

HELMHOLTZ | GEMEINSCHAFT

1

Physics at Colliders I

Beate Heinemann

DESY and University of Freiburg

TRISEP Summer School, TRIUMF, Vancouver, July 2019

Outline

Lecture I: Introduction and Standard Model Measurements

- Current and Future colliders
- Tests of QCD
- Precision measurements in electroweak sector
- Flavour measurements and anomalies

Lecture II: Flavor, Higgs Boson and New Physics Searches

- Flavour measurements and anomalies
- The Standard Model Higgs Boson
- Problems with the Standard Model
- Supersymmetry
- Dark Matter at Colliders

Outline

Lecture I: Introduction and Standard Model Measurements

- Current and Future colliders
- Tests of QCD
- Precision measurements in electroweak sector
- Flavour measurements and anomalies

Lecture II: Flavor, Higgs Boson and New Physics Searches

- Flavour measurements and anomalies
- The Standard Model Higgs Boson
- Problems with the Standard Model
- Supersymmetry
- Dark Matter at Colliders

Fundamental Particles and Forces

- Matter
 - is made out of fermions
- Forces
 - are mediated by bosons
- Higgs boson
 - breaks the electroweak symmetry and gives mass to fermions and weak gauge bosons

Amazingly successful in describing precisely data from all collider experiments

The Standard Model Lagrangian

Lepton vs Hadron Colliders

• Disadvantages of hadrons:

7

- Hadrons are complex objects
- High multiplicity of other stuff
- Energy and type of colliding parton (quark, gluon) unknown
 - Kinematics of events not fully constrained

- Advantage of hadrons:
 - Can access higher energies

Lepton Collider (collision of two point-like particles)

Hadron collider (collision of ~50 point-like particles)

[Karl Jakobs]

e⁺e⁻ Colliders

- Circular colliders:
 - Reuse their power on each turn
 - Synchrotron radiation reduces energy of particles ~1/m⁴
- Linear colliders:
 - Particle sees each accelerator component just once
 - No synchrotron radiation

Luminosity

- Single most important quantity
 - Drives our ability to detect new processes

$$L = \frac{f_{rev} n_{bunch} N_p^2}{4 \pi \sigma_x \sigma_y}$$

revolving frequency: $f_{rev}=11245.5/s$ #bunches: $n_{bunch}=2808$ #protons / bunch: $N_p=1.15 \times 10^{11}$ Area of beams: $4\pi\sigma_x\sigma_y\sim40 \mu m$

• Rate of physics processes per unit time directly related:

Ability to measure relies on N_{obs} to be large enough

Integrated Luminosity: LHC

- Performance improving year by year
- Run 2: ~140 fb⁻¹ available for physics analyses

SuperKEKB and Belle-II

- Belle-II is successor of Belle experiment at KEK laboratory in Tsukuba, Japan
 - 800 collaborators from 26 countries
- Accelerator SuperKEKB
 - e+e- collisions at \sqrt{s} =10.57 GeV
 - "Factory" for B-hadron production
 - Highest luminosity lepton collider ever
 - First collisions in 2018
 - Physics run: 03/2019 until ~2027
 - Goal: collect L=50 ab⁻¹

