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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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What this is not



What this is not

…the Higgs boson?



What this is not

A replacement for a 
great online tutorial or 

a university course



What is Machine 
Learning?



What is Machine 
Learning?

Answer: just about 
everything we do!

…algorithms for identifying 
and analyzing structure in data



What can we use machine learning for?

Supervised learning

Unsupervised learning

Classification

Regression

Generation

Clustering

Anomaly detection

the machine is 
presented examples of 
multiple classes and 
learns to differentiate

the machine is 
presented data and 
asked to give you 
multiple classes
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What is the energy of this 
spray of particles (jet)?

What are the momenta of 
these charged particles? 
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What can we use machine learning for?

Supervised learning

Unsupervised learning

Classification
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Generation

Clustering

Anomaly detection

the machine is 
presented examples of 
multiple classes and 
learns to differentiate

the machine is 
presented data and 
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Classification

Goal: Given a feature vector, return an integer 
indexed by the set of possible classes.

In most cases, we care about binary classification in which 
there are only two classes (signal versus background)

There are some cases where we care 
about multi-class classification

Feature vector 
can be many-
dimensional

Harder =  more 
overlap between 

for S and B



Classification

Goal: Given a feature vector, return an integer 
indexed by the set of possible classes.

In practice, we don’t just want one classifier, 
but an entire set of classifiers indexed by:

True Positive Rate = signal efficiency = 
Pr(label signal | signal) = sensitivity 

True Negative Rate = 1 - background efficiency  
= 1 - false positive rate (FPR) 

rejection = Pr(label background | background) = specificity 

For a given TPR, we want the lowest possible TNR!
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Let’s consider an important special case: 
binary classification in 1D 
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Threshold depends 
on natural relative 

abundance

You may be 
tempted to place 
a threshold on x

Let’s consider an important special case: 
binary classification in 1D 



Is the simple threshold 
cut optimal?
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Fact 1: The classifier that results in the lowest FPR 
for a given TPR is a cut on the likelihood ratio (LR).

LR(x) > c, LR(x) = p(x|signal) / p(x|background)



Is the simple threshold 
cut optimal?
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Fact 2: Two classifiers that are related by a monotonic 
transformation result in the same performance.

Fact 1: The classifier that results in the lowest FPR 
for a given TPR is a cut on the likelihood ratio (LR).
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In this simple case, the log 
LR is proportional to x:  

no need for non-linearities!
Threshold cut is optimal
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What if the distribution of x is complicated?
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Now what is the 
optimal classifier?

Real life is complicated!
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In this case, LR is highly non-linear 
(non-monotonic) function of x

A threshold on x 
would be sub-optimal
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but that is expected since the 
overlap in their PDFs is higher.
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Why don’t we always just 
compute the optimal classifier?

In the last slides, we had to estimate the 
likelihood ratio - this required binning the PDF

binning works very well in 1D, but becomes 
quickly intractable as the feature vector 

dimension >> 1 (“curse of dimensionality”)

machine learning for classification is simply 
the art of estimating the likelihood ratio 

with limited training examples



Tools for Classification
= tools for likelihood ratio estimation

• “Histograming”  
• Nearest Neighbors 
• Support Vector Machines (SVM) 
• (Boosted) Decision Trees 
• (Deep) Neural Networks 
• …

Software: TMVA, scikit-learn, keras, …

Data formats: .root, .npy, .hdf5 

does “everything” exempt DNNs

has most things and ROOT-compatible but the 
community base is much smaller than the other ones

python interface 
 to DNN tools 

TensorFlow and 
Theano.  Popular 

alternative is PyTorch

Not widely used; only 
useful if decision 

boundary is ‘simple’



Histograming

Full Likelihood (Jet Mass+Jet Charge+b-tagging)
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If you have a 1D 
problem, look no further!

If your problem can be 
decomposed into a 
product/sum of 1D 

problems…look no further!

If these do not apply…
look elsewhere.



Nearest Neighbors
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In 2D, a nice extension of histogramming is to estimate the 
likelihood ratio based on the number of S and B points nearby.

