BEYOND THE STANDARD MODEL LECIA: WHY NEW PHYSICS?

Flip Tanedo UC Riverside Particle Theory

ASTRONOMY

29 JULY 2019

flip.tanedo@ucr.edu

Outline

- 1a. The Hierarchy problem, qualitative
- 1b. Supersymmetry, overview
- 2a. Supersymmetry, tools
- 2b. Extra dimensions/compositeness, qualitative
- 3a. Extra dimensions, tools
- 3b. Compositeness, tools
- 3c. Naturalness and WIMP dark matter
- Suggestion: take notes of some sort

flip.tanedo@ucr.edu

References

arXiv.org > hep-ph > arXiv:1602.04228

High Energy Physics – Phenomenology

Beyond the Standard Model

Csaba Csáki, Philip Tanedo

(Submitted on 12 Feb 2016 (v1), last revised 19 Dec 2016 (this version,

We introduce aspects of physics beyond the Standard Model focusing on supersymmetry, extra dimensions, and a composite Higgs as solutions to the

Hierarchy problem. Lectures at the European School of High Energy Physics, Parádfürdő, Hungary, 5–18 June 2013.

Comments: 119 pages, 16 figures, minor revisions and corrections from published version. Proceedings of the 2013 European School of High-Energy Physics, Paradfurdo, Hungary, 5-18 June 2013, edited by M. Mulders and G. Perez, CERN-2015-004 (CERN, Geneva, 2015), ISBN: 9789290834205. v2: typos corrected, references updated

.... and references therein

flip.tanedo@ucr.edu

Why go beyond the Standard Model?

My top 5 (personal, not exhaustive)

- 1. The Hierarchy Problem: why is the Higgs light?
- 2. Dark matter: what is it? (Graciela)
- 3. Baryogenesis: why so much matter?
- 4. Strong CP problem: why no neutron EDM?
- 5. **Grand unification**: why is Y quantized? Bonus: relation to neutrino mass?(*Joachim*)

Particle Physics, circa 1990s

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

6 70

Particle Physics, circa 1990s

fundamental forces

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

70

MAXIMILIEN BRICE, CERN via National Geographic (May 2012)

AE+11/18

ME+1/1/20

HE+ REX 11

ME+1/1/19

NE+11121

Physicists Find Elusive Particle Seen as Key to Universe

By DENNIS OVERBYE JULY 4, 2012

Scientists in Geneva on Wednesday applauded the discovery of a subatomic particle that looks like the Higgs boson. Pool photo by Denis Balibouse

D. Overbye, New York Times, 4 July 2012

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

0

70

The Hierarchy Problem

The Higgs has a *snowball's chance in hell* of being 125 GeV.

(and yet here we are)

FT, Quantum Diaries, "The Hierarchy Problem" (2012)

flip.tanedo@ucr.edu

Analogy: thermal randomness

2 70

quantum contributions to Higgs mass

flip.tanedo@ucr.edu

Other "hierarchy problems" ?

Standard Model Fermions

 $\Delta m_e \sim m_e \ln \left(\frac{\Lambda}{m_e}\right)$

Massive Gauge Bosons

$$\Delta M_W^2 \sim M_W^2 \ln\left(\frac{\Lambda}{M_W}\right)$$

TRISEP SUMMER SCHOOL 2019

...what about dim-reg?

$$\int \frac{d^d \ell}{(2\pi)^d} \, \frac{1}{(\ell^2 - \Delta)^n} = \frac{(-1)^n \, i}{(4\pi)^{d/2}} \, \frac{\Gamma(n - \frac{d}{2})}{\Gamma(n)} \left(\frac{1}{\Delta}\right)^{n - \frac{d}{2}}$$

$$\underbrace{\frac{\Gamma(2-\frac{d}{2})}{(4\pi)^{d/2}} \left(\frac{1}{\Delta}\right)^{2-\frac{d}{2}} = \frac{1}{(4\pi)^2} \left(\frac{2}{\epsilon} - \log \Delta - \gamma + \log(4\pi) + \mathcal{O}(\epsilon)\right)}_{\epsilon = 4 - d.}$$

voila, no quadratic divergences! ... but it was never about quadratic divergences

from Peskin & Schroeder, Introduction to Quantum Field Theory

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

5

Hierarchy problem is about separation of scales.

...what about dim-reg?

$$\delta m_H^2 \sim \left(\frac{g^2}{16\pi^2}\right)^2 \left[a\Lambda_{\rm UV}^2 + 48m_F^2 \ln\frac{\Lambda_{\rm UV}}{m_F} + (\text{finite})\right]$$

... even if we sequester the new physics.

Frameworks for Hierarchy Problem

Supersymmetry: enforce a cancellation

Extra dimensions: effective UV scale is lower... maybe because gravity is diluted in 5D?

Compositeness: effective UV scale is lower... because you resolve Higgs substructure

Other? maybe that's just the way things are.

BEYOND THE STANDARD MODEL LECIB: SUSY, QUALITATIVELY

Flip Tanedo UC Riverside Particle Theory

ASTRONOMY

29 JULY 2019

flip.tanedo@ucr.edu

Why is the mass of electron small?

Imagine bringing together pieces of the electron from far away.

$$\Delta E_{coulomB} = (e_{e})^{a} (rodius)^{a} of e^{-1}$$

 $(e_{e})^{a} (re_{e})^{a} (re_{e})^{a} (re_{e})^{a}$
 $e_{e})^{a} \Delta E^{a} (re_{e})^{a}$

GeV cm =
$$5 \times 10^{13}$$

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019 22/70

If the electron is semiclassically natural, then the correction should be no larger than $\sim m_e$

$$\Delta E = \frac{\alpha}{r_{NP}} = M_{e} \Rightarrow \Gamma_{NP} = \frac{\alpha}{M_{e}} + \frac{10^{-2}}{5 \times 10^{-4} \text{GeV}}$$
new physics scale
$$= \frac{10^{-2}}{(2 \times 10^{-9})} \text{ cm}$$

$$= \frac{5 \times 10^{-13} \text{ cm}}{5 \times 10^{-13} \text{ cm}}$$

GeV cm =
$$5 \times 10^{13}$$

TRISEP SUMMER SCHOOL 2019

We know something interesting happens on length scales on the order of the electron mass.

vacuum polarization from virtual particle-antiparticle pairs

renormalization of charge, screening by virtual pairs

HAPPENS & r~ (2m)² (eg HEISENBERG StAE~1)

Vy ~100 times sooner than naturalness requires!

GeV cm =
$$5 \times 10^{13}$$

Supersymmetry a qualitative introduction

S. Martin, A SUSY Primer hep-ph/9709356 Quevedo et al. Cambridge Lectures on SUSY 1011.1491

Supersymmetry

flip.tanedo@ucr.edu

Supersymmetry

VISIBLE STUFF

flip.tanedo@ucr.edu

Supersymmetry

VISIBLE STUFF

NEW PARTICLES

superpartners also contribute to Higgs mass

why this could work

relative sign between boson and fermion loops

... just need [super]symmetry to enforce appropriate particles and couplings

the naming of squarks The MSSM (s)particle content

... compare to "The Naming of Cats" by TS Eliot

flip.tanedo@ucr.edu

Multiplets to supermultiplets also known as superfields

$$H = \begin{pmatrix} \phi^1 \\ \phi^2 \end{pmatrix} \int \operatorname{Su}(2) \operatorname{Rotation}$$

$$\begin{split} H &= \phi^1 \mathbf{e_1} + \phi^2 \mathbf{e_2} \quad \Leftarrow \text{ BASIS of GAUGE} \\ & \text{MULTIPUET} \quad \text{FERMIONIC BASIS} \\ & \Phi(y,\theta) &= \varphi(y) + \sqrt{2}\theta\psi(y) + \theta^2 F(y) \\ & y^\mu &= x^\mu + i\theta\sigma^\mu\bar{\theta} \end{split}$$

flip.tanedo@ucr.edu

Rule of thumb: SUSY spectrum

$$\Phi(y,\theta) = \varphi(y) + \sqrt{2}\theta\psi(y) + \theta^2 F(y)$$

Chiral superfield: matter superfield complex scalar, Weyl fermion, auxiliary field

$$V = -\theta\sigma^{\mu}\bar{\theta}V_{\mu}(x) + i\theta^{2}\bar{\theta}\bar{\lambda}(x) - i\bar{\theta}^{2}\theta\lambda(x) + \frac{1}{2}\theta^{2}\bar{\theta}^{2}D(x)$$

