

au_{B} and $ar{B}^{0}-B^{0}$ mixing results from early Belle II data

Flavour Physics and CP Violation (FPCP 2019)

Jakub Kandra on behalf of the Belle II collaboration

Victoria, Canada, May 6-10

Introduction to au_B and $ar{B}^0 - B^0$ mixing measurements

Belle II and vertex detector

IMPORTANCE OF THE DETECTOR ALIGNMENT

RESULTS FROM COMMISSIONING RUN

EXPERIENCES USING EARLY DATA

FUTURE ANALYSIS PLANS

SUMMARY

τ_B MEASUREMENT

 $P(\Delta t) = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B}$

- Separated for $au_{B^0/ar{B}^0}$ and au_{B^\pm}
- Ratio $\frac{\tau_{B^{\pm}}}{\tau_{\overline{B}^0/B^0}}$

BELLE-BABAR RESULTS

- $\tau_{B^0} = 1.530 \pm 0.005 \pm 0.009 \text{ ps}$
- $\tau_{B^{\pm}} = 1.640 \pm 0.010 \pm 0.010$ ps
- $\tau_{B^{\pm}}/\tau_{B^0} = 1.068 \pm 0.009 \pm 0.007$
- $\Delta m_d = 0.508 \pm 0.003 \pm 0.003 \text{ ps}^{-1}$
- First uncertainty is statistical.
- Second uncertainty is systematic.

- $ar{B}^0-B^0$ mixing measurement
 - Neglecting CP Violation:

$$P_{B^0\bar{B}^0\to B^0\bar{B}^0}(\Delta t) = P_+(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + \cos\left(\Delta m_d \Delta t\right)\right]$$

$$P_{B^0\bar{B}^0\to B^0B^0/\bar{B}^0\bar{B}^0}(\Delta t) = P_{-}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 - \cos\left(\frac{\Delta m_d \Delta t}{2}\right)\right]$$

Belle and Belle II comparison $\Delta t = \frac{\Delta z}{\langle \beta \gamma \rangle c}$

- Δz is distance between B_{tag} and B_{rec}
- $\langle \Delta z \rangle_{Belle} \sim 200 \ \mu m$
- $\langle \Delta z \rangle_{Belle~II} \sim 130~\mu m$

Belle II detector

More at Friday's talk about "Belle II and SuperKEKB status and progress" by Hulya Atmacan

VERTEX DETECTOR (PIXEL & STRIP DETECTOR)

active area - 250 nv

witcherB

32 channels

gate/clear)

(digital

processing)

2 mm / 420 µm rigid frame

differential data

*PXD Layer 2 is not complete, but full pixel detector will be used after replacement in 2020.

IMPORTANCE OF THE DETECTOR ALIGNMENT

- Alignment important for time-dependent analysis

ALIGNMENT AND CALIBRATION TASKS

- 1) Precisely determine alignment and calibration constants.
- 2) Validate and monitor alignment constants and uncertainties.

ALIGNMENT RESULTS & VALIDATION @ COMMISSIONING RUN

Alignment results & validation @ Commissioning run 🍊

EXPERIENCES USING EARLY DATA

Schematic view

Overlapping sensors in layer in details

Monitor χ^2 invariant modes

- Tracks pass overlapping ladders in layers
- Residuals differences in u and v coordinates
- Possible to use cosmic, collision or background tracks
- Possibility to estimate systematic error

EXAMPLE FROM DATA

- \bullet More than $4\cdot 10^6$ cosmic tracks without magnetic field
- PXD and slanted SVD sensors are at nominal position.
- SVD barrel sensors are affected by radial expansion.

Systematic movements of SVD barrel sensors in radial direction about 100 μ m.

- \Rightarrow Possibility to improve alignment procedure.
- \Rightarrow Possibility to update resolution function.

FUTURE ANALYSIS PLANS: SEMILEPTONIC B DECAYS

FULLY INCLUSIVE (TWO LEPTONS IN EVENT)

- + Highest statistics
- No way to enrich the sample in B^+/B^0
- Modelling of background might not be trivial
- Full reconstruction of $B o D^{(*)} \; l \,
 u$
 - + Can separate B⁺ from B⁰
 - + Better control of background
 - Significantly lower efficiencies
- Partial reconstruction of $B \to D^{*-} (\to \bar{D}^0 \; \pi_{\rm soft}^-) \; l^+ \; \nu$
 - + Better efficiency
 - $+ D^*$ momentum is interred from π_{soft} momentum
 - Higher background

MONTE CARLO STUDIES

SUMMARY

- ► Belle II detector was commissioned.
- ► Partial vertex detector was successfully installed.
- ► Full vertex detector installation is planned in 2020.
- ► Sophisticated alignment procedure was applied.
- ► Alignment results are precise and stable.
- τ_B and $\bar{B}^0 B^0$ mixing measurements will be performed on the dataset taken until this July

- 7/5 Stefano Lacaprara: First look at time-dependent CP violation using early Belle II data
- 7/5 Niharika Rout: Measurement of the CKM angle γ with Belle II
- 7/5 Justin Tan: Early physics prospects for radiative and electroweak penguin decays at Belle II
- 7/5 **David Perez**: Prospects for τ lepton physics at Belle II
- 8/5 Markus Prim: Semileptonic and leptonic B decay results from early Belle II data
- 9/5 Chris Hearty: Dark Sector Physics with Belle II
- 9/5 Jake Bennett: Exotic Quarkonium Physics Prospects at Belle II
- 9/5 Hikari Hirata: Sensitivity to X(3872) total width at the Belle II experiment
- 10/5 Hulya Atmacan: Belle II and SuperKEKB status and progress

BACKUP: COMMISSIONING RUN

Belle II commissioning run means Phase 2 in Belle II jargon. There was used full Belle II external detector with internal background detector (VXD samples shown in slide 4). Collisions were provided with full superconducting final focusing.

BACKUP: PHYSICS RESULTS @ COMMISSIONING RUN

We collect more than 500 B meson candidates in hadronic and leptonic decay channels at 500 pb⁻¹. 15/12

BACKUP: FUTURE ANALYSIS PLANS

- τ_B and $\bar{B}^0 - B^0$ mixing measurements using hadronic and semileptonic decays.

HADRONIC B DECAYS

- Testing standard analysis technique with low statistics.
- Possibility to use full event interpretation machinery to select our samples.
- Tag Vertex reconstruction and Flavor Tagger can be performed (commissioned).

SEMILEPTONIC B DECAYS

- Analysis technique is not standard but simpler.
- + High momentum leptons provides high purity and large branching fractions of B \rightarrow X l ν for e, μ
- The B decay vertices can be found as intersection of lepton tracks with beamspot

SEVERAL APPROACHES

- Fully inclusive (two leptons in event)
- Reconstruction high momentum lepton + $B \rightarrow D^{(*)} l \nu$
- Reconstruction two $B \rightarrow D^{(*)} l \nu$

Analysis strategy is based on the signal side B candidate, the tag side of B and displaced open-charmed particles.

- Based on "The Physics of the B Factories" [Eur. Phys. J. C (2014) 74:3026]

Systematic uncertainty of au_B measurement

- Δt resolution
- Δt background
- Vertex detector alignment
- Vertex reconstruction
- Low Monte Carlo statistics

Systematic uncertainty of $ar{B}^0-B^0$ mixing measurement

- τ_B measurement
- Δt resolution
- Δt background
- Vertex detector alignment
- Vertex reconstruction
- Low Monte Carlo statistics