The figure to follow shows a typical spectrum with a Ge detector, measuring the gamma spectrum of an "AmBe" source. This produces neutrons from the (α,n) reaction, but along the way produces gamma radiation. The process is:

$$^{241}_{95}Am \rightarrow ^{237}_{93}Np + \alpha$$

The alpha is then captured on Be as follows:

$$\alpha + {}^9_4 Be \rightarrow {}^{12}_6 C^* + n$$

This reaction has a Q-value of 5.7 MeV

The radiative de-excitation of the carbon gives off photons. ${}^{12}_{6}C^* \rightarrow {}^{12}_{6}C + \gamma$ A level diagram for ¹²C has been included.

- a. Considering that the Ge crystal is likely rather small and the various ways that gammas interact with matter. Can you explain the structures A through D?
- b. If the spectrum were to extend further, should you expect to see other peaks? Why or why not?
- c. If a different source, say ¹³⁷Cs were used, how would the spectrum differ?

Gamma spectrum for AmBe source measured with Ge counter

2. In the discussion for Jet Drift Chambers, it was stated that in a magnetic field you could measure momentum and charge.

- a. How do you measure momentum?
- b. What does one need to do to measure charge?

3. One of the open challenges for the standard model is the non-observation of glueballs. The glueball is the only particle currently predicted by the standard model that has not been observed.

Aside: Mesons are quark-anti quark pairs and they are characterized by their quantum numbers J^{PC} .

The overall angular momentum is $\vec{J} = \vec{L} + \vec{S}$ The parity depends on the orbital angular momentum $P = (-1)^{L+1}$ Charge conjugation depends on orbital angular momentum and spin $C = (-1)^{L+S}$

Glueballs, are a feature of the strong interaction that allows gluons to couple to gluons, and hence form meson like states. The lowest energy states are predicted to range in mass from 1 GeV to 2 GeV, and will have J^{PC} of 0⁺⁺ or 2⁺⁺. Hybrids of quarks with physical gluons or non quark-antiquark states could exist with exotic quantum numbers.

- a. If you found a state with J^{PC} of O⁺⁻ could you claim this was not a standard meson?
- b. A group has claimed the observation of a glueball, the f₀(1500) 0⁺⁺ with a mass of 1505
 +- 6 MeV. Your job is to design a detector to verify this. Note: They claim to have seen this in the channel

 $p\overline{p} \rightarrow \pi^0 f_0(1500), \text{ and } f_0(1500) \rightarrow \eta \eta'$

Assume you have access to a beam of low energy antiprotons you can bring to rest in a hydrogenous target. How will you build a detector to detect this?

Hint: the η and η' can decay in a variety of ways. Use the Particle Data Group tables to decide which decay channels you will focus on for your detector. What is the rational for your decisions? Would $\eta' \rightarrow \rho \gamma$ be a good choice? Why or why not?

d. Given the measured masses and their uncertainties, is $f_0(1500) \rightarrow \eta \eta'$ even possible? Likely?