Vector superfield: force superfield spin-1, Majorana fermion, auxiliary field

auxiliary fields are analogous to gauge-redundant degrees of freedom

flip.tanedo@ucr.edu

The superfields

vector superfields (forces)						
$\chi { m SF}$	$SU(3)_{c}$	$\mathrm{SU}(2)_{\mathrm{L}}$	$U(1)_{Y}$			
Q	3	2	1/6			
$ar{U}$	$\overline{3}$	1	-2/3			
\bar{D}	$\overline{3}$	1	1/3			
L	1	2	-1/2			
\bar{E}	1	1	—1			
H_d	1	2	-1/2			
H_u	1	2	1/2			

chiral (matter) superfields

flip.tanedo@ucr.edu

example: quark doublet

$\chi { m SF}$	$SU(3)_{c}$	$\mathrm{SU}(2)_{\mathrm{L}}$	$U(1)_{Y}$
Q	3	2	1/6

example: quark doublet

flip.tanedo@ucr.edu

The superfields

SM BOSON -> - in> SM FERMION -> S-

		g/gluinos	W ^a /winos	B/bino	
IЦир	$\chi { m SF}$	$\mathrm{SU}(3)_{\mathrm{c}}$	$\mathrm{SU}(2)_{\mathrm{L}}$	$U(1)_{Y}$	C
LH down	O	3	2	$1/_{6}$	(
		$\frac{0}{0}$	1	$\frac{1}{2}$	
RH up*	\underline{U}	<u> </u>	T	-2/3	S
RH down*	D	3	1	1/3	S
LH neutrino	L	1	2	-1/2	S
LH electron	$ar{E}$	1	1	-1	S
RH electron*	H_{1}	1	2	$-1/_{2}$	S
H+, H ¹		1 1		/ / 1 /	ł
H^2 , H^-	H_u	T	2	1/2	ł

sup-L sdown-L sup-R* sdown-R* sneutrino selectron-L selectron-R niggsinos niggsinos

36

"sfermions" (squarks and sleptons) gauginos

Gaugino mixing

2 charginos + h.c.

We never talk about photinos or zinos.

flip.tanedo@ucr.edu

MSSM Feynman Rules a cheater's guide (SUSY limit)

flip.tanedo@ucr.edu

the dirty secret (approximate)

- 1. take a Standard Model vertex
- 2. replace two particles with SUSY partners
- 3. make sure indices contract (they will)

flip.tanedo@ucr.edu

flip.tanedo@ucr.edu

 W^+ W^{-}

W

flip.tanedo@ucr.edu

flip.tanedo@ucr.edu

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

45

70

Some quartic terms come from kinetic terms, proportional to gauge coupling. ... may make you worry about Higgs sector!

what you miss

other quartic terms come from Yukawa terms ... this is really important for cancellation of loops

Other Interactions

A B	$\chi { m SF}$	$SU(3)_c$	$\mathrm{SU}(2)_{\mathrm{L}}$	$U(1)_{Y}$
	\underline{Q}	$\frac{3}{2}$	2	1/6
A B	U \bar{D}	$\frac{3}{3}$	1 1	$\frac{-2}{3}$ 1/2
	L L	1	$\frac{1}{2}$	$-\frac{1}{2}$
$\overset{A}{\searrow}$	\bar{E}	1	1	—1
> C	H_d H	1	2	$-\frac{1}{2}$ 1/2
R/		T	2	-/2

More fields, more ways to put them together. Pick gauge invariant combination of 3 XSF, A,B, C

TRISEP SUMMER SCHOOL 2019

Other Interactions

		d.)		Z	
$\chi { m SF}$	$SU(3)_{c}$	$\mathrm{SU}(2)_{\mathrm{L}}$	$U(1)_{Y}$		
Q	3	2	1/6	A	
Ū	$\overline{3}$	1	-2/3	B	
\bar{D}	$\overline{3}$	1	1/3		
L	1	2	-1/2		
\bar{E}	1	1	-1		
H_d	1	2	-1/2		
H_u	1	2	1/2	C	
USUAL UP-TYPE YUKAWA					

Pick gauge invariant combination of 3 XSF, A,B,C

flip.tanedo@ucr.edu

Other Interactions

		d _l /		~5
$\chi { m SF}$	$SU(3)_c$	$\mathrm{SU}(2)_{\mathrm{L}}$	$\mathrm{U}(1)_{\mathrm{Y}}$	
Q	3	2	1/6	XC
\overline{U}	$\overline{3}$	1	-2/3	'B
\bar{D}	$\overline{3}$	1	1/3	
L	1	2	-1/2	
$ar{E}$	1	1	-1	
H_d	1	2	$-\frac{1}{2}$	
H_u	1	2	1/2	¢ A

USUAL UP-TYPE YUKAWA + SUSY "PARTNER" VERTICES

Pick gauge invariant combination of 3 XSF, A,B,C

flip.tanedo@ucr.edu

... first look at a superpotential

$\chi { m SF}$	$SU(3)_c$	${ m SU}(2)_{ m L}$	$\mathrm{U}(1)_{\mathrm{Y}}$
\overline{Q}	3	2	1/6
$ar{U}$	$\overline{3}$	1	-2/3
\bar{D}	$\overline{3}$	1	1/3
L	1	2	-1/2
$ar{E}$	1	1	-1
H_d	1	2	$-\frac{1}{2}$
H_u	1	2	1/2
	$\chi \mathrm{SF}$ Q \bar{U} \bar{D} L \bar{E} H_d H_u	$egin{array}{ccc} \chi { m SF} & { m SU}(3)_{ m c} \ Q & {f 3} \ ar U & {f 3} \ ar D & {f 3} \ ar D & {f 3} \ L & {f 1} \ ar E & {f 1} \ H_d & {f 1} \ H_u & {f 1} \ H_u & {f 1} \end{array}$	$\begin{array}{c cccc} \chi {\rm SF} & {\rm SU}(3)_{\rm c} & {\rm SU}(2)_{\rm L} \\ \hline Q & {\bf 3} & {\bf 2} \\ \bar U & {\bf 3} & {\bf 1} \\ \bar D & {\bf 3} & {\bf 1} \\ \bar D & {\bf 3} & {\bf 1} \\ L & {\bf 1} & {\bf 2} \\ \bar E & {\bf 1} & {\bf 1} \\ H_d & {\bf 1} & {\bf 2} \\ H_u & {\bf 1} & {\bf 2} \end{array}$

How To READ: $\begin{bmatrix} coupling \end{bmatrix} ABC \quad XSF \\ W^{(good)} = y_u^{ij}Q^iH_u\bar{U}^j + y_d^{ij}Q^iH_d\bar{D} + y_e^{ij}L^iH_d\bar{E}^j + \mu H_uH_d \\ W^{(bad)} = \lambda_1^{ijk}Q^iL^j\bar{D}^k + \lambda_2^{ijk}L^iL^j\bar{E}^k + \lambda_3^iL^iH_u + \lambda_4^{ijk}\bar{D}^i\bar{D}^j\bar{U}^k \\ T \text{PROBLEMATIC} \end{cases}$

The MSSM... approximately

Exercise 1: what are the particles of the minimal supersymmetric Standard Model?

Exercise 2: what are the SUSY interactions? ignore quartics, hint on the right

Super-symmetry super-shortcomings

flip.tanedo@ucr.edu

The electron has an antiparticle with the same properties except *CP*

... but it definitely does *not* have a super-partner with the same properties except

We would have discovered it a long time ago.