ATLAS-CONF-2014-018



Boosted Decision Trees (BDTs)

A decision tree is a partition of the feature space.  
One tree is a set of binary “cuts”.  

Boosting makes an ensemble classifier.  For 
example, a community favorite AdaBoost, applies 

weights to the misclassified events.

N.B. BDTs are not differentiable 
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We love 
BDTs.

If 3 < dim(feature 
vector) < O(10) 

this is probably 
right for you!
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We love BDTs because they are fast to train, are close 
to “cuts”, and do not have very many parameters.  

They are also rather robust to overtraining.
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We love BDTs because they are fast to train, are close 
to “cuts”, and do not have very many parameters.  

They are also rather robust to overtraining.overtraining.

Unless you have a lot of 
training data, it is better to use 
cross-validation instead of a 
single hold-out for evaluating 
out-of-sample performance.
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There is really not a good reason to use a 
DNN with << O(100) dimensions.  

However, they 
are becoming 
increasingly 

easy to train …



Modern Deep NN’s for Classification

Neural Network: composition of functions f(Ax+b) for inputs 
x (features) matrix A (weights), bias b, non-linearity f.

N.B. I’m not mentioning biology - there may be a vague resemblance 
to parts of the brain, but that is not what modern NN’s are about.

x1

x2

xn

h11

h12

h1m1

Ax+b f hN1

hN2

hNmN

[0,1]

background

signal

depth

Fact: NN’s can approximate “any” function.  



Choosing the non-linearity (activation function) f

Logistic (aka Sigmoid): one of the most 
widely-used functions in the past, now 
basically only used for the last layer.

generalization to multi-
dimensional input: softmax

f(~x) = e

xi
/

P
i

e

xi

N.B. without any hidden layers, this is logistic regression.
…and without any non-linearity, a NN is linear regression.



Choosing the non-linearity (activation function) f

Logistic (aka Sigmoid): one of the most 
widely-used functions in the past, now 
basically only used for the last layer.

tanh: similar story to sigmoid.

generalization to multi-
dimensional input: softmax

f(~x) = e

xi
/

P
i

e

xi



Choosing the non-linearity (activation function) f

Rectified Linear Unit ReLU: one of the 
most widely-used functions now.

Leaky ReLU / Exponential LU (ELU): 
variations on the ReLU that are popular.

do not suffer from the 
vanishing gradient problem



Functions that act on multiple nodes in one layer

MaxOut: Take the maximum of multiple inputs

DropOut: Randomly remove (for one 
forward/backward pass) nodes from a layer.

reduces the dimensionality 
of a hidden layer

helps with over-training



(D)NN Training

Training proceeds by minimizing a loss function.

Typical loss functions

Squared error:

Cross-entropy:

(yi � ŷi)2

�yi log(ŷi)� (1� yi) log(1� ŷi)

True label (0 or 1) NN output

Categorical cross-entropy (multi-class):

�
Pn

categories

i=1 ŷi log(ŷi(x))
Label & output are vectors

Reduces to cross-entropy when n = 2 
and soft max activation on last layer



Does it matter which loss function I use?

7

Consider the general problem of minimizing some average
loss for the function f(x):

f = argminf 0E[loss(f 0(X), Y )], (A1)

where E means ‘expected value’, i.e. average value or
mean (sometimes represented as h·i). The expectation
values are performed over the joint probability density of
(X,Y ). One can rewrite Eq. A1 as

f = argminf 0E[E[loss(f 0(X), Y )|X]]. (A2)

The advantage2 of writing the loss as in Eq. A2 is that
one can see that it is su�cient to minimize the function
(and not functional) E[loss(f 0(x), Y )|X = x] for all x. To
see this, let g(x) = argminf 0E[loss(f 0(x), Y )|X = x] and
suppose that h(x) is a function with a strictly smaller loss
in Eq. A1 than g. Since the average loss for h is below
that of g, by the intermediate value theorem, there must
be an x for which the average loss for h is below that of
g, contradicting the construction of g.

Now, consider the case where the loss is cross-entropy:

max
z

E[Y log(z) + (1 � Y ) log(1 � z)|X] (A3)

= max
z

(E[Y |X] log(z) + (1 � E[Y |X]) log(1 � z)) ,

(A4)

where z = f

0(x) is fixed. Equation A3 is maximized for
g(x) = E[Y |X = x]. Coincidentally, the exact same re-
sult holds if using mean squared error loss. When using
either loss function with two outputs and the softmax ac-
tivation for the last neural network layer, the first output
will asymptotically approach g(x) and the other by con-
struction will be 1�g(x). The ratio of these two outputs
is then:

g(x)

1 � g(x)
=

E[Y |X = x]

E[1 � Y |X = x]
(A5)

=
Pr(Y = 1|X = x)

Pr(Y = 0|X = x)
(A6)

=
p(X|Y = 1) Pr(Y = 1)

p(X|Y = 0) Pr(Y = 0)
(A7)

= Likelihood ratio ⇥ Pr(Y = 1)

Pr(Y = 0)
. (A8)

Therefore, the output is proportional to the likelihood
ratio. The proportionality constant is the ratio of frac-
tions of the two classes used during the training. In the
paper, the two classes always have the same number of
examples and thus this factor is unity.

2
The derivation below for the mean-squared error was partially

inspired by Appendix A in Ref. [70].

= expected value  
= mean = average

The NN optimization problem:
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Appendix A: Optimal Functions

The results presented here can be found (as exercises)
in textbooks, but are repeated here for easy access. Let
X be some discriminating features and Y 2 {0, 1} is
another random variable representing class membership.class = signal/

background

loss(f(X), Y ) = (f(X)� Y )

2

loss(f(X), Y ) = �Y log(f(X))� (1� Y ) log(1� f(X))

Loss functions from previous slide:

squared error

cross-entropy
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Consider the general problem of minimizing some average
loss for the function f(x):

f = argminf 0E[loss(f 0(X), Y )], (A1)

where E means ‘expected value’, i.e. average value or
mean (sometimes represented as h·i). The expectation
values are performed over the joint probability density of
(X,Y ). One can rewrite Eq. A1 as

f = argminf 0E[E[loss(f 0(X), Y )|X]]. (A2)

The advantage2 of writing the loss as in Eq. A2 is that
one can see that it is su�cient to minimize the function
(and not functional) E[loss(f 0(x), Y )|X = x] for all x. To
see this, let g(x) = argminf 0E[loss(f 0(x), Y )|X = x] and
suppose that h(x) is a function with a strictly smaller loss
in Eq. A1 than g. Since the average loss for h is below
that of g, by the intermediate value theorem, there must
be an x for which the average loss for h is below that of
g, contradicting the construction of g.

Now, consider the case where the loss is cross-entropy:

max
z

E[Y log(z) + (1 � Y ) log(1 � z)|X] (A3)

= max
z

(E[Y |X] log(z) + (1 � E[Y |X]) log(1 � z)) ,

(A4)

where z = f

0(x) is fixed. Equation A3 is maximized for
g(x) = E[Y |X = x]. Coincidentally, the exact same re-
sult holds if using mean squared error loss. When using
either loss function with two outputs and the softmax ac-
tivation for the last neural network layer, the first output
will asymptotically approach g(x) and the other by con-
struction will be 1�g(x). The ratio of these two outputs
is then:

g(x)

1 � g(x)
=

E[Y |X = x]

E[1 � Y |X = x]
(A5)

=
Pr(Y = 1|X = x)

Pr(Y = 0|X = x)
(A6)

=
p(X|Y = 1) Pr(Y = 1)

p(X|Y = 0) Pr(Y = 0)
(A7)

= Likelihood ratio ⇥ Pr(Y = 1)

Pr(Y = 0)
. (A8)

Therefore, the output is proportional to the likelihood
ratio. The proportionality constant is the ratio of frac-
tions of the two classes used during the training. In the
paper, the two classes always have the same number of
examples and thus this factor is unity.

