} & =2.6 \times 10^{-23} \mathrm{~m}^{-2} \\
& \sim(\text { radius of curvature })^{-2}
\end{aligned}
$$

Matter $\leftrightarrow>$ curvature

- In reality_snace_time_ic_almost_flat almnst evíLearn more: Repeat this exercise for different astrophysical systems (for example the Earth)
- For example, consider the s mass density of the sun $=1$. energy density of the sun $=1.3 \times 10^{20} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-z}$

$$
\begin{aligned}
G_{\mu \nu} & =2.6 \times 10^{-23} \mathrm{~m}^{-2} \\
& \sim(\text { radius of curvature })^{-2}
\end{aligned}
$$

An introduction to

GRAVITATIONAL WAVES

What is a gravitational wave?

- A solution to a wave equation:

$$
\square h(\vec{x}, t)=\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial \vec{x}^{2}}\right] h(\vec{x}, t)=0
$$

- Or, with a source:
$\square h(\vec{x}, t)=[$ source $]$
- We will see that the EFE take this form in linearized theory

Linearized GR

- As we saw, the (Minkowski) metric of flat spacetime is given by $\eta_{\mu \nu}= \pm \operatorname{diag}(1,-1,-1,-1)$
- Imagine that
$g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$, where $h_{\mu \nu} \ll g_{\mu \nu}$
i.e., a flat metric with a small perturbation
- Now we fill this into the EFE and perform some dark magic
(Convenient gauge changes)

EFE for a metric perturbation*

Source: energy momentum tensor

* This is actually an equation for the trace-reversed metric perturbation, but for our purposes the difference is not important

EFE for a metric perturbation*

Source: energy momentum tensor

Transverse-Traceless gauge

- Outside of the source, $\square h_{\mu \nu}=0$
- This gives 4 more conditions
- $h_{\mu \nu}$ has 6-4=2 independent components
- This is exploited in the Transverse-Traceless
gauge, $h_{\mu 0}=0$
only spatial components

$$
h_{j}{ }^{j}=0
$$

traceless

$$
h_{i j}{ }^{j},=0 \quad \text { no divergence }
$$

Learn more: find an example of a metric in the TT gauge

GW polarization

- Example: wave traveling down the z-axis

$$
h_{a b}^{T T}(t, z)=\left(\begin{array}{cc}
h_{+} & h_{\times} \\
h_{\times} & -h_{+}
\end{array}\right) \cos (\omega(t-z / c))
$$

- Z-axis into/out of the slide:

Solving $\square h_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}$

- Recall that generally, linear wave equations can be solved using Green's functions:

$$
\square_{x} G\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right)
$$

- Just as in electrodynamics, we need the retarded Green's function (traveling forward in time)
- The solution is then,

$$
h_{i j}^{T T}(t, \vec{x})=\frac{4 G}{c^{4}} \Lambda_{i j, k l} \int d^{3} x^{\prime} \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|} T_{k l}\left(t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}, \vec{x}^{\prime}\right)
$$

$$
\Lambda_{i j, k l}=P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l}
$$

Solving $\square h_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}$

- Recall that generally, linear wave equations can be solved using Green's functions:

$$
\square_{x} G\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right)
$$

- Just as in electrodynamics, we need the retarded Green's function (traveling forward in time)
- The solution is then,

$$
\begin{gathered}
h_{i j}^{T T}(t, \vec{x})=\frac{4 G}{c^{4}} \Lambda_{i j, k l} \int d^{3} x^{\prime} \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|} T_{k l}\left(t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}, \vec{x}^{\prime}\right) \\
\left.\begin{array}{ll}
\text { TT-projector }
\end{array}\right) \\
\Lambda_{i j, k l}=P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l} \quad \text { A: the time elements are related by } \\
\text { energy-momentum conservation }
\end{gathered}
$$

Further approximations

- To study $h_{\mu \nu}$ further, we will take two limits: 1. The detector is far from the source