there are no sparticles

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2019 Model	Signature	$\int \mathcal{L} dt [\mathrm{fb}^{-1}]$	Mass limit			$\sqrt{s} = 13 \text{ TeV}$ Reference
$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & ext{2-6 jets} & E_{Tis}^{mis} \\ mono-jet & ext{1-3 jets} & E_{T}^{mis} \end{array}$	^s 36.1 ^s 36.1	\tilde{q} [2×, 8× Degen.] \tilde{q} [1×, 8× Degen.] 0.43	0.9 1.55 0.71	$m(\tilde{\chi}_1^0) < 100 \text{ GeV}$ $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1712.02332 1711.03301
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 e, μ 2-6 jets E_T^{mis}	^{is} 36.1	ĝ ĝ	2.0 Forbidden 0.95-1.6	m($\tilde{\chi}_{1}^{0}$)<200 GeV m($\tilde{\chi}_{1}^{0}$)=900 GeV	1712.02332 1712.02332
$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	$\begin{array}{ccc} 3 \ e, \mu & 4 \ { m jets} \\ e e, \mu \mu & 2 \ { m jets} & E_T^{ m mis} \end{array}$	36.1 ^s 36.1	Ĩ Ĩ	1.85	$m(\tilde{\chi}_{1}^{0}) < 800 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV}$	1706.03731 1805.11381
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	^s 36.1 139	ρ σ δ	1.8 1.15	${f m}({ ilde \chi}_1^0)\!<\!\!400{f GeV}\ {f m}({ ilde g})\!-\!{f m}({ ilde t}_1^0)\!=\!\!200{f GeV}$	1708.02794 ATLAS-CONF-2019-015
$\subseteq \qquad \tilde{g}\tilde{g}, \tilde{g} \to t \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1} \ e,\mu & \text{3} \ b & E_T^{\text{mis}} \\ \text{SS} \ e,\mu & \text{6} \ \text{jets} \end{array}$	^s 79.8 139	ζδ δδ	2.25	m($ ilde{\chi}_1^0$)<200 GeV m($ ilde{g}$)-m($ ilde{\chi}_1^0$)=300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
$\tilde{b}_1\tilde{b}_1,\tilde{b}_1{\rightarrow}b\tilde{\chi}_1^0/\tilde{\mathcal{K}}_1^\pm$	Multiple Multiple Multiple	36.1 36.1 139	\tilde{b}_1 Forbidden \tilde{b}_1 Forbidden \tilde{b}_1 Forbidden	0.9 0.58-0.82 m 0.74 m($\tilde{\zeta}_1^0$)=	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){=}300~{\rm GeV},~BR(b\tilde{\chi}_{1}^{0}){=}1\\ (\tilde{\chi}_{1}^{0}){=}300~{\rm GeV},~BR(b\tilde{\chi}_{1}^{0}){=}~BR(c\tilde{\chi}_{1}^{\pm}){=}0.5\\ 200~{\rm GeV},~m(\tilde{\chi}_{1}^{\pm}){=}300~{\rm GeV},~BR(c\tilde{\chi}_{1}^{\pm}){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$0 e, \mu \qquad 6 b \qquad E_T^{\text{mis}}$	^s 139	\$\tilde{b}_1\$ Forbidden \$\tilde{b}_1\$ 0.23-0.48	0.23-1.35	$\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	SUSY-2018-31 SUSY-2018-31
$\begin{array}{l} \begin{array}{l} \begin{array}{c} \mathbf{g} \\ \mathbf{g} \\$	0-2 e, μ 0-2 jets/1-2 $b E_T^{mis}$ 1 e, μ 3 jets/1 $b E_T^{mis}$ 1 τ + 1 e, μ, τ 2 jets/1 $b E_T^{mis}$ 0 e, μ 2 $c E_T^{mis}$ 0 e, μ mono-jet E_T^{mis}	^s 36.1 ^s 139 ^s 36.1 ^s 36.1 ^s 36.1	 <i>ī</i>₁ 0.44-0.5 <i>ī</i>₁ 0.4 <i>č ī</i> 0.44 0.4 <i>δ ī</i> 0.44 0.4	1.0 9 1.16 0.85	$\begin{split} m(\tilde{\chi}_{1}^{0}) = 1 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 400 \ \text{GeV} \\ m(\tilde{\tau}_{1}) = 800 \ \text{GeV} \\ m(\tilde{\tau}_{1}) = 800 \ \text{GeV} \\ m(\tilde{\tau}_{1}, \tilde{c}) = m(\tilde{\chi}_{1}^{0}) = 50 \ \text{GeV} \\ m(\tilde{\tau}_{1}, \tilde{c}) = m(\tilde{\chi}_{1}^{0}) = 50 \ \text{GeV} \end{split}$	1506.08616, 1709.04183, 1711.11520 ATLAS-CONF-2019-017 1803.10178 1805.01649 1805.01649 1711.03301
$ \tilde{I}_2 \tilde{I}_2, \tilde{I}_2 \rightarrow \tilde{I}_1 + h \tilde{I}_2 \tilde{I}_2, \tilde{I}_2 \rightarrow \tilde{I}_1 + Z $	$1-2 e, \mu \qquad 4 b \qquad E_T^{\text{mis}}$ $3 e, \mu \qquad 1 b \qquad E_T^{\text{mis}}$	^s 36.1 ^s 139	Image: Image of the second sec	0.32-0.88	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{\iota}_{1})-m(\tilde{\chi}_{1}^{0})=180 \text{ GeV} m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{\iota}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV} $	1706.03986 ATLAS-CONF-2019-016
