TRISEP Tutorial 2

(Dated: July 23, 2019)

I. NEUTRAL CURRENT INTERACTIONS AND THE INVISIBLE WIDTH OF THE Z BOSON

The interactions of the Z boson with fermions comes from their covariant derivatives. Keeping only the neutral electroweak gauge fields (i.e., neglecting gluons and the $W^{ \pm}$), the covariant derivative is

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}+i g T^{3} W_{\mu}^{3}+i g^{\prime} Y_{L} B_{\mu} \tag{1}
\end{equation*}
$$

for left-handed fermions, and

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}+i g^{\prime} Y_{R} B_{\mu} \tag{2}
\end{equation*}
$$

for right-handed fermions. Note the following:

- The $S U(2)_{L}$ generator for W_{μ}^{3} is $T^{3}=\frac{1}{2} \sigma^{3}=\operatorname{diag}\left(+\frac{1}{2},-\frac{1}{2}\right)$. Note that all the fields are eigenvalues of $T^{3}: u_{L}$ and ν_{L} have $T^{3}=+\frac{1}{2}$, while d_{L} and e_{L} have $T^{3}=-\frac{1}{2}$.
- We attach the subscript $Y_{L, R}$ to the hypercharges Y for future convenience. For example, for the u quark $Y_{L}=\frac{1}{6}$ and $Y_{R}=\frac{2}{3}$, for the electron $Y_{L}=-\frac{1}{2}$ and $Y_{R}=-1$, etc.

The neutral current (NC) interaction is then

$$
\begin{equation*}
\mathcal{L}_{\mathrm{NC}}=\sum_{\text {fermions } \psi} \bar{\psi} \gamma^{\mu}\left(\left(g T^{3} W_{\mu}^{3}+g^{\prime} Y_{L} B_{\mu}\right) P_{L}+\left(g^{\prime} Y_{R} B_{\mu}\right) P_{R}\right) \psi \tag{3}
\end{equation*}
$$

(a) Verify that $T^{3}+Y_{L}=Y_{R}=Q$, where Q is electric charge, for each type of field: u, d, e, and $\nu .{ }^{1}$
(b) Expressing W_{μ}^{3} and B_{μ} in terms of Z_{μ} and A_{μ}, show that the neutral current interaction is

$$
\begin{equation*}
\mathcal{L}_{\mathrm{NC}}=\sum_{\text {fermions } \psi} \bar{\psi} \gamma^{\mu}\left(\frac{g}{c_{W}}\left(T^{3} P_{L}-Q s_{W}^{2}\right) Z_{\mu}+e Q A_{\mu}\right) \psi \tag{4}
\end{equation*}
$$

(c) Next, we will consider decays $Z \rightarrow \psi \bar{\psi}$. Let's start with the following interaction in a slightly different form from Eq. (4) and consider a generic Lagrangian:

$$
\begin{equation*}
\mathcal{L}=\bar{\psi} \gamma^{\mu}\left(g_{L} P_{L}+g_{R} P_{R}\right) \psi Z_{\mu} \tag{5}
\end{equation*}
$$

Neglecting the fermion mass ψ, show that the summed squared matrix element is

$$
\begin{equation*}
\sum_{\text {spins }}|\mathcal{M}|^{2}=2\left(g_{L}^{2}+g_{R}^{2}\right) m_{Z}^{2} \tag{6}
\end{equation*}
$$

[^0]where the sum goes over all fermion spins and Z polarizations. Don't forget that summing over polarizations yields
\[

$$
\begin{equation*}
\sum_{i=1}^{3} \varepsilon_{\mu}^{(i)}(k) \varepsilon_{\nu}^{(i)}(k)^{*}=-\eta_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m_{Z}^{2}} \tag{7}
\end{equation*}
$$

\]