2
The derivation below for the mean-squared error was partially

inspired by Appendix A in Ref. [70].

[22] F. Chollet, “Keras.” https://github.com/fchollet/keras, 2017.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., Tensorflow: A system for large-scale machine learning., in OSDI, vol. 16,
pp. 265–283, 2016.

[24] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by
exponential linear units (elus), arXiv preprint arXiv:1511.07289 (2015).

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple
way to prevent neural networks from overfitting, Journal of Machine Learning Research 15 (2014)
1929–1958.

[26] D. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.

[27] K. Cranmer, J. Pavez, and G. Louppe, Approximating Likelihood Ratios with Calibrated
Discriminative Classifiers, arXiv:1506.02169.

A Optimal Functions

The results presented here can be found (as exercises) in textbooks, but are repeated here
for completeness. Let X be some discriminating features and Y œ {0, 1} is another random
variable representing class membership (signal versus background). Consider the general
problem of minimizing some average loss for the function f(x):

f = argminf ÕE[loss(f Õ(X), Y )], (A.1)

where E means ‘expected value’, i.e. average value or mean (sometimes represented as È·Í).
The expectation values are performed over the joint probability density of (X, Y ). One can
rewrite Eq. A.2 as

f = argminf ÕE[E[loss(f Õ(X), Y )|X]. (A.2)

The advantage7 of writing the loss as in Eq. A.2 is that one can see that it is su�cient to
minimize the function (and not functional) E[loss(f Õ(x), Y )|X = x] for all x. To see this, let
g(x) = argminf ÕE[loss(f Õ(x), Y )|X = x] and suppose that h(x) is a function with a strictly
smaller loss in Eq. A.2 than g. Since the average loss for h is below that of g, by the mean value
theorem, there must be an x for which the average loss for h is below that of g, contradicting
the construction of g.

As a first concrete example, consider the mean-squared error loss: loss(f Õ(X), Y ) =
(f Õ(X) ≠ Y )2. One can compute

7
The derivation below for the mean-squared error was partially inspired by Appendix A in Ref. [27].
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By the mean value theorem, it is sufficient to 
minimize the inner expectation for all X.  This is a 

function (and not functional) optimization problem.

Let’s work this out for the squared error and cross-entropy



What does the machine learn with the squared error?

g(x) = argminf ÕE[loss(f Õ(x), Y )|X = x] (A.3)
= argminf ÕE[(f Õ(x) ≠ Y )2|X = x] (A.4)
= argminf ÕE[(f Õ(x))2 + Y

2 ≠ 2f

Õ(x)Y |X = x] (A.5)

= argminf Õ

1
(f Õ(x))2 + E[Y 2|X = x] ≠ 2f

Õ(x)E[Y |X = x]
2

(A.6)

= argminf Õ

1
(f Õ(x))2 ≠ 2f

Õ(x)E[Y |X = x]
2

(A.7)

= argminz

1
z

2 ≠ 2zE[Y |X = x]
2

, (A.8)

where the last line follows since f

Õ(x) is simply a number. The value of z that minimizes
z

2 ≠ 2zE[Y |X = x] is simply E[Y |X = x], leading to the well-known result that the mean-
squared error results in the average value of the target8. Since Y is binary E[Y |X = x] =
p(Y = 1|X), the conditional probability. Similarly for binary cross-entropy:

g(x) = ≠argminf ÕE[Y log
!
f

Õ(x)
"

+ (1 ≠ Y ) log
!
1 ≠ f

Õ(x)
"
|X = x] (A.9)

= ≠argminf Õ
!
E[Y |X = x] log

!
f

Õ(x)
"
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i.e. the NN learns the average value of the target given the features.



What does the machine learn with the cross-entropy?
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If you take the derivative w.r.t. z 
and set it equal to zero, you find

…same answer as squared error!



Does it matter which loss function I use?

Some remarks:

• Squared error and cross-entropy both learn <Y|X> 
• This is a coincidence.  For fun, can you show what 

happens if you use the 4th power of the difference 
instead of the square?  

