# The Standard Model

Sean Tulin

stulin@yorku.ca



#### "Periodic table" of elementary particles and forces

Fermions (spin ½)

|                 | mass (approx.) | electric charge |
|-----------------|----------------|-----------------|
| quarks          |                |                 |
| up (u)          | 2 MeV          |                 |
| charm (c)       | 1.3 GeV        | + 2/3           |
| top (t)         | 173 GeV        |                 |
| down (d)        | 5 MeV          |                 |
| strange (s)     | 95 MeV         | - 1/3           |
| bottom (b)      | 4.2 GeV        |                 |
| charged leptons |                |                 |
| electron (e)    | 0.511 MeV      |                 |
| muon (μ)        | 106 MeV        | -1              |
| tau (τ)         | 1.8 GeV        |                 |
| neutrinos       |                |                 |
| V <sub>e</sub>  |                |                 |
| $v_{\mu}$       | 0*             | 0               |
| $v_{\tau}$      |                |                 |

\* Standard Model defined with massless neutrinos, though neutrinos do have (small) masses. Two possibilities for including neutrino mass into SM and don't know which is correct (Dirac or Majorana neutrinos).

## "Periodic table" of elementary particles and forces

Bosons (spin 0 or 1)

|                                            | mass (approx.) | electric charge<br>(units of proton charge e) |
|--------------------------------------------|----------------|-----------------------------------------------|
| <i>gauge bosons</i> (s=1)<br>photon/EM (γ) | 0              | 0                                             |
| gluon/strong (g)                           | 0              | 0                                             |
| weak force                                 |                |                                               |
| W <sup>±</sup>                             | 80.4 GeV       | ±e                                            |
| Z                                          | 91.2 GeV       | 0                                             |
| scalar (s=0)                               |                |                                               |
| Higgs boson (h)                            | 125 GeV        | 0                                             |

photon/EM ( $\gamma$ )

Ymm = ie ym

QED: U(1) gauge theory

photon/EM ( $\gamma$ ) QED: U(1) gauge theory

f = ie Jm

gluon/strong force (g) QCD: SU(3) gauge theory

ga veree to go = igs 8m.

i,j = 1...3 (colors r,g,b) A = 1...8 (8 types of gluons)

Weak force (W/Z)



- Charged current interaction (W) is **flavor-changing** for quarks Converts any up-type quark to any down-type quark Trivially flavor-conserving for leptons if neutrinos are massless
- Neutral current interaction (Z) is **flavor-conserving** for quarks and leptons

Weak force (W/Z)



 W,Z interactions are chiral Left-handed and right-handed fermions have different gauge couplings

$$ie \mathcal{Y}^{\mu} \longrightarrow i \left( \mathcal{J}_{L} \mathcal{Y}^{\mu} \mathcal{P}_{L} + \mathcal{J}_{R} \mathcal{Y}^{\mu} \mathcal{P}_{R} \right) \quad \mathcal{J}_{L} \neq \mathcal{J}_{R}$$
$$P_{L,R} = \frac{1 \pm \mathcal{Y}_{5}}{2}$$

**Goal:** Write down Lagrangian for all known particles and interactions (except neutrino masses, dark matter, gravity, etc.)

## Key ingredients we want:

- 1. Renormalizability (want predictive theory at all energy scales)
- 2. Gauge symmetry (abelian and nonabelian)

**Goal:** Write down Lagrangian for all known particles and interactions (except neutrino masses, dark matter, gravity, etc.)

## Key ingredients we want:

- 1. Renormalizability (want predictive theory at all energy scales)
- 2. Gauge symmetry (abelian and nonabelian)

## Problem:

- Weak interactions have: (1) massive gauge bosons and (2) chiral interactions with fermions
- Inconsistent with gauge symmetry and renormalizability

**Fix:** Higgs mechanism and spontaneous symmetry breaking

Let's illustrate this with a simplified version of the SM

QED with (1) massive photon and (2) chiral fermion couplings

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\Psi} (i \not D - m_{\psi}) \psi + \frac{1}{2} m_A^2 A_{\mu} A^{\mu}$$
(1) gauge boson mass

In usual QED:  $M_A = O$  and  $g_L = g_R = C$ 

Is the theory gauge invariant?