Future Colliders

· Coverel e la collidare	Collider	Туре	\sqrt{s}	$\mathscr{P}\left[\% ight]$	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L	Time
• Several e+e- colliders				$[e^{-}/e^{+}]$		$[10^{34}] \mathrm{cm}^{-2}\mathrm{s}^{-1}$	$[ab^{-1}]$	[years]
I inear Colliders II C. CLIC	HL-LHC	pp	14 TeV	-	2	5	6.0	12
Ellical Colliders IEC, CEIC	HE-LHC	pp	27 TeV	-	2	16	15.0	20
 Circular colliders: FCC-ee, CEP 	C FCC-hh	pp	100 TeV	-	2	30	30.0	25
· · · · · · · · · · · · · · · · · · ·	FCC-ee	ee	M_Z	0/0	2	100/200	150	4
Hadron Colliders			$2M_W$	0/0	2	25	10	1-2
			240 GeV	0/0	2	7	5	3
• HL-LHC			$2m_{top}$	0/0	2	0.8/1.4	1.5	5
			250 CoV	<u>+80/+30</u>	1	1 25/2 7	2.0	(+1)
	ILC	ee	250 GeV	$\pm 80/\pm 30$ $\pm 80/\pm 30$	1	1.55/2.7	2.0	11.5
 FCC-hh 			500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5
								(+1)
• ep Colliders	CEPC	ee	M_Z	0/0	2	17/32	16	2
			$2M_W$	0/0	2	10	2.6	1
• LHeC			240 GeV	0/0	2	3	5.6	7
• ECC-eh	CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8
			1.5 TeV	$\pm 80/0$	1	3.7	2.5	7
			3.0 TeV	$\pm 80/0$	1	6.0	5.0	8
			1.0		1	0.0	1.0	(+4)
		ep	$\frac{1.3 \text{ lev}}{2.6 \text{ TeV}}$	-	<u> </u>	0.8	1.0	15
	HE-LHEC	ep	2.0 IeV	-	<u> </u>	1.5	2.0	20
	ruu-en	ep	3.3 Iev	-	1	1.3	2.0	23

CLIC and FCC (proposed at CERN)

ee Colliders

Future Colliders

	To	+5			+10		+	-15			+20		•••	+26
ILC	0.5/ab 250 GeV			1.5/a 250 G	b eV	1.0/ab0.2/ab500 GeV2m			3/ab 500 GeV					
CEPC	5.6/ab 16/ab 2.6 240 GeV Mz 2Mw													SppC =>
CLIC	1 38	.0/ab 0 GeV	2.5/a 1.5 Te								5.0/	ab => ur) 3.0 Te)	ntil +2 V	8
FCC	150/ab ee, M _z	10/ab ee, 2M _w	5/ ee, 24	′ab I0 GeV		1.7/ab ee, 2m _{top}							h	h,eh =>
LHeC	0.06/ab 0.2/ab 0.72/ab													
HE- LHC	IE- HC													
FCC eh/hh	20/ab per experiment in 25y													

e+e-

ер

рр

Schedules: by calendar year

The Experimental Challenge

- Measured hits in detector
- => use hits to reconstruct particle paths and energies
- => estimate background processes
- => understand the underlying physics

Particle Identification

Detector designed to separate electrons, photons, muons, neutral and charged hadrons

ATLAS and CMS Detectors

	Weight	Length	Height (m)
	(tons)	(m)	
ATLAS	7,000	42	22
CMS	12,500	21	15

Hadron-Hadron Collisions

Calculating a Cross Section

• Cross section is convolution of pdf's and Matrix Element

- Calculations are done in perturbative QCD
 - Possible due to factorization of hard ME and pdf's
 - Can be treated independently
 - Strong coupling (α_s) is large
 - Higher orders needed
 - Calculations complicated

The Proton Composition

- It's complicated:
 - Valence quarks, Gluons, Sea quarks
- Exact mixture depends on:
 - Q²: ~(M²+p_T²)
 - Björken-x:
 - fraction or proton momentum carried by parton
- Energy of parton collision:

$$\hat{s} = x_p \cdot x_{ar{p}} \cdot s$$

M_x= $\sqrt{\hat{s}}$

Particle production and PDFs

• Examples for particle production:

- Higgs: M=125 GeV/c²
 - LHC: <x_p>=125/13000≈0.01
- Gluino: M~2000 GeV/c²
 - LHC: <x_p>=4000/13000≈0.3

Steep rise of partons at low x => production rates strongly decrease with M

Physics Processes at the LHC

process	Rate at L _{peak} (Hz)
any interactions	10 ⁹
Bottom quarks	10 ⁶
Jets with p _T >100 GeV	10 ⁴
W bosons	10 ³
Top quarks	1
Higgs (M=125 GeV)	0.1
H->γγ (M=125 GeV)	2x10 ⁻⁴

Events	Event rate [Hz]
Beam crossings	4 x 10 ⁷
Level-1 triggered	10 ⁵
Recorded to disk	10 ³

Kinematic Constraints and Variables

Transverse momentum, p_T

- Particles that escape detection (θ <3°) have p_T≈0
- Visible transverse momentum conserved $\sum_i p_T^i \approx 0$
 - Very useful variable!