• The absolute error loss |f(X)-Y| learns the median 
instead of the mean.  The 0-1 loss learns the 
mode. 

• For classification, Y is 0 or 1 so <Y|X> = Pr(Y=1|X) 
• This is not the likelihood ratio!  How is it related?



Objective function is minimized using stochastic gradient 
descent (almost exclusively with the Adam algorithm)

Stochastic gradient decent: Using single (or multiple 
“mini-batches”) examples, weights are updated:

N.B. a NN can do better than random before any training!  
For instance, if you initialize all the weights to 1 and the signal 

has generally higher values then the NN will beat random.

learning rate

Aij 7! Aij � ⌘rijL

back-propagation: weights 
updated backwards and 
gradients are recycled.

(D)NN training



Objective function is minimized using stochastic gradient 
descent (almost exclusively with the Adam algorithm)

Stochastic gradient decent: Using single (or multiple 
“mini-batches”) examples, weights are updated:

N.B. a NN can do better than random before any training!  
For instance, if you initialize all the weights to 1 and the signal 

has generally higher values then the NN will beat random.

learning rate

Aij 7! Aij � ⌘rijL

back-propagation: weights 
updated backwards and 
gradients are recycled.

(D)NN training
This is one of the powerful 
features of NNs - you can 

iteratively apply the chain rule 
to compute the gradient of the 

loss with respect to any 
weights in the network.



Training proceeds multiple times 
(epochs), reshuffling the data.

Early stopping: stop at the 
epoch where the validation 

error starts to increase validation

train

(D)NN training



Input feature x

5− 4− 3− 2− 1− 0 1 2 3 4 5

Li
ke

lih
oo

d 
R

at
io

3−10

2−10

1−10

1

10

210

310

410

Input feature x

5− 4− 3− 2− 1− 0 1 2 3 4 5

Pr
ob

ab
ilit

y 
D

is
tri

bu
tio

n 
Fu

nc
tio

n

0

0.002

0.004

0.006

0.008

0.01

Signal
Background

)signal | label signalPr(

0 0.2 0.4 0.6 0.8 1

)
ba

ck
gr

ou
nd

 | 
la

be
l s

ig
na

l
Pr

(

0

0.2

0.4

0.6

0.8

1



Images

Graphs

I

n

t

r

o

d

u

c

t

i

o

n

J

e

t

P

h

y

s

i

c

s

P

r

e

v

i

o

u

s

w

o

r

k

P

r

o

p

o

s

e

d

m

o

d

e

l

E

x

p

e

r

i

m

e

n

t

s

C

o

n

c

l

u

s

i

o

n

s

Jet parse trees

kt

anti-kt

I Attempt to reverse the generative process

I Sequential recombination algorithms

I Cambridge-Aachen, kt , anti-kt

I Binary tree representation

I NLP methods for parse trees

Sequences

Fixed 
sets

J
=
{p

µ
1
, p

µ
2
, .
..,
p
µ n
}

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Jet images

Single
W jet

Single
QCD jet

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y 
D
iff
er
en
ce

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
-3 10 ×

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1,  8 → p p 
 = 125 GeV

1,8
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1 → p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  8 → p p 
 = 125 GeV

8
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  1 → p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or
m
al
iz
ed
 P
ix
el
 E
ne
rg
y

-11 10

-10 10

-9 10

-8 10

-7 10

-6 10

-5 10

-4 10

-3 10

-2 10

-1 10

1

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

b  b →  8 → p p 
 = 125 GeV

8
re-showered with Pythia 8, mVariable 

sets

Trees
...

...

...

Pa
rti
cle
s

Ob
se
rv
ab
le

Pe
r-
Pa
rti
cle
Re
pr
es
en
tat
ion

Ev
en
t R
ep
res
en
tat
ion

Φ

Φ

Φ

F

En
erg
y/P
art
icl
e F
low
Ne
tw
or
k

La
ten
t S
pa
ce

F
ig
u
re

1:
A

vi
su

al
iz
at

io
n

of
th

e
de

co
m

po
si
ti
on

of
an

ob
se

rv
ab

le
vi
a
E
q.