Gauge transformations:

$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \chi(x), \quad \Psi_{L,R} \rightarrow e^{-ig_{L,R}\chi(x)} \Psi_{L,R}$$

## Is the theory gauge invariant?

Gauge transformations:

$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \alpha(x), \quad \Psi_{L,R} \rightarrow e^{-ig_{L,R} \alpha(x)} \Psi_{L,R}$$

Kinetic terms are gauge invariant since  $\int$ 

Gauge boson mass term is not invariant

$$A_{\mu}A^{\mu} \longrightarrow A_{\mu}A^{\mu} + 2 A^{\mu}\partial_{\mu}\alpha + (\partial_{\mu}\alpha)^{2}$$

Fermion mass term is not invariant unless  $g_L = g_R$ 

$$\overline{\Psi}\Psi = \overline{\Psi}_{L}\Psi_{R} + \overline{\Psi}_{R}\Psi_{L} \longrightarrow e^{i(g_{L}-g_{R})\alpha}\overline{\Psi}_{L}\Psi_{R}$$
$$+ e^{i(g_{R}-g_{L})\alpha}\overline{\Psi}_{R}\Psi_{L}$$

Weak interactions: Maybe not a gauge theory?

- W,Z are massive
- SM fermions have both masses and chiral couplings to W,Z

Reasons to want a gauge theory for W,Z:

- 1. Automatically explains experimental observations for weak interactions:
  - No flavor-changing neutral currents (FCNCs)
     Z boson (and γ) doesn't change one fermion flavor into another
  - Same coupling of the W,Z to e,  $\mu$ ,  $\tau$  (universality)

More on this later

- 2. Renormalizability
  - Theory with massive gauge bosons also nonrenormalizable

Let's argue that a massive gauge theory is **not** renormalizable

We need to know the propagator for a massive gauge boson

Recall: Feynman propagator for massless photon

$$D_{\mu\nu}(k) = \frac{-i\eta_{\mu\nu}}{k^2 + i\varepsilon} = \frac{i\sum_{\substack{polar. \\ i=l,2}} \mathcal{E}_{\mu}^{(i)}(k)\mathcal{E}_{\nu}^{(i)}(k)^{*}}{k^2 + i\varepsilon}$$

Propagator for massive photon: (1) Shift the pole and (2) include new polarization

$$D_{\mu\nu}(k) = \frac{i \sum_{p \in l.} \mathcal{E}_{\mu}^{(i)}(k) \mathcal{E}_{\nu}^{(j)}(k)^{*}}{\sum_{i=1,2,3}^{i=1,2,3} k^{2} - m_{A}^{2} + i\mathcal{E}}$$

Consider gauge boson rest frame

Polarization vectors

$$\begin{aligned} & \mathcal{E}_{\mu}^{(1)}(0) = (0, 1, 0, 0) \\ & \mathcal{E}_{\mu}^{(2)}(0) = (0, 0, 1, 0) \\ & \mathcal{E}_{\mu}^{(3)}(0) = (0, 0, 0, 1) \\ & \mathcal{E}_{\mu}^{(3)}(0) = (0, 0, 0, 1) \end{aligned}$$

Now sum over polarization vectors

$$\sum_{i} \mathcal{E}_{\mu}^{(i)}(o) \mathcal{E}_{\nu}^{(i)}(o) = \begin{pmatrix} 0 & i \\ 0 & i \\ 0 & i \end{pmatrix}_{\mu\nu}$$

Now boost to a new frame with gauge boson momentum  $k^{\mu} = (E_k, \circ, \circ, k)$ 

The Lorentz transformation matrix is 
$$\Lambda = \begin{pmatrix} \gamma & 0 & 0 & \beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta & 0 & 0 & \delta \end{pmatrix}$$
 where  $\delta = \frac{E_k}{M_A}$ 

Then we have  

$$\sum_{i} \mathcal{E}_{\mu}^{(i)}(k) \mathcal{E}_{\nu}^{(i)}(k)^{*} = \Lambda \sum_{i} \mathcal{E}_{\mu}^{(i)}(o) \mathcal{E}_{\nu}^{(i)}(o)^{*} \Lambda^{T} = \begin{pmatrix} k^{2}/m_{A}^{2} & 0 & 0 & k \in k/m_{A}^{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ k \in k/m_{A}^{2} & 0 & 0 & k \in k/m_{A}^{2} \end{pmatrix}$$

$$= -\gamma_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{m_{A}^{2}}$$

expressed in Lorentz-covariant form

$$\mathcal{D}_{\mu\nu}(k) = \underset{\mu}{\overset{k}{\underset{\nu}{\underset{\nu}{\atop}}} = \frac{-i}{k^2 - m_{A}^2 + i\epsilon} \left( \frac{\gamma_{\mu\nu}}{m_{A}^2} - \frac{k_{\mu}k_{\nu}}{m_{A}^2} \right)$$

Extra  $k_{\nu}k_{\nu}$  term introduces extra ultraviolet divergences that are absent in massless theory (QED)

Recall in QED:

• Ultraviolet divergences appear at one-loop order in the two- and three-point functions



- Can be absorbed by renormalizing mass, electric charge, wavefunctions
- After this is done, the theory gives finite predictions. No new divergences appear for higher-point functions, e.g., four-point function (scattering)



Consider scattering at one-loop in our massive gauge theory

Keep only the leading divergent terms. Schematically, we have:





Consider scattering at one-loop in our massive gauge theory

Keep only the leading divergent terms. Schematically, we have:



Consider scattering at one-loop in our massive gauge theory

Keep only the leading divergent terms. Schematically, we have:



Requires new counter terms from higher dimensional operators to cancel divergence

# Spontaneous symmetry breaking and Higgs mechanism

#### Basic idea:

- Start with a Lagrangian that is gauge invariant
- Gauge symmetry is broken **spontaneously** by the vacuum, not by explicit terms in the Lagrangian
- Symmetry is no longer manifest in the spectrum of states Particles can have masses that seem to violate the gauge symmetry
- Parameters of the theory are not all independent, but are correlated due to the original gauge symmetry Ultraviolet divergences cancel out and theory is renormalizable

Complex scalar field  $\phi$  with a U(1) abelian gauge symmetry (scalar QED)

$$\mathcal{J} = (\mathcal{D}_{\mu}\phi^{\dagger})(\mathcal{D}^{\mu}\phi) - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Scalar potential 
$$\sqrt[4]{(\phi)} = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

Covariant derivative 
$$D_{\mu} = \partial_{\mu} + i g A_{\mu}$$

What is the vacuum of the theory? Minimize the Hamiltonian

$$\mathcal{H} = \left[\frac{\dot{\phi}}{\dot{\phi}}\right]^2 + \frac{\dot{\nabla}\phi}{\dot{\phi}} + \frac{\dot{\nabla}(\dot{\phi})}{\dot{\phi}} + \frac{\dot{\phi}}{\dot{\phi}} + \frac{\dot{\phi}}{\dot{\phi}} + \frac{\dot{\nabla}(\dot{\phi})}{\dot{\phi}} + \frac{\dot{\phi}}{\dot{\phi}} + \frac{\dot{\phi}}{\dot{\phi} + \frac{\dot{\phi}}{\dot{\phi}} + \frac{\dot{\phi}}{\dot{\phi}} + \frac{\dot{\phi}}{\dot{\phi}} + \frac{\dot{\phi}}{\dot{\phi}} + \frac{\dot$$

Vacuum state for value of  $\phi$  that minimizes the potential V( $\phi$ )

 $\nabla(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$ ,  $\lambda > 0$  required but  $\mu^2$  can have either Sign  $\mu^{2} < 0$ " > O Re ø Rep Ind Ind

Minimize the potential  $\frac{\partial V}{\partial \phi} = (\mu^2 + 2\lambda \phi^{\dagger} \phi) \phi^{\dagger} = 0$   $\mu^2 > 0$  case:  $|\phi| = 0$  Gauge symmetry remains intact  $\mu^2 < 0$  case:  $|\phi| = \sqrt{\frac{-\mu^2}{2\lambda}} = \frac{\sqrt{2}}{\sqrt{2}}$  Gauge symmetry is broken

Infinite number of degenerate minima, all related by gauge transformation Free to pick one such that  $\phi$  is real and positive

Scalar field 
$$\phi$$
 has acquired a vacuum expectation value (vev)  $\langle \circ | \phi | \circ \rangle = \frac{\sqrt{2}}{\sqrt{2}}$ 

