ATLAS Measurements of CP Violation and Rare Decays in Beauty Mesons

noiterodelloa

Wolfgang Walