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A new era of astronomy!

• First measurement of a binary black hole 
merger in 2015 by LIGO

• LIGO/Virgo have detected 11+19 mergers
• Many new experiments planned

• Huge opportunity for (particle) astrophysics 
and cosmological research!



A new era of particle theory!
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Gravitational wave timeline

• Proposed in 1905 by Poincaré

• Predicted in 1916 by Einstein

• Indirect evidence in 1974 from the Hulse-
Taylor binary pulsar (1993 Nobel Prize)

• Direct evidence (2015 onwards)
– Interferometer proposals: 1960s

– First detection in 2015 (announced in 2016) by the 
LIGO collaboration (2017 Nobel Prize)

Poincaré, Sur la dynamique
de l'electron, 1905



Current/future experiments

5

Pulsar timing 
Arrays 
EPTA, IPTA, SKA 
(now)

Space-based 
interferometers 
LISA, Tianqin, 
Decigo, BBO
(ca. 2035+)

Ground-based 
interferometers
LIGO, Virgo, 
KAGRA (now)
ET, CE (ca. 
2030)

Atom 
interferometry
AION, MAGIS 
(ca. 2025)



These lectures

• A (brief) note on General Relativity
• Gravitational wave theory
• Binary Mergers
• Detection
• Science opportunities and prospects



GENERAL RELATIVITY
A (brief) note on



Scalars, vectors, and tensors

• I will assume you are familiar with index 
notation:

• Our indices will (generally) run over space and 
time variables: µ, � = {t, x, y, z}

A

Aµ

Aµ�

Scalar

Vector

Tensor (rank 2) 



Einstein notation

• I will also use the following notation:
– Covariant vector: Aμ 
– Contravariant vector: Aμ

• Greek indices (μ,ν) run over spacetime, 
Latin indices (i,j) run over space

• Repeated indices are summed over,

xixi �
�

i

xixi



“Spacetime tells matter how to move; 
matter tells spacetime how to curve”

John A. Wheeler



The Einstein Field Equations

Gµ� � Rµ� � 1
2R gµ� =

8�G

c4
Tµ�



The Einstein Field Equations

Gµ� � Rµ� � 1
2R gµ� =

8�G

c4
Tµ�

Einstein tensor

Ricci tensor

Ricci scalar

Metric

Energy-momentum 
tensor



The Einstein Field Equations

Gµ� � Rµ� � 1
2R gµ� =

8�G

c4
Tµ�

Einstein tensor

Ricci tensor

Ricci scalar

Metric

Energy-momentum 
tensor

Curvature Matter



The metric tensor

• Symmetric real rank-2 tensor

• Measures distance:

gµ� =

�

���

gtt gtx gty gtz

gxt gxx gxy gxz

gyt gyx gyy gyz

gzt gzx gzy gzz

�

���

gµ� = g�µ

ds2 =
�

µ,�

gµ�dxµdx�

Q: How many independent components 
does gμν have (maximally)?



The metric tensor

• Symmetric real rank-2 tensor

• Measures distance:

gµ� =

�

���

gtt gtx gty gtz

gxt gxx gxy gxz

gyt gyx gyy gyz

gzt gzx gzy gzz

�

���

gµ� = g�µ

ds2 =
�

µ,�

gµ�dxµdx�

A: 10



Example: 2 spatial dimensions

• Distance measured as:

• Flat space:
So, in flat space,

• Flat space-time has gμν=ημν=±diag(-1,1,1,1)

µ, � = {x, y}

ds2 = dx2 + dy2

Pythagoras
theorem

ds2 =
�

µ,�

gµ�dxµdx�

= gxxdx2 + gyydy2 + 2gxydxdy

gii = 1, gij = 0 for i �= j



The Ricci tensor R!" and scalar R
• Describe the geometry of space-time
• Derived from the Riemann tensor, R!"#$

• Flat spacetime: R!" = 0 = R
– But, remember the EFE:

– Flat spacetime is empty! 

Gµ� � Rµ� � 1
2R gµ� =

8�G

c4
Tµ�

Ricci tensor: contract the first and the third index
Ricci scalar:  contract the Ricci tensor (with gμν)



Matter çè curvature

• In reality, space-time is almost flat almost 
everywhere. Gravity is weak,

• For example, consider the sun:
mass density of the sun =1.4 g cm�3 � c2

energy density of the sun =1.3 � 1020 kg m�1 s�2

Gµ� =2.6 � 10�23 m�2

8�GN

c4
= 2.1 � 10�43 s2 kg�1 m�1

Gμν ~ (radius of curvature)-2



Matter çè curvature

• In reality, space-time is almost flat almost 
everywhere. Gravity is weak,

• For example, consider the sun:
mass density of the sun =1.4 g cm�3 � c2

energy density of the sun =1.3 � 1020 kg m�1 s�2

Gµ� =2.6 � 10�23 m�2

8�GN

c4
= 2.1 � 10�43 s2 kg�1 m�1

Gμν ~ (radius of curvature)-2

Learn more: Repeat this exercise for 
different astrophysical systems
(for example the Earth)



GRAVITATIONAL WAVES
An introduction to



What is a gravitational wave?