Physical particles are quantum fluctuations above the vacuum To find the spectrum, expand the scalar field around its vev (polar form)

$$\phi(x) = \frac{1}{\sqrt{2}} (v + h(x)) e^{i \frac{\xi(x)}{v}}$$

where h(x),  $\xi(x)$  are real scalar fields

Again, free to remove the phase of  $\phi$  using a gauge transformation, writing

$$\phi(x) = \frac{1}{\sqrt{2}} (v + h(x))$$
 unitary gauge

Covariant derivative term:

$$\left|\mathcal{P}_{\mu}\phi\right|^{2} = \frac{1}{2}\left(\left(\partial_{\mu}+igA_{\mu}\right)(\nu+h)\right)^{2}$$

$$= \frac{1}{2}\left(\left(\partial_{\mu}h\right)^{2} + \frac{1}{2}g^{2}A_{\mu}A^{\mu}(\nu+h)^{2}\right)$$
Gauge boson mass term  $\frac{1}{2}m_{A}^{2}A_{\mu}A^{\mu}$  with  $m_{A} = gV$ 

Covariant derivative term:

$$\left|\mathcal{D}_{\mu}\phi\right|^{2} = \frac{1}{2}\left[\left(\partial_{\mu}+igA_{\mu}\right)(\nu+h)\right]^{2}$$

$$= \frac{1}{2}\left(\partial_{\mu}h\right)^{2} + \frac{1}{2}g^{2}A_{\mu}A^{\mu}(\nu+h)^{2}$$
Gauge boson mass term  $\frac{1}{2}m_{A}^{2}A_{\mu}A^{\mu}$  with  $m_{A} = gV$ 

Residual real scalar degree of freedom **h**: the Higgs boson

Interactions of the Higgs boson are **not** free parameters. Fixed by mass and vev.



Next, consider fermions. How do we get fermion masses for a chiral gauge theory?

Add a fermion term to the Lagrangian:  $\overline{\Psi}i\overline{D}\Psi$ 

$$D_{\mu} = \partial_{\mu} + i (g_{L}P_{L} + g_{R}P_{R})A_{\mu}$$
  
no mass allowed if  $g_{L} \neq g_{R}$ 

Next, consider fermions. How do we get fermion masses for a chiral gauge theory?

Add a fermion term to the Lagrangian:  $\overline{\Psi}i\overline{\not}\psi$ 

$$D_{\mu} = \partial_{\mu} + i (g_{L}P_{L} + g_{R}P_{R})A_{\mu}$$
  
no mass allowed if  $g_{L} \neq g_{R}$ 

But we can construct another term for a gauge invariant Lagrangian

$$\begin{aligned} \mathcal{L}_{Yukawa} &= - \mathcal{Y} \overline{\mathcal{Y}_{L}} \mathcal{Y}_{R} \phi + h.c. & \mathcal{Y} = Yukawa \ coupling \\ \phi \to e^{-ig\alpha} \phi, \ \mathcal{Y}_{L,R} &= e^{-ig_{L,R} \alpha} \mathcal{Y}_{L,R} \\ \text{This term is allowed if } g + g_{R} = g_{L} \end{aligned}$$

Expanding around the vev:

$$\begin{aligned} \mathcal{L}_{Yuk awa} &= -\mathcal{Y}\overline{\Psi}_{L}\Psi_{R} \phi + h.c. \\ &= -\mathcal{Y}\overline{\Psi}_{L}\Psi_{R} \left(\frac{V+h}{V_{2}}\right) - \mathcal{Y}\overline{\Psi}_{R}\Psi_{L} \left(\frac{V+h}{V_{2}}\right) \\ &= -\mathcal{Y}\overline{\Psi}_{L}\Psi_{R} \left(\frac{V+h}{V_{2}}\right) - \mathcal{Y}\overline{\Psi}_{R}\Psi_{L} \left(\frac{V+h}{V_{2}}\right) \\ &= -\frac{\mathcal{Y}}{\sqrt{2}}\overline{\Psi}\Psi - \frac{\mathcal{Y}}{\sqrt{2}}h\overline{\Psi}\Psi \\ \end{aligned}$$
We now have a fermion mass  $M\Psi = \frac{\mathcal{Y}}{\sqrt{2}}$   

$$\begin{aligned} &\downarrow h \\ Higgs boson interaction with fermion \\ is fixed in terms of mass and vev \end{aligned}$$

$$\begin{aligned} \Psi \longrightarrow \Psi = -i\frac{\mathcal{Y}}{\sqrt{2}} \\ &\swarrow \Psi / V \end{aligned}$$

Higgs mechanism:

- Generates mass for gauge bosons and chiral fermions in a gauge theory
- Prediction: extra residual degree of freedom (Higgs boson)
- Higgs boson couplings to a particle are fixed by particle's mass and the vev

Counting degrees of freedom (dof):

Original gauge invariant theory

1 massless gauge boson (2 pol.)