2. The source is non-relativistic

- The detector is far (1): we can expand

$$
\left|\vec{x}-\vec{x}^{\prime}\right|=|\vec{r}|-\vec{x}^{\prime} \cdot \hat{N}
$$

$$
\left.h_{i j}^{T T}(t, \vec{x})=\frac{1}{r} \frac{1 G}{c^{4}} \Lambda_{i j, k l} \int d^{3} x^{\prime} T_{k l}\left(t-\frac{\mathscr{T}^{\prime}}{c}+\frac{\overrightarrow{x^{\prime}} \cdot N}{c}\right) \vec{x}^{\prime}\right)
$$

Further approximations

- To study $h_{\mu \nu}$ further, we will take two limits: 1. The detector is far from the source

2. The source is non-relativistic

- The detector is far (1): we can expand

$$
\left|\vec{x}-\vec{x}^{\prime}\right|=|\vec{r}|-\overrightarrow{x^{\prime}} \cdot \hat{N}
$$

$\left.h_{i j}^{T T}(t, \vec{x})=\frac{1}{r} \frac{1 G}{c^{4}} \Lambda_{i j, k l} \int d^{3} x^{\prime} T_{k l}\left(t-\frac{|\vec{r}|}{c}+\frac{\vec{x}^{\prime} \cdot \hat{N}}{c}\right) \vec{x}^{\prime}\right)$

Weak field, low velocity

- For self-gravitating systems, $\mu=\frac{\prod_{i} m_{i}}{m_{\text {tot }}}$

$$
\frac{1}{2} \mu^{2} v^{2}=\frac{1}{2} \frac{G m_{\text {tot }}}{r}
$$

- Such that the weak-field limit $\left(R_{s} \ll r\right)$ implies the low-velocity limit,

$$
\frac{v^{2}}{2}=\frac{1}{2} R_{S}=\frac{2 G_{N} m_{\mathrm{tot}}}{c^{2}}
$$

Low velocity expansion (2)

- Imagine a source of size d and frequency ω, such that the linear velocity is $v=\omega d$
- As we will see, the GW frequency is then also $\omega_{G W}=O(\omega)$, such that

$$
\lambda_{\mathrm{GW}} \sim \frac{c}{v} d
$$

- For NR systems ($c \gg v$), we find $\lambda_{\mathrm{GW}} \gg d$
- Internal motions unimportant \rightarrow multipole expansion converges

Multipole expansion

- Using the expansion,

$$
T_{k l}\left(t-\frac{|\vec{r}|}{c}+\frac{\vec{x}^{\prime} \cdot \hat{N}}{c}, \vec{x}^{\prime}\right)=T_{k l}+\frac{x^{\prime i} n_{i}}{c} \partial_{0} T_{k l}+\left.\ldots\right|_{\left(t-\frac{r}{c}, \vec{x}^{\prime}\right)}
$$

- We can express $h_{i j}$ in moments of $T_{i j}$

$$
h_{i j}^{T T}(t, \vec{x})=\frac{4 G}{c^{4}} \Lambda_{i j, k l} \times\left(S^{k l}+\frac{n_{m}}{c} \dot{S}^{k l, m}+\ldots\right)
$$

$$
S^{i j}(t)=\int d^{3} x T^{i j}(t, x)
$$

$$
S^{i j, k}(t)=\int d^{3} x T^{i j}(t, x) x^{k}
$$

First two moments of $T_{i j}$

Mass quadrupole moment

- It can be shown using $T_{\mu \nu}{ }^{\nu}=0$
- Here $M_{i j}$ is the mass quadrupole moment

$$
\begin{aligned}
h_{i j}^{T T} & =\left[h_{i j}^{T T}\right]_{\mathrm{quad}}+\ldots \\
{\left[h_{i j}^{T T}\right]_{\mathrm{quad}} } & =\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l} \ddot{M}_{k l}(t-r / c)
\end{aligned}
$$

Take-home message

- Gravitational waves are generated by accelerated mass distributions with a nonzero mass quadrupole moment
- No spherically symmetric systems
- No static or uniformly moving systems
- Observable GW sources are huge and relatively close by (or very numerous)

Take-home message

- We found the first term in the expansion to be the quadrupole moment,

$$
\left[h_{i j}^{T T}\right]_{\text {quad }}=\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l} \ddot{M}_{k l}(t-r / c)
$$

- Let's plug in some numbers...