- Longitudinal momentum and energy, p_z and E

- Particles that escape detection have large p_z
- Visible p_z is not conserved
 - Not a useful variable

• Polar angle θ

- Polar angle $\boldsymbol{\theta}$ is not Lorentz invariant
- Rapidity: y
- Pseudorapidity: η

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} \qquad \qquad y = \eta = -\ln(\tan \frac{\theta}{2})$$

For M=0

What is a Cross Section?

- Differential cross section: $d\sigma/d\Omega$:
 - Probability of a scattered particle in a given quantum state per solid angle $\mbox{d}\Omega$
 - E.g. Rutherford scattering experiment
- Other differential cross sections: $d\sigma/dE_T$ (jet)
 - Probability of a jet with given E_T
- Integrated cross section
 - Integral: $\sigma = \int d\sigma / d\Omega \ d\Omega$

Measurement:
$$\sigma = (N_{obs} - N_{bg})/(\epsilon L)$$

Inelastic pp Cross Section

- Basic quantity of QCD
- Important for understanding of cosmic rays
 - Probes energy range near the knee
- Important for understanding of pileup at LHC

LHC: Inelastic pp Cross Section

- Cannot be determined theoretically with good precision
 - Not calculable using perturbation theory
- In every LHC event there are ~35 such event on average (pile-up)

Pile-up

Mean Number of Interactions per Crossing

Jet Cross Sections

• Inclusive jets: processes qq, qg, gg

- Highest E_T probes shortest distances
 - Tevatron: r_q<10⁻¹⁸ m
 - LHC: r_q<10⁻¹⁹ m (?)
 - Could e.g. reveal substructure of quarks
- Tests perturbative QCD at highest energies

Jet Cross Section History

- Tevatron Run I (~1996):
 - Excess at high E_T
 - Could be signal for quark substructure?!?

Jet Cross Section History

• Tevatron Run I (~1996):

- Revision of parton density functions
- Gluon PDF was uncertain at high x
- Modified PDF describes data well

Jet Cross Sections: LHC

W and Z Bosons

- Focus on leptonic decays:
 - Hadronic decays ~impossible due to enormous QCD dijet background
- Selection:
 - Z:
 - Two leptons p_T>20 GeV
 - W:
 - One lepton p_T>20 GeV
 - Large imbalance in transverse momentum
 - Missing E_T >20 GeV
 - Signature of undetected particle (neutrino)
- Excellent calibration signal for many purposes:
 - Electron energy scale
 - Track momentum scale
 - Lepton ID and trigger efficiencies
 - Missing E_T resolution
 - Luminosity ...

Lepton Identification

Electron and Muon Identification

W's and Z's

- Z mass reconstruction
 - Invariant mass of two leptons

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

- W mass reconstruction
 - Do not know neutrino p_z
 - No full mass resonstruction possible
 - Transverse mass:

$$m_T = \sqrt{|p_T^{\ell}|^2 + |p_T^{\nu}|^2 - (\vec{p}_T^{\ell} + \vec{p}_T^{\nu})^2}$$

Dependence of $\sigma(W)$ and $\sigma(Z)$ on \sqrt{s}

Top Quark Production and Decay

Decay via the electroweak interactions Br(t→Wb) ~ 100%
 Final state is characterized by the decay of the W boson

Different sensitivity and challenges in each channel

How to identify the top quark

Finding the Top at Tevatron

- b-tagging helps a lot:
 - Signal/Background improved by about a factor of 10 when using b-tagging
- Tevatron (with 4 jets):
 - no b-tagging: S/B≈0.8, With b-tagging: S/B≈6