- + 1 complex scalar (2 dof)
- 4 total degrees of freedom

Spontaneously broken theory

1 massive gauge boson (3 pol.)

+ 1 real scalar (1 dof)

4 total degrees of freedom

Higgs boson mass:  

$$\begin{aligned}
\mathcal{L} = \left| \mathcal{D}_{\mu} \phi \right|^{2} - V(\phi) + \dots &= \frac{1}{2} \left( \partial_{\mu} h \right)^{2} + \mu^{2} h^{2} + \dots \\
m_{h} = \sqrt{-2\mu^{2}} \\
Free parameters (\mu^{2}, \lambda) \longleftrightarrow (m_{h}, V)
\end{aligned}$$

#### Ultraviolet divergences revisited

Theory with massive gauge bosons led to a divergence for scattering



#### Ultraviolet divergences revisited

Theory with massive gauge bosons led to a divergence for scattering



Now we have additional diagrams involving the Higgs boson to exactly cancel the divergences



#### Ultraviolet divergences revisited

Theory with massive gauge bosons led to a divergence for scattering



Now we have additional diagrams involving the Higgs boson to exactly cancel the divergences



SU(2) gauge theory with a complex scalar doublet field

$$J = (D_{\mu} \overline{p})^{\dagger} (D^{\mu} \overline{p}) - v (\overline{p}) - \frac{1}{2} Tr (F_{\mu\nu} F^{\mu\nu})$$
  
Complex doublet  $\overline{P} = \begin{pmatrix} \phi_{1} \\ \phi_{2} \end{pmatrix}$  Both  $\phi_{1}, \phi_{2}$  are  
complex scalar fields  
 $D_{\mu} \overline{P} = (\partial_{\mu} + ig \sum_{a=1}^{3} \frac{\sigma^{a}}{2} A^{a}_{\mu}) \overline{P}$   
Three gauge fields  $A^{1}_{\mu}, A^{2}_{\mu}, A^{3}_{\mu}$   
 $\sigma^{a} = Pauli$   
matrices

SU(2) gauge theory with a complex scalar doublet field

$$J = (D_{\mu} \overline{P})^{\dagger} (D^{\mu} \overline{P}) - V(\overline{P}) - \frac{1}{2} Tr(F_{\mu\nu} F^{\mu\nu})$$
  
Complex doublet  $\overline{P} = \begin{pmatrix} \phi_{1} \\ \phi_{2} \end{pmatrix}$  Both  $\phi_{1}, \phi_{2}$  are complex scalar fields  
 $D_{\mu} \overline{P} = (\partial_{\mu} + ig \sum_{a=1}^{3} \frac{\sigma^{a}}{2} A_{\mu}^{a}) \overline{P}$   

$$\sum_{a=1}^{3} \sigma^{a} A_{\mu}^{a} = \begin{pmatrix} A_{\mu}^{3} & A_{\mu}^{1} - iA_{\mu}^{2} \\ A_{\mu}^{1} + iA_{\mu}^{2} & -A_{\mu}^{3} \end{pmatrix}$$

Spontaneous symmetry breaking

$$\nabla(\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$
  
if  $\mu^2 < 0$ , minimum at  $\Phi^{\dagger} \Phi = \frac{\sqrt{2}}{2}$ ,  $V = \sqrt{\frac{7}{4}}$ 

Can expand the scalar doublet as

$$\Phi(x) = \exp\left(i\frac{\sigma^{a}}{2}\xi^{a}(x)/v\right)\begin{pmatrix}0\\\frac{v+h(x)}{\sqrt{2}}\end{pmatrix}$$

Expanding around the vev:

$$(D_{\mu} \vec{\Phi}^{\dagger}) (D^{\mu} \vec{\Phi}) = \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{\partial^{2}}{\delta} (0, v+h) \begin{pmatrix} A_{\mu}^{3} & A_{\mu}^{1} - i A_{\mu}^{2} \\ A_{\mu}^{1} + i A_{\mu}^{2} & -A_{\mu}^{3} \end{pmatrix}^{2} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$
$$= \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{1}{2} (\frac{\partial^{2}}{2})^{2} ((A_{\mu}^{1})^{2} + (A_{\mu}^{2})^{2} + (A_{\mu}^{3})^{2}) (1 + \frac{h}{v})^{2}$$