(1
.1
).

E
ac

h
pa

rt
ic
le

in
th

e
ev

en
t
is

m
ap

pe
d

by
�

to
an

in
te

rn
al

(l
at

en
t)

pa
rt
ic
le

re
pr

es
en

ta
ti
on

,
sh

ow
n

he
re

as

th
re

e
ab

st
ra

ct
ill

us
tr
at

io
ns

fo
r
a
la
te

nt
sp

ac
e
of

di
m

en
si
on

th
re

e.
T
he

la
te

nt
re

pr
es

en
ta

ti
on

is

th
en

su
m

m
ed

ov
er

al
l p

ar
ti
cl
es

to
ar

ri
ve

at
a
la
te

nt
ev

en
t
re

pr
es

en
ta

ti
on

, w
hi

ch
is

m
ap

pe
d

by

F
to

th
e
va

lu
e
of

th
e
ob

se
rv

ab
le
.
Fo

r
th

e
IR

C
-s
af
e
ca

se
of

E
q.

(1
.2
),

�
ta

ke
s
in

th
e
an

gu
la
r

in
fo
rm

at
io
n

of
th

e
pa

rt
ic
le

an
d

th
e

su
m

is
w
ei
gh

te
d

by
th

e
pa

rt
ic
le

en
er

gi
es

or
tr
an

sv
er

se

m
om

en
ta

.
co

m
pe

ti
ti
ve

w
it
h

ex
is
ti
ng

te
ch

ni
qu

es
on

ke
y
co

lli
de

r
ta

sk
s,

an
d

pr
ov

id
es

a
pl

at
fo
rm

fo
r
vi
su

al
-

iz
in

g
th

e
in

fo
rm

at
io
n

le
ar

ne
d

by
th

e
m

od
el
.
B
ey

on
d

th
is
, w

e
de

m
on

st
ra

te
ho

w
ou

r
fr
am

ew
or

k

un
ifi

es
th

e
ex

is
ti
ng

ev
en

t
re

pr
es

en
ta

ti
on

s
of

ca
lo
ri
m

et
er

im
ag

es
an

d
ra

di
at

io
n

m
om

en
ts
, a

nd

w
e
sh

ow
ca

se
th

e
ex

tr
ac

ti
on

of
no

ve
l a

na
ly
ti
c
ob

se
rv

ab
le
s
fr
om

th
e
tr
ai
ne

d
m

od
el
.

O
ne

ev
er

-p
re

se
nt

co
lli

de
r
ph

en
om

en
on

th
at

in
vo

lv
es

co
m

pl
ic
at

ed
m
ul

ti
pa

rt
ic
le

fin
al

st
at

es

is
th

e
fo
rm

at
io
n

an
d

ob
se

rv
at

io
n

of
je
ts
,
sp

ra
ys

of
co

lo
r-
ne

ut
ra

l
ha

dr
on

s
re

su
lt
in

g
fr
om

th
e

fr
ag

m
en

ta
ti
on

of
hi

gh
-e
ne

rg
y
qu

ar
ks

an
d
gl
uo

ns
in

qu
an

tu
m

ch
ro

m
od

yn
am

ic
s (

Q
C
D
).

N
um

er
-

ou
s i

nd
iv
id

ua
l o

bs
er

va
bl

es
ha

ve
be

en
pr

op
os

ed
to

st
ud

y
je
ts

in
cl
ud

in
g
th

e
je
t m

as
s,

co
ns

ti
tu

en
t

m
ul

ti
pl

ic
ity

, i
m

ag
e
ac

ti
vi
ty

[6
6]
, N

-s
ub

je
tt
in

es
s
[6
7,

68
],

tr
ac

k-
ba

se
d

ob
se

rv
ab

le
s
[6
9,

70
],

ge
n-

er
al
iz
ed

an
gu

la
ri
ti
es

[7
1]
, (

ge
ne

ra
liz

ed
)
en

er
gy

co
rr
el
at

io
n

fu
nc

ti
on

s
[7
2,

73
],

so
ft

dr
op

m
ul

ti
-

pl
ic
ity

[7
4,

75
],

an
d

m
an

y
m

or
e
(s
ee

R
ef
s.

[5
1,

76
–8

0]
fo
r
re

vi
ew

s)
.
M

ac
hi

ne
le
ar

ni
ng

m
et

ho
ds

ha
ve

fo
un

d
tr
em

en
do

us
ap

pl
ic
ab

ili
ty

to
je
t
cl
as

si
fic

at
io
n

ta
sk

s,
gr

ea
tl
y

ou
tp

er
fo
rm

in
g

in
di

-

vi
du

al
st
an

da
rd

ob
se

rv
ab

le
s.

Je
t

cl
as

si
fic

at
io
n

pr
ov

id
es

an
id

ea
l
ca

se
st
ud

y
fo
r

th
e

D
ee

p

–
4

–

De
ns

e n
et

wor
ks

De
ep

 se
ts

Co
nv

ol
ut

io
na

l N
Ns

 (C
NN

s)

Re
cu

rre
nt

 N
Ns

Re
cu

rs
ive

 N
Ns

Gra
ph

 C
NN

s

Beyond fully connected networks



Beyond fully connected networks

A fully connected (“dense” in keras) has many parameters 
and does not know about the structure of the data.

x1

x2

xn

h11

h12

h1m1

Ax+b f hN1

hN2

hNmN

[0,1]

background

signal

depth

# of parameters ~  
(n+1) x m1 + (m1+1) x m2 + … + (mN-1+1) x mN



Convolutional neural networks
The community standard for image data is CNNs.  Fixed-size 

filters are convolved with the images to produce additional 
images.  This is an automated feature extraction stage.

#parameters = (size of filter) x (# of filters) 
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This means that the filters 
learn to do e.g. edge 

detection early in the network 
and then detect windows, 

buildings, etc. in later layers. Credit: AlexNet paper

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]

�3 =

�
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�0.5

� (2)
2

, (3.1)

where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 7. Color flow for H � bb̄ and g � bb̄, the main irreducible QCD background to our signal.
The numbers 1 and 2 label different color lines.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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discrimination power, and we find that the majority of the improved discrimination power
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for immediate application to LHC searches. It also supports our intuition that the dominant
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T = 450 GeV stopped improving (with a patience of 2 epochs). We arrived
at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T = 450 GeV) using di�erent optimizers (AdaDelta [94],
AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T = 450 GeV stopped improving (with a patience of 2 epochs). We arrived
at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T = 450 GeV) using di�erent optimizers (AdaDelta [94],
AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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Related topics: padding and (max) pooling. 

Usually a CNN ends with some fully connected layers.



Recurrent neural networks

ATL-PHYS-PUB-2017-003

The community standard for text data is RNNs.  Variable-
length ordered inputs are fed into a recurrent unit.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/


Other neural network architectures

There are many other architectures that can be useful for 
handling unordered variable length data, graphs, trees, etc.

Picking the “right” architecture can result more 
efficient and robust training and better performance.

It is also possible (and often not hard) to make new 
architectures that are specifically designed for your task!



Beyond classification
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I’ll give some concrete examples tomorrow, but I wanted to 
mention the breadth of possibilities already today.



Before finishing: some practical matters

• Hardware 
 GPUs can be much faster for big networks.  If you don’t have 
access to GPUs, consider cloud resources! 

• Preprocessing  
 While choosing the right architecture can improve 
performance, so can preprocessing.  However, be warned that 
preprocessing can also remove information if not done 
carefully. 
 Standardization - when your inputs are not O(1) floats, it is 
useful to subtract the mean and divide by the standard 
deviation. 

• Hyperparameter tuning 
 Be warned that this non-gradient-based part of training is very 
important!  It is not fair to compare methods if you have not 
optimized each one.



The future

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

We must be cautious to apply 
the right tool for the right job.  

The more you know, the less 
black the boxes will be…

(D)NN’s are powerful tools 
that will help us fully exploit 
the physics potential of our 

theory and experiments.