$$
\left.\begin{array}{rl}
r & =140 \times 10^{6} \mathrm{ly} \\
\dot{I}_{k l} & =60 M_{\odot} \times c^{2}
\end{array}\right\}\left[h_{a b}^{T T}\right]_{\mathrm{quad}} \sim 10^{-19}
$$

Gravitational waves from

BINARY MERGERS

Binary mergers

The GW observed at LIGO/Virgo are from the inspiral phases of BNS and BBH mergers

x

Mass density CM frame

$$
\rho(t, \vec{x})=\mu \delta^{(3)}\left(\vec{x}-\vec{x}_{0}(t)\right)
$$

[Learn more: Show this.

$$
M^{i j}(t)=\mu x_{0}^{i}(t) x_{0}^{j}(t)
$$

Polarization waveforms

Let's first imagine the wave propagation along the z-axis: $\left[h_{i j}^{T T}\right]_{\text {quad }}=\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l} \ddot{M}_{k l}(t-r / c)$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Using the TT-projector, } \\
\Lambda_{i j, k l}= & P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l} \\
h_{+}=\frac{1}{r} \frac{G}{c^{4}}\left(\ddot{M}_{11}-\ddot{M}_{22}\right) & \begin{array}{l}
\text { We can rotate our result } \\
\text { to find results for other } \\
\text { propagation directions }
\end{array} \\
h_{\times}=\frac{2}{r} \frac{G}{c^{4}} \ddot{M}_{12} &
\end{array}
\end{array}
$$

More general propagation direction

$$
\begin{aligned}
h_{+}= & \frac{1}{r} \frac{G}{c^{4}}\left(\ddot{M}_{11}\left(\cos ^{2} \phi-\sin ^{2} \phi \cos ^{2} \theta\right)+\ddot{M}_{22}\left(\sin ^{2} \phi-\cos ^{2} \phi \cos ^{2} \theta\right)\right. \\
& \left.-\ddot{M}_{12} \sin 2 \phi\left(1+\cos ^{2} \theta\right)\right) \quad \text { We chose an orbit in the } \\
h_{\times}= & \frac{2}{r} \frac{G}{c^{4}}\left(\left(\ddot{M}_{11}-\ddot{M}_{22}\right) \sin 2 \phi \cos \theta+\ddot{M}_{12} \cos 2 \phi \cos \theta\right)
\end{aligned}
$$

A simplified calculation

Further assumptions:
$m_{1}=m_{2}$
Circular orbits

- No backreaction
- No backreaction

$$
\begin{aligned}
& x_{0}(t)=-R \sin (\omega t) \\
& y_{0}(t)=R \cos (\omega t)
\end{aligned}
$$

$$
h_{+}=\frac{1}{r} \frac{4 G \mu \omega^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos (2 \omega t+2 \phi)
$$

$$
h_{\times}=\frac{2}{r} \frac{4 G \mu \omega^{2} R^{2}}{c^{4}} \cos \theta \sin (2 \omega t+2 \phi)
$$

A simplified calculation

Further assumptions:

- $m_{1}=m_{2}$
- Circular orbits
- No backreaction

Source motion:

$$
\begin{aligned}
& x_{0}(t)=-R \sin (\omega t) \\
& y_{0}(t)=R \cos (\omega t)
\end{aligned}
$$

$$
h_{+}=\frac{1}{r} \frac{4 G \mu \omega^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos (2 \omega t+2 \phi)
$$

$$
h_{\times}=\frac{2}{r} \frac{4 G \mu \omega^{2} R^{2}}{c^{4}} \cos \theta \sin (2 \omega t+2 \phi)
$$

In reality, there is backreaction

- Gravitational waves carry energy away from the (binary) system
- Settled in 1957 with the sticky bead argument

In reality, there is backreaction

- Orbital frequency: Kepler's $3^{\text {rd }}$ law

$$
\omega^{2}=G_{N} \frac{m_{1}+m_{2}}{r^{3}}
$$

- GW emission drains energy from the system,
$P_{\mathrm{GW}}=\dot{E}_{\text {orbit }}$
$E_{\text {orbit }}=E_{\mathrm{kin}}+E_{\mathrm{pot}}$

$$
=-G \frac{m_{1} m_{2}}{2 r}
$$

GW emission implies that the orbital radius decreases and the frequency increases

Hanford, Washington (H1)
Livingston, Louisiana (L1)