Expanding around the vev:

$$(D_{\mu} \bar{\Phi}^{\dagger}) (D^{\mu} \bar{\Phi}) = \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{g^{2}}{8} (O_{\nu} v + h) \begin{pmatrix} A_{\mu}^{3} & A_{\mu}^{\dagger} - i A_{\mu}^{2} \\ A_{\mu}^{1} + i A_{\mu}^{2} & -A_{\mu}^{3} \end{pmatrix}^{2} \begin{pmatrix} O \\ v + h \end{pmatrix}$$

$$= \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{1}{2} (\frac{g^{\nu}}{2})^{2} ((A_{\mu}^{\dagger})^{2} + (A_{\mu}^{2})^{2} + (A_{\mu}^{3})^{2}) (1 + \frac{h}{\nu})^{2}$$

We get three degenerate massive gauge bosons, with  $M_1 = M_2 = M_3 = \frac{9^{12}}{2}$ 

Almost like the Standard Model

Standard Model has three massive gauge bosons, but  $M_W \neq M_Z$ 

Plus one massless photon  $m_{\gamma} = o$ 

Need to specify the gauge group, the degrees of freedom (fields), and their quantum numbers

Gauge group:  
Gauge group:  

$$QCD$$
 Electroweak  
 $(C = color)$  (L = left, Y = hypercharge)  
Gauge bosons:  
 $gluon g_{\mu}^{A}$   $W_{\mu}^{\alpha}$  Bu  
 $(A = 1...8)$  ( $\alpha = 1...3$ )  
Gauge couplings:  
 $gs$   $g$   $g'$ 

Fermions  $Q_{L}^{i} = \begin{pmatrix} u_{L}^{i} \\ d_{L}^{i} \end{pmatrix}$   $u_{R}^{i}$   $d_{R}^{i}$   $L_{L}^{i} = \begin{pmatrix} \nu_{L}^{i} \\ e_{L}^{i} \end{pmatrix}$   $e_{R}^{i}$  Quantum numbers ( $SU(3)_{C}$ ,  $SU(2)_{L}$ ,  $U(1)_{Y}$ )

 $(3, 2, \frac{1}{6})$   $(3, 1, \frac{2}{3})$   $(3, 1, -\frac{1}{3})$   $(1, 2, -\frac{1}{2})$  (1, 1, -1) (1, 1, -1)  $(3, 2, -\frac{1}{2})$  (1, 1, -1)

i = 1,2,3 labels **generation**. All fermions with same quantum numbers come in three copies.

Scalar

7 Higgs Scalar doublet  $H = \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}$ (1, 2, 1/2)

# Some group theory notation

Abelian gauge symmetry  $U(1)_{y}$ :

Quantum numbers are in units of gauge coupling g'  
e.g. Qi has U(1)<sub>Y</sub> charge 
$$\frac{g'}{6}$$
  
Quantum numbers indicate representation of SU(N)  
N → fundamental rep.  
1 → trivial rep. i.e. doesn't transform  
e.g. Qi is in fundamental rep. of SU(3)<sub>C</sub>  
and SU(2)<sub>L</sub>, but Li is in trivial  
rep of SU(3)<sub>C</sub> since leptons don't  
carry color

$$\mathcal{L}gange = -\frac{1}{2} \operatorname{Tr}(g_{\mu\nu} g^{\mu\nu}) - \frac{1}{2} \operatorname{Tr}(W_{\mu\nu} W^{\mu\nu}) - \frac{1}{4} \mathcal{B}_{\mu\nu} \mathcal{B}^{\mu\nu}$$