• A solution to a wave equation:

• Or, with a source:

• We will see that the EFE take this form in 
linearized theory

� h(��x , t) =

�
1

c2

�2

�t2
� �2

���x 2

�
h(��x , t) = 0

� h(��x , t) = [source]



Linearized GR
• As we saw, the (Minkowski) metric of flat space-

time is given by ημν=±diag(1,-1,-1,-1)

• Imagine that

i.e., a flat metric with a small perturbation

• Now we fill this into the EFE and perform some 
dark magic

gµ� = �µ� + hµ� , where hµ� � gµ�

(Convenient gauge changes)



EFE for a metric perturbation*

�hµ� = �16�G

c4
Tµ�

Metric perturbation
Source: energy 
momentum tensor

��hµ� = 0
Lorentz gauge

Q: How many independent 
components does hμν have?

* This is actually an equation for the 
trace-reversed metric perturbation, 
but for our purposes the difference 
is not important



EFE for a metric perturbation*

�hµ� = �16�G

c4
Tµ�

Metric perturbation
Source: energy 
momentum tensor

��hµ� = 0
Lorentz gauge

A: 6 = 10 (symmetric tensor) 
- 4 (Lorentz gauge)

* This is actually an equation for the 
trace-reversed metric perturbation, 
but for our purposes the difference 
is not important



• Outside of the source,
– This gives 4 more conditions
– hμν has 6-4=2 independent components

• This is exploited in the Transverse-Traceless 
gauge, 

Transverse-Traceless gauge

�hµ� = 0

hµ0 = 0 only spatial components

h j
j = 0 traceless

h j
ij, = 0 no divergence

Learn more: find an example of a metric in the TT gauge



GW polarization

• Example: wave traveling down the z-axis

• Z-axis into/out of the slide:

hTT
ab (t, z) =

�
h+ h�
h� �h+

�
cos (�(t � z/c))



Solving
• Recall that generally, linear wave equations can 

be solved using Green’s functions: 

• Just as in electrodynamics, we need the retarded
Green’s function (traveling forward in time)

• The solution is then,

�xG(x � x�) = �4(x � x�)

�hµ� = �16�G

c4
Tµ�

Q: why is the integral over space only?

hTT
ij (t, ��x ) =

4G

c4
�ij,kl

�
d3x� 1

|��x � ��x �| Tkl

�
t � |��x � ��x �|

c
, ��x �

�
Learn more: Verify this

TT-projector
�ij,kl = PikPjl � 1

2
PijPkl



Solving
• Recall that generally, linear wave equations can 

be solved using Green’s functions: 

• Just as in electrodynamics, we need the retarded
Green’s function (traveling forward in time)

• The solution is then,

�xG(x � x�) = �4(x � x�)

�hµ� = �16�G

c4
Tµ�

A: the time elements are related by 
energy-momentum conservation

hTT
ij (t, ��x ) =

4G

c4
�ij,kl

�
d3x� 1

|��x � ��x �| Tkl

�
t � |��x � ��x �|

c
, ��x �

�
Learn more: Verify this

TT-projector
�ij,kl = PikPjl � 1

2
PijPkl



Further approximations

• To study hμν further, we will take two limits:
1. The detector is far from the source
2. The source is non-relativistic 

• The detector is far (1): we can expand

Q: for a source of size d, why is x’ ≤d? 

|��x � ��x �| = |��r | � ��x � · N̂

hTT
ij (t, ��x ) =

1

r

4G

c4
�ij,kl

�
d3x� Tkl

�
t � |��r |

c
+

��x � · N̂

c
, ��x �

�



Further approximations

• To study hμν further, we will take two limits:
1. The detector is far from the source
2. The source is non-relativistic 

• The detector is far (1): we can expand

A: Tμν is only nonzero inside d

|��x � ��x �| = |��r | � ��x � · N̂

hTT
ij (t, ��x ) =

1

r

4G

c4
�ij,kl

�
d3x� Tkl

�
t � |��r |

c
+

��x � · N̂

c
, ��x �

�



Weak field, low velocity

• For self-gravitating systems, 

• Such that the weak-field limit (Rs≪r) implies
the low-velocity limit,

v2

c2
=

1

2

Rs

r

1

2
µv2 =

1

2

GNµmtot

r

Reduced mass

µ =

�
i mi

mtot

Rs =
2GNmtot

c2

Schwarzschild radius



Low velocity expansion (2)
• Imagine a source of size d and frequency !, such 

that the linear velocity is v=!d
• As we will see, the GW frequency is then also 
!GW = O(!), such that 

• For NR systems (c≫v), we find #GW≫d
• Internal motions unimportant è multipole 

expansion converges

�GW � c

v
d



Multipole expansion

• Using the expansion,

• We can express hij in moments of Tij
hTT

ij (t, ��x ) =
4G

c4
�ij,kl �

�
Skl +

nm

c
Ṡkl,m + ...