Finding the b-jets

- Exploit large lifetime of the b-hadron
 - B-hadron flies before it decays: $d=c\tau$
 - Lifetime $\tau = 1.5 \text{ ps}^{-1}$
 - d=cτ = 460 μm
 - Can be resolved with silicon detector resolution
- Procedure "Secondary Vertex":
 - reconstruct primary vertex:
 - resolution ~ 30 μ m
 - Search tracks inconsistent with primary vertex (large d₀):
 - Candidates for secondary vertex
 - See whether three or two of those intersect at one point
 - Require displacement of secondary from primary vertex
 - Form L_{xy}: transverse decay distance projected onto jet axis:
 - L_{xy} >0: b-tag along the jet direction => real b-tag or mistag
 - L_{xy}<0: b-tag opposite to jet direction => mistag!
 - Significance: e.g. δL_{xy} / L_{xy} >7 (i.e. 7σ significant displacement)

⁴³• Nowadays, input many properties of tracks into multivariate algorithm (e.g. Neural Network)

Top cross section: dilepton channel

- Event selection
 - Isolated e and μ with p_T >25 GeV
 - One or two b-jets
 - N₁: 1 b-jet
 - N₂: 2 bjets
- Solve equations for cross section and fraction of b-jets found $(\epsilon_{\rm b})$

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$
$$N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{bkg}$$

ATLAS: $\sigma_{t\bar{t}} = 825 \pm 49 \text{ (stat)} \pm 60 \text{ (syst)} \pm 83 \text{ (lumi) pb}$ CMS: $\sigma_{t\bar{t}} = 769 \pm 60 \text{ (stat)} \pm 55 \text{ (syst)} \pm 92 \text{ (lumi) pb}$

Æ6

Top pair cross section versus \sqrt{s}

45

Electroweak Precision Measurements

- Top quark is the heaviest known fundamental particle
 - Today: m_{top}=172.47+- 0.46 GeV
 - Is this large mass telling us something about electroweak symmetry breaking?
 - Top yukawa coupling:
 - <H>/(√2 mtop) = 1.0086+-0.0027
 - Theory uncertainty: ~0.5 GeV
- Masses related through radiative corrections:
 - $m_W \sim M_{top}^2$
 - m_W~ln(m_H)
- If there are new particles the relation might change:
 - Precision measurement of top quark, W and Z boson masses can reveal new physics

Fit to Electroweak Precision Data

Erler, Schott 2019

W boson mass

arXiv:1701.07240⁴⁸

W boson mass

Top Quark Mass measurement

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method (traditional):
 - Uses "best" combination
 - Chi2 fit requires m(t)=m(t)
 - Advanced methods:
 - Use all combinations
 - Assign probability depending on kinematic consistency with top hypothesis
- Key challenge experimentally:
 - control systematic uncertainties due to jet measurement systematics

Top mass measurement: LHC

Future Colliders: W, Z and top

- Measure W and top masses from threshold scan
 - Requires $\sqrt{s} \sim 2M$: ~160 GeV for W and ~350 GeV for top
 - Advantage: measured top mass is the pole mass
- High precision Z programmes foreseen
 - At circular colliders: 10¹² Z's!

Future Prospects: Electroweak Observables

	Precision [MeV]						
particle	Now	Future					
W	12	1-3					
Z	2.1	0.1-0.5					
top	500	20-50					

• Future e+e- colliders improve by ~10 compared to current precision

Future Prospects: Electroweak Fit

Conclusion from Lecture I

- Perturbative QCD describes hadron collider data successfully:
 - Jet cross sections: $\Delta\sigma/\sigma \approx 20-100\%$
 - W/Z cross section: $\Delta\sigma/\sigma \approx 2\%$
 - Top cross section: $\Delta\sigma/\sigma \approx 4\%$
- High Precision measurements
 - W boson mass: $\Delta M_W/M_W$ =0.015%
 - top quark mass: $\Delta m_{top}/m_{top}=0.29\%$
 - HL-LHC should improve by ~factor 2
 - Factor ~10 expected from future e+e- colliders
- Interesting anomalies in lepton flavour aspects of B-meson decays
- Standard Model works very well!
 - Tomorrow: Higgs boson, flavor and direct searches