$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{fermion} + \mathcal{L}_{scalar} + \mathcal{L}_{Yukawa}$$

$$\mathcal{L}_{gauge} = -\frac{1}{2} \operatorname{Tr}(g_{\mu\nu} g^{\mu\nu}) - \frac{1}{2} \operatorname{Tr}(W_{\mu\nu} W^{\mu\nu}) - \frac{1}{4} \mathcal{B}_{\mu\nu} \mathcal{B}^{\mu\nu}$$

$$J_{fermion} = \sum_{fermion} \overline{\Psi} i \mathcal{B} \Psi$$

$$J_{scalar} = (\mathcal{D}_{\mu} H^{+}) (\mathcal{D}^{\mu} H) - \mathcal{V}(H)$$

$$\mathcal{V}(H) = \mu^{2} H^{+} H + \lambda (H^{+} H)^{2} \quad (\mu^{2} < 0)$$

Same as nonabelian Higgs model with  $\overline{\Phi} \longrightarrow H$ 

### Electroweak symmetry breaking

Let's see how masses arise for the W,Z bosons via the Higgs mechanism

Covariant derivative 
$$D_{\mu}H = \left(\partial_{\mu} + i\frac{g}{2}\int_{a=1}^{3}\sigma^{a}W_{\mu}^{a} + \frac{ig'}{2}B_{\mu}\right)H$$

Expand Higgs field around the vev in unitary gauge

$$(x) = \begin{pmatrix} 0 \\ \frac{v+h(x)}{\sqrt{2}} \end{pmatrix}$$

Plug in and evaluate the covariant derivative term

$$\left| D_{\mu} H \right|^2$$

H

(exercise for tutorial)

# Fermion Lagrangian

Let's write out all the fermion terms explicity

$$\begin{aligned} \mathcal{I}_{\text{fermion}} &= \sum_{\Psi}^{2} \overline{\Psi} i \mathcal{B} \Psi \\ &= \sum_{i=1}^{3} \overline{Q}_{L}^{i} i \left( \mathcal{J} + i \frac{g}{2} \sigma^{a} \mathcal{M}^{a} + i \frac{g'}{6} \mathcal{B} + i g_{s} \frac{\lambda^{A}}{2} \mathcal{G}^{A} \right) Q_{L}^{i} \\ &+ \overline{u}_{R}^{i} i \left( \mathcal{J} + i g' \frac{2}{3} \mathcal{B} + i g_{s} \frac{\lambda^{A}}{2} \mathcal{G}^{A} \right) u_{R}^{i} \\ &+ \overline{d}_{R}^{i} i \left( \mathcal{J} + i g' (-\frac{1}{3}) \mathcal{B} + i g_{s} \frac{\lambda^{A}}{2} \mathcal{G}^{A} \right) d_{R}^{i} \\ &+ \overline{L}_{L}^{i} i \left( \mathcal{J} + i \frac{g}{2} \sigma^{a} \mathcal{M}^{a} - i \frac{g'}{2} \mathcal{B} \right) L_{L}^{i} \\ &+ \overline{e}_{R}^{i} i \left( \mathcal{J} - i g' \mathcal{B} \right) e_{R}^{i} \end{aligned}$$

# Charged current interactions

Interactions with the W bosons are only for left-handed fields  $\hat{Q}_{L}^{i}$  and  $L_{L}^{i}$ 

$$W_{\mu}^{\pm} = \frac{W_{\mu}^{\dagger} \mp i W_{\mu}^{2}}{\sqrt{2}}$$

$$\sigma' W' + \sigma^{2} W^{2} = \begin{pmatrix} \sigma W' - i W^{2} \\ W' + i W^{2} & \sigma \end{pmatrix} = \sqrt{2} \begin{pmatrix} \sigma W' + i W^{2} \\ W' + i W^{2} & \sigma \end{pmatrix}$$

 $\mathcal{L}_{cc} = i\left(\overline{u}_{L}^{i}, \overline{d}_{L}^{i}\right)\left(i\frac{g}{12}\right)\left(\begin{matrix}0 & W^{\dagger}\\W^{-} & 0\end{matrix}\right)\left(\begin{matrix}u_{L}^{i}\\d_{L}^{i}\end{matrix}\right)$ φ<sup>i</sup> Gi  $+ i \left( \overline{\nu_{L}}, \overline{e_{L}} \right) \left( i \frac{\vartheta}{\overline{v_{2}}} \right) \left( W^{-} \right) \left( \psi^{+}_{L} \right) \left( e_{L} \right)$   $= \overline{L}, \quad i \in \mathbb{N}$ 

 $= -\frac{9}{12}\pi_{L}^{i}W^{\dagger}d_{L}^{i} - \overline{\nu_{L}^{i}W^{\dagger}e_{L}^{i}} + h.c.$ 