$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ccc} \textbf{2-3} \ e, \mu & E_T^{\text{mis}} \\ ee, \mu \mu & \geq 1 & E_T^{\text{mis}} \end{array}$	^s 36.1 ^s 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0. $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.205 $	6	$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
$\begin{array}{c} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} \text{ via } WW \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \text{ via } Wh \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0} \text{ via } \tilde{\ell}_{L}/\tilde{\nu} \\ \tilde{\tau}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} \text{ via } \tilde{\ell}_{L}/\tilde{\nu} \\ \tilde{\tau}_{L,R}^{\pm} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^s 139 ^s 139 ^s 139 ^s 139 ^s 139 ^s 139 ^s 139	$ \begin{array}{cccc} \tilde{\chi}_{1}^{\pm} & 0.42 \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} & \textit{Forbidden} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\tau} & [\tilde{\tau}_{L}, \tilde{\tau}_{R,L}] & 0.16\text{-}0.3 & 0.12\text{-}0.39 \\ \tilde{\ell} & 0.256 \end{array} $	0.74 1.0 0.7	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}0 \\ & m(\tilde{\chi}_{1}^{0}){=}70 \text{ GeV} \\ & m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\kappa}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}){=}0 \\ & m(\tilde{\chi}_{1}^{0}){=}0 \\ & m(\tilde{\chi}_{1}^{0}){=}0 \text{ GeV} \end{split}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-019, ATLAS-CONF-2019-XY2 ATLAS-CONF-2019-008 ATLAS-CONF-2019-018 ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$\begin{array}{lll} 0 \ e, \mu & \geq 3 \ b & E_T^{\text{mis}} \\ 4 \ e, \mu & 0 \ \text{jets} & E_T^{\text{mis}} \end{array}$	^s 36.1 ^s 36.1	 <i>H</i> 0.13-0.23 <i>H</i> 0.3 	0.29-0.88	$\begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 1804.03602
Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet E_T^{mis}	^{is} 36.1	$ \tilde{\chi}_{1}^{\pm} = 0.46 $ $ \tilde{\chi}_{1}^{\pm} = 0.15 $		Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	Multiple Multiple	36.1 36.1	\tilde{g} \tilde{g} [$\tau(\tilde{g})$ =10 ns, 0.2 ns]	2.0 2.05 2	4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1902.01636,1808.04095 1710.04901,1808.04095
$ \begin{array}{c} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \\ \tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow q\ell \end{array} $	$e\mu, e\tau, \mu\tau$ $4 e, \mu 0 \text{ jets} E_T^{\text{mis}}$ $4 - 5 \text{ large-} R \text{ jets}$ Multiple $Multiple$ $2 \text{ jets} + 2 b$ $2 e, \mu 2 b$ $1 \mu \text{DV}$	3.2 36.1 36.1 36.1 36.1 36.1 36.7 36.1 136	$ \begin{split} \tilde{y}_{\tau} \\ \tilde{\chi}_{1}^{*} / \tilde{\chi}_{2}^{0} & [\lambda_{133} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{\chi}_{112}^{*} / \tilde{\chi}_{2}^{0} & [\lambda_{133} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{g} & [m(\tilde{\chi}_{112}^{*}) - 200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{g} & [\chi'_{112} - 2e - 4, 2e - 5] \\ \tilde{g} & [\chi'_{213}^{*} - 2e - 4, 1e - 2] & 0.55 \\ \tilde{f}_{1} & [q_{g}, b_{S}] & 0.42 & 0.6 \\ \tilde{f}_{1} & [q_{g}, b_{S}] & 0.42 & 0.6 \\ \tilde{f}_{1} & [1e - 10 < \lambda'_{23k} < 1e - 8, 3e - 10 < \lambda'_{23k} < 3e - 9] \\ \end{split} $	1.9 0.82 1.33 1.3 1.9 1.05 2.0 1.05 51 0.4-1.45 1.0 1.6	$\begin{array}{c} \lambda_{311}'=0.11, \ \lambda_{132/133/233}=0.07 \\ m(\tilde{\chi}_{1}^{0})=100 \ \text{GeV} \\ \text{Large } \lambda_{112}'' \\ m(\tilde{\chi}_{1}^{0})=200 \ \text{GeV}, \text{bino-like} \\ m(\tilde{\chi}_{1}^{0})=200 \ \text{GeV}, \text{bino-like} \\ \text{BR}(\tilde{\iota}_{1}\rightarrow be/b\mu)>20\% \\ \text{BR}(\tilde{\iota}_{1}\rightarrow q\mu)=100\%, \cos\theta, =1 \end{array}$	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003 ATLAS-CONF-2018-003 1710.07171 1710.05544 ATLAS-CONF-2019-006
Only a selection of the available ma	ass limits on new states or	10	µ−1	<u> </u>	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary

ATLAS SUSY summary results

there are no sparticles

56 /70

Supersymmetry is broken

$$m_{\rm fermion} \neq m_{\rm boson}$$

SUSY is not a good symmetry of nature. c.f. electroweak symmetry

Can it solve the Hierarchy Problem? Soft SUSY breaking

$$\Delta m_H^2 = m_{\rm soft}^2 \left[\frac{\lambda}{16\pi^2} \ln(\Lambda_{\rm UV}/m_{\rm soft}) + \dots \right]$$

proton decay

$$P_R = (-)^{3(B-L)+2s}$$

 $P_R[ordinary matter] = +$ $P_R[superpartner] = -$

 $W^{\text{(good)}} = y_{u}^{ij}Q^{i}H_{u}\bar{U}^{j} + y_{d}^{ij}Q^{i}H_{d}\bar{D} + y_{e}^{ij}L^{i}H_{d}\bar{E}^{j} + \mu H_{u}H_{d}$ $W^{\text{(bad)}} = \lambda_{1}^{ijk}Q^{i}L^{j}\bar{D}^{k} + \lambda_{2}^{ijk}L^{i}L^{j}\bar{E}^{k} + \lambda_{3}^{i}L^{i}H_{u} + \lambda_{4}^{ijk}\bar{D}^{i}\bar{D}^{j}\bar{U}^{k}.$

Added bonus: lightest superpartner is stable.

Image: We Have No Idea, Whiteson & Cham

flip.tanedo@ucr.edu

58

electroweak symmetry breaking

The Higgs potential is a challenge in SUSY.

$$V_{H} = \frac{1}{8} (g^{2} + g'^{2}) \left(|H_{u}^{0}|^{2} - |H_{d}^{0}|^{2} \right)^{2} + \sum_{i=u,d} \left(|\mu|^{2} + m_{H_{i}}^{2} \right) |H_{i}^{0}|^{2} - 2B_{\mu} \operatorname{Re}(H_{u}^{0} H_{d}^{0})$$

Two Higgses, both get vevs. Only one quartic direction (other is D-flat)

Relies on apparent conspiracy between supersymmetric and SUSY-beaking terms.

Supersymmetry why we really like(d) it

flip.tanedo@ucr.edu

Solves Hierarchy Problem

Symmetry principle that protects Higgs mass from quantum corrections in the UV.

gauge unification for free

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

62

70

nice dark matter candidate

Requirements: stable, uncharged. What's a good dark matter candidate?

caveat: there's a lot we're sweeping under the rug ... R-parity and all that (for now)

nice dark matter candidate

Requirements: stable, uncharged. What's a good dark matter candidate?

caveat: there's a lot we're sweeping under the rug ... R-parity and all that (for now)

sometimes: gravitino is lightest such state

TRISEP SUMMER SCHOOL 201

The MSSM is...

simple enough to understand how and why it works (at least in the SUSY limit)