�

Sij(t) =

�
d3xT ij(t, x)

Sij,k(t) =

�
d3xT ij(t, x)xk

Tkl

�
t � |��r |

c
+

��x � · N̂

c
, ��x �

�
= Tkl +

x�ini

c
�0Tkl + ...

�����
(t� r

c ,��x �)

First two moments of Tij



Mass quadrupole moment

• It can be shown using

• Here Mij is the mass quadrupole moment of 
T00

T �
µ�, = 0

Sij =

�
d3xT ij(t, x) = �2

0

�
1

c2

�
d3x T 00(t, x)xixj

�
= M̈ij

Learn more: Show this. Hint: remember 
that Tμν vanishes outside the source

�
hTT

ij

�
quad

=
1

r

2G

c4
�ij,klM̈kl(t � r/c)

hTT
ij =

�
hTT

ij

�
quad

+ ...



Take-home message

• Gravitational waves are generated by 
accelerated mass distributions with a nonzero 
mass quadrupole moment
– No spherically symmetric systems 
– No static or uniformly moving systems

• Observable GW sources are huge and
relatively close by (or very numerous)



• We found the first term in the expansion to be 
the quadrupole moment,

• Let’s plug in some numbers…

36

�
hTT

ab

�
quad

� 10�19

Take-home message

�
hTT

ij

�
quad

=
1

r

2G

c4
�ij,klM̈kl(t � r/c)

r = 140 � 106 ly

M̈kl = 60M� � c2



BINARY MERGERS
Gravitational waves from



Binary mergers

fISCO =
C3/2

�

33/2 � GN (M1 + M2)

Inspiral phase RingdownMerger

The GW observed at LIGO/Virgo are from the 
inspiral phases of BNS and BBH mergers

In the inspiral phase, the 
approximations from the 
previous section are good



x

y

z We choose the origin of 
our coordinate  system to 
be a the center of mass 
(CM) of the binary

M ij(t) = µxi
0(t)x

j
0(t) µ =

m1m2

m1 + m2

M ij(t) = µxi
0(t)x

j
0(t) µ =

m1m2

m1 + m2

�(t, ��x ) = µ �(3) (��x � ��x 0(t))

Learn more: Show this. 

Reduced 
mass

Mass density
CM frame



Polarization waveforms

Let’s first imagine the wave propagation along 
the z-axis: 

h+ =
1

r

G

c4

�
M̈11 � M̈22

�

h� =
2

r

G

c4
M̈12

�
hTT

ij

�
quad

=
1

r

2G

c4
�ij,klM̈kl(t � r/c)

We can rotate our result 
to find results for other 
propagation directions

�ij,kl = PikPjl � 1

2
PijPkl

Using the TT-projector, 



n

x
y

z

!

φ

h+ =
1

r

G

c4

�
M̈11

�
cos2 � � sin2 � cos2 �

�
+ M̈22

�
sin2 � � cos2 � cos2 �

�

�M̈12 sin 2�
�
1 + cos2 �

��

h� =
2

r

G

c4

��
M̈11 � M̈22

�
sin 2� cos � + M̈12 cos 2� cos �

�

More general 
propagation direction

Use the rotation matrix to 
translate the previous 
result to a general direction

We chose an orbit in the 
(x,y)-plane, hence Mi3=0



A simplified calculation

x0(t) = �R sin(�t)

y0(t) = R cos(�t)

M ij(t) = µxi
0(t)x

j
0(t) µ =

m1m2

m1 + m2

h+ =
1

r

4Gµ�2R2

c4

�
1 + cos2 �

2

�
cos(2�t + 2�)

h� =
2

r

4Gµ�2R2

c4
cos � sin(2�t + 2�)

Further assumptions:
• m1=m2
• Circular orbits
• No backreaction

Learn more: Show this.

Source motion:



A simplified calculation

x0(t) = �R sin(�t)

y0(t) = R cos(�t)

M ij(t) = µxi
0(t)x

j
0(t) µ =

m1m2

m1 + m2

h+ =
1

r

4Gµ�2R2

c4

�
1 + cos2 �

2

�
cos(2�t + 2�)

h� =
2

r

4Gµ�2R2

c4
cos � sin(2�t + 2�)

Further assumptions:
• m1=m2
• Circular orbits
• No backreaction

Learn more: Show this.

Twice the source 
frequency!

Source motion:



In reality, there is backreaction

• Gravitational waves carry energy away from 
the (binary) system

• Settled in 1957 with the sticky bead argument 



In reality, there is backreaction

• Orbital frequency: Kepler’s 3rd law

• GW emission drains energy from the system,

�2 = GN
m1 + m2

r3

PGW = Ėorbit

Eorbit = Ekin + Epot

= �G
m1m2

2r

GW emission implies 
that the orbital radius 
decreases and the 
frequency increases