Interactions with Z and  $\gamma$  are for all SM fermions

$$\begin{split} \mathcal{L}_{NC} &= -\bar{\varphi}_{L}^{i} \left( \frac{g}{2} \begin{pmatrix} \mu & 3 & 0 \\ 0 & -\mu & 3 \end{pmatrix} + \frac{g'}{6} \begin{pmatrix} \mathcal{B} & 0 \\ 0 & \mathcal{B} \end{pmatrix} \right) \hat{\varphi}_{L}^{i} \\ &- \bar{u}_{R}^{i} \left( \frac{2}{3} g' \mathcal{B} \right) u_{R}^{i} - \bar{d}_{R}^{i} \left( -\frac{1}{3} g' \mathcal{B} \right) d_{R}^{i} \\ &- \bar{L}_{L}^{i} \left( \frac{g}{2} \begin{pmatrix} \mu & 3 & 0 \\ 0 & -\mu & 3 \end{pmatrix} - \frac{g'}{2} \begin{pmatrix} \mathcal{B} & 0 \\ 0 & \mathcal{B} \end{pmatrix} \right) L_{L}^{i} \\ &- \bar{e}_{R}^{i} \left( -g' \mathcal{B} \right) e_{R}^{i} \end{split}$$

Interactions with Z and  $\gamma$  are for all SM fermions

$$\begin{split} \mathcal{L}_{NC} &= -\bar{\Phi}_{L}^{i} \left( \frac{g}{2} \begin{pmatrix} \mu^{3} & 0 \\ 0 & -\mu^{3} \end{pmatrix} + \frac{g'}{6} \begin{pmatrix} \mathcal{B} & 0 \\ 0 & \mathcal{B} \end{pmatrix} \right) \hat{\Phi}_{L}^{i} \\ &- \bar{\mu}_{R}^{i} \left( \frac{2}{3} g' \mathcal{B} \right) \mu_{R}^{i} - \bar{d}_{R}^{i} \left( -\frac{1}{3} g' \mathcal{B} \right) d_{R}^{i} \\ &- \bar{L}_{L}^{i} \left( \frac{g}{2} \begin{pmatrix} \mu^{3} & 0 \\ 0 & -\mu^{3} \end{pmatrix} - \frac{g'}{2} \begin{pmatrix} \mathcal{B} & 0 \\ 0 & \mathcal{B} \end{pmatrix} \right) L_{L}^{i} \\ &- \bar{e}_{R}^{i} \left( -g' \mathcal{B} \right) e_{R}^{i} \end{split}$$

Plug in redefined gauge fields and expand

$$W_{\mu}^{3} = \cos \Theta W Z_{\mu} + \sin \Theta W A_{\mu}$$
  
$$B_{\mu} = -\sin \Theta W Z_{\mu} + \cos \Theta W A_{\mu}$$

End result (tutorial exercise):

$$\begin{aligned} \mathcal{J}_{NC} &= -g_{SW} \left( \frac{2}{3} \overline{u} \mathcal{A} u^{i} - \frac{1}{3} \overline{d} \mathcal{A} d^{i} - \overline{e} \mathcal{A} e^{i} \right) \\ &- \frac{9}{c_{W}} \left[ \overline{u}^{i} \mathcal{Z} \left( \frac{1}{2} P_{L} - \frac{2}{3} S_{W}^{2} \right) u^{i} \right. \\ &+ \overline{d}^{i} \mathcal{Z} \left( -\frac{1}{2} P_{L} + \frac{1}{3} S_{W}^{2} \right) d^{i} \\ &+ \overline{e}^{i} \mathcal{Z} \left( -\frac{1}{2} P_{L} + S_{W}^{2} \right) e^{i} \\ &+ \overline{v}^{i} \mathcal{Z} \left( -\frac{1}{2} P_{L} + S_{W}^{2} \right) e^{i} \end{aligned}$$

End result (tutorial exercise):

Even though we started with chiral theory, able to assign charges such that massless gauge field A is **not** chiral

End result (tutorial exercise):

Even though we started with chiral theory, able to assign charges such that massless gauge field A is **not** chiral

Electric charge 
$$e = g \sin \theta w$$
  
fields EM charge  
 $u^{i}$   $+\frac{2}{3}e$   
 $d^{i}$   $-\frac{1}{3}e$   
 $v^{i}$   $0$