complex enough to generate many kinds of phenomenological signatures

MSSM basic pheno

flip.tanedo@ucr.edu

flip.tanedo@ucr.edu

there are no sparticles

ATLAS SUSY Searches* - 95% CL Lower Limits

 $\sqrt{s} = 13 \text{ TeV}$ July 2019 Signature $\int \mathcal{L} dt \, [\text{fb}^{-1}]$ Model Mass limit Reference 0 e, µ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 2-6 iets 36.1 1.55 $m(\tilde{\chi}_1^0) < 100 \text{ GeV}$ 1712 02332 E_T^{miss} E_T^{miss} 1-3 iets $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ mono-iet 36.1 [1x. 8x Dead 0.43 0.71 1711.03301 Inclusive Searches 0 e,μ 2-6 jets E_T^{miss} 36.1 1712.02332 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 2.0 0.95-1.6 Forbidden 1712.02332 $m(\tilde{\chi}_{1}^{0})=900 \text{ GeV}$ 3 e, µ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ 4 jets 36.1 1.85 m(X10)<800 GeV 1706.03731 ee,µµ 2 jets E_T^{miss} 36.1 1.2 $m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ 1805.11381 7-11 iets 0 e, µ E_T^{miss} 36.1 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 1708.02794 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ 1.8 SS e, μ 6 jets 139 1.15 $m(\tilde{g})-m(\tilde{\chi}_1^0)=200 \text{ GeV}$ ATLAS-CONF-2019-015 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ 0-1 e, µ 3b E_T^{miss} 79.8 2.25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ ATLAS-CONF-2018-041 SS e, μ 6 iets 1.25 ATLAS-CONF-2019-015 139 $m(\tilde{g})-m(\tilde{\chi}_1^0)=300 \text{ GeV}$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$ Multiple Forbidden 0.9 $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ 1708.09266, 1711.03301 36.1 0.58-0.82 Multiple 36.1 Forbidden $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=BR(t\tilde{\chi}_{1}^{\pm})=0.5$ 1708.09266 Multiple 139 Forbidden 0.74 $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{\pm})=1$ ATLAS-CONF-2019-015 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ 0 e,μ E_T^{miss} 139 0.23-1.35 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ SUSY-2018-31 Forbidden 6b0.23-0.48 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$ SUSY-2018-31 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b E_T^{miss} 1506.08616, 1709.04183, 1711.11520 36.1 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ 3 jets/1 b E_T^{miss} 139 0.44-0.59 $m(\tilde{\chi}_1^0)=400 \text{ GeV}$ ATLAS-CONF-2019-017 $1 e, \mu$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 2 iets/1 b E_T^{miss} $m(\tilde{\tau}_1) = 800 \, \text{GeV}$ 1803 10178 $1\tau + 1e.\mu.\tau$ 36.1 1.16 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 0.85 2 c E_T^{miss} $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1805.01649 0 e, μ 36.1 0.46 1805.01649 $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ 0 e, μ E_{T}^{m} 36 1 0.43 1711.03301 mono-iet $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ 1-2 e, µ 4 *b* 36.1 0.32-0.88 $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=180 \text{ GeV}$ 1706.03986 E_T^{mis} $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 3 e, µ 1 *b* E_T^{miss} 139 \tilde{t}_2 Forbidden 0.86 $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ ATLAS-CONF-2019-016 E_T^{miss} E_T^{miss} $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ2-3 e, µ 1403.5294, 1806.02293 0.6 36.1 $\frac{\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0}{\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0}$ $m(\tilde{\chi}_1^0)=0$ 0.205 > 1 ee,µµ 139 $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV ATLAS-CONF-2019-014 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW 2 e, µ E_T^{miss} 139 $\tilde{\chi}^{\pm}_{\cdot}$ 0.42 $m(\tilde{\chi}_1^0)=0$ ATLAS-CONF-2019-008 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh 0-1 e, µ $2 b/2 \gamma$ 139 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.74 ATLAS-CONF-2019-019, ATLAS-CONF-2019-XYZ E_T^{miss} Forbidden $m(\tilde{\chi}_1^0)=70 \text{ GeV}$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$ 2 e, µ E_T^{miss} 139 $m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0}))$ ATLAS-CONF-2019-008 EW lirec 1.0 $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ 139 $[\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0.3 0.12-0.39 2τ $E_T^{\rm mis}$ $m(\tilde{\chi}_1^0)=0$ ATLAS-CONF-2019-018 E_T^{miss} E_T^{miss} 2 e, µ 0 jets 0.7 ATLAS-CONF-2019-008 $\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 139 $m(\tilde{\chi}_1^0)=0$ 0.256 2 e, µ ≥ 1 139 ATLAS-CONE-2019-014 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ $E_T^{
m miss}$ $E_T^{
m miss}$ $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ 0.29-0.88 0 e, µ $\geq 3 b$ 36.1 0.13-0.23 $BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ 1806.04030 4 e,μ 0 jets 36.1 0.3 $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ 1804.03602 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ E_T^{miss} 0.46 Disapp. trk 1 jet 36.1 Pure Wino 1712 02118 0.15 Pure Higgsing ATL-PHYS-PUB-2017-019 Stable g R-hadron Multiple 2.0 1902.01636,1808.04095 36.1 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ Multiple 36.1 2.05 2.4 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ 1710.04901,1808.04095 LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ εμ,ετ,μτ 3.2 1.9 1607.08079 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\ell\nu\nu$ 4 e, µ 1.33 0 jets $E_T^{\rm mi}$ 36.1 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ 1804.03602 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 4-5 large-R jets 36.1 Large λ_{112}'' 1804.03568 1.9 1.05 RPV Multiple 36.1 2.0 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 Multiple 36.1 1.05 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$ 0.55 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 36.7 0.42 0.61 1710.07171 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ 2 e, µ 2 b 36.1 0.4-1.45 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ 1710 05544 DV 136 $0 < \lambda' < 1e-8, 3e-10 < \lambda'$ 1.0 $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$ ATLAS-CONF-2019-006 1μ 10^{-1} 1 *Only a selection of the available mass limits on new states or Mass scale [TeV]

Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

TRISEP SUMMER SCHOOL 2019

68

70

ATLAS Preliminary

there are no sparticles

flip.tanedo@ucr.edu

TRISEP SUMMER SCHOOL 2019

70