(d) Following from part (c), show that the partial width for $Z \rightarrow \psi \bar{\psi}$ is

$$
\begin{equation*}
\Gamma(Z \rightarrow \psi \bar{\psi})=\frac{m_{Z}}{24 \pi}\left(g_{L}^{2}+g_{R}^{2}\right) . \tag{8}
\end{equation*}
$$

It is probably helpful to recall that the formula for partial width is

$$
\begin{equation*}
\Gamma(Z \rightarrow \psi \bar{\psi})=\frac{1}{2 m_{Z}} \int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{1}{2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3}} \frac{1}{2 E_{2}}(2 \pi)^{4} \delta^{4}\left(k-p_{1}-p_{2}\right) \frac{1}{3} \sum_{\text {spins }}|\mathcal{M}|^{2}, \tag{9}
\end{equation*}
$$

where the $k=\left(m_{Z}, 0,0,0\right)$ is the initial Z momentum at rest, $p_{1,2}$ are the outgoing $\psi, \bar{\psi}$ momenta, and the factor of $\frac{1}{3}$ comes from averaging over the initial three Z polarizations. The integral over the 2-body final state phase space is not difficult if you have done it before. The result of that 6 -dimensional integral is

$$
\begin{equation*}
\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{1}{2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3}} \frac{1}{2 E_{2}}(2 \pi)^{4} \delta^{4}\left(k-p_{1}-p_{2}\right)=\frac{1}{8 \pi} \tag{10}
\end{equation*}
$$

assuming the fermions are massless and that the matrix element is rotationally invariant (which is the case in the Z rest frame after averaging over polarizations).
(e) Next, we're going to plug in some actual numbers to evaluate the total Z width Γ_{Z}. First, from Eq. (4), we have

$$
\begin{equation*}
g_{L}=\frac{g}{c_{W}}\left(T^{3}-Q s_{W}^{2}\right), \quad g_{R}=-\frac{g}{c_{W}} Q s_{W}^{2} . \tag{11}
\end{equation*}
$$

Determine numerical values for g, s_{W}, c_{W} from the known measured quantities

$$
\begin{equation*}
\alpha_{\mathrm{em}}=1 / 137, \quad m_{W}=80.4 \mathrm{GeV}, \quad m_{Z}=91.2 \mathrm{GeV} . \tag{12}
\end{equation*}
$$

Next, compute the the total Z width

$$
\begin{equation*}
\Gamma_{Z}=\sum_{\psi} \Gamma(Z \rightarrow \psi \bar{\psi}) \tag{13}
\end{equation*}
$$

by summing over all possible fermions in the final state. The observed value is $\Gamma_{Z}=2.4952 \pm$ 0.0023 GeV . How does your value compare? (Hint: Don't forget about color for quarks.)
(f) The invisible branching fraction of the Z is observed to be $20.000 \pm 0.055 \%$. In the Standard Model, invisible Z decays come from decays to the three neutrinos, since these are not observed in most particle detectors. It is customary to rephrase this as a constraint on the number of neutrinos as measured through Z decays:

$$
\begin{equation*}
N_{\nu}=\frac{\Gamma(Z \rightarrow \text { inv })}{\Gamma_{Z}^{1 \nu}} \tag{14}
\end{equation*}
$$

where $\Gamma(Z \rightarrow \mathrm{inv})=0.4990 \pm 0.0014 \mathrm{GeV}$ is the experimentally measured invisible partial width for the Z boson, and $\Gamma_{Z}^{1 \nu}$ is your theoretical calculation for Z to decay into one neutrino. How many neutrinos N_{ν} are there?

Lee and Weinberg (1977) suggested that an additional heavy neutrino could be a reasonable dark matter candidate for masses $m_{\nu}>2 \mathrm{GeV}$. Thus, you see that the Z boson excludes this possibility unless $m_{\nu}>m_{Z} / 2$.

[^0]: ${ }^{1}$ For the neutrino ν, it is only important to note that $T^{3}+Y_{L}=0$ since there is no ν_{R} field in the minimal Standard Model where neutrinos are massless.