Backup Slides

Technical Challenges in Energy-Frontier Colliders proposed

		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Cost-estimate Value* [Billion]	B M	E: [MV/m] (GHz)	Major Challenges in Technology
С	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee) [BCHF]	~ 16		High-field SC magnet (SCM) - <u>Nb3Sn</u> : Jc and Mechanical stress Energy management
C hh	SPPC	(to be filled)	75 – 120	TBD	TBD	TBD	12 - 24		High-field SCM - <u>IBS</u> : Jcc and mech. stress Energy management
С	FCC- ee	CDR	0.18 - 0.37	460 – 31	260 – 350	10.5 +1.1 [BCHF]		10 – 20 (0.4 - 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
ee	CEPC	CDR	0.046 - 0.24 (0.37)	32~ 5	150 – 270	5 [B\$]		20 – (40) (0.65)	High-Q SRF cavity at < GHz, LG Nb-bulk/Thin- film Synchrotron Radiation constraint High-precision Low-field magnet
L	ILC	TDR update	0.25 (-1)	1.35 (- 4.9)	129 (- 300)	4.8- 5.3 (for 0.25 TeV) [BILCU]		31.5 – (45) (1.3)	High-G and high-Q SRF cavity at GHz, Nb-bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
ee	CLIC	CDR	0.38 (- 3)	1.5 (- 6)	160 (- 580)	5.9 (for 0.38 TeV) [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization. timing

A. Yamamoto, 190513b

*Cost estimates are commonly for "Value" (material) only.

ee and pp colliders:

Personal (A. Yamamoto) View on Relative Timelines

Timeline	~ 5	~ 10) ~ 15	~ 20	~ 25	~ 30	~ 35		
Lepton Colliders									
SRF-LC/CC	Proto/pre- series Construction			Oper	ation	Upgrade			
NRF-LC	Proto/pre-se	eries Con	struction	Oper	Operation		rade		
Hadron Collider (CC)									
8~(11)T NbTi /(Nb3Sn)	Proto/pre- series	Constru	iction		Operatio	on	Upgrade		
12~14T Nb ₃ Sn	Short-model R&D Proto/Pre-series			s Cons	truction	Oper	Operation		
14∼16T <mark>Nb₃Sn</mark>	Short	model R&[)	Prototype/Pre-series Construction					
Note: LHC experience: NbTi (10 T) R&D started in 1980's> (8.3 T) Production started in late 1990's, in ~ 15 years									
A Vamamoto 190512h							18		

pp collider schedule depends critically on progress in high field magnet R&D

Further (Far?) Future

Very interesting R&D projects

- Muon collider:
 - from proton beam (rcooling success: MICE)
 - from e+e- production (LEMMA)
- Plasma wakefield acceleration:
 - High gradients possible: ~100 GV/m
 - R&D progressing well but many challenges

Muon-based technology represents a unique opportunity for the future of high energy physics research: the multi-TeV energy domain exploration.

EuPRAXIA

Horizon 2020 EU design study funded in 2015. Deliverable: Conceptual Design Report by Oct 2019

The EuPRAXIA Strategy for Accelerator Innovation: The accelerator and application demonstration facility EuPRAXIA is the required intermediate step between proof of principle and production facility.

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	-
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	-
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

LHC power: 150 MW

of "largely" improved H couplings (EFT)

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
	CLIC380	9	6	4	7
Initial	FCC-ee240	10	8	3	9
run	CEPC	10	8	3	10
	ILC250	10	7	3	11
	FCC-ee365	10	8	6	15
2 nd /3rd	CLIC1500	10	7	7	17
Run ee	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

13 quantities in total NB: number of seconds/year differs: ILC 1.6x10⁷, FCC-ee & CLIC: 1.2x10⁷, CEPC: 1.3x10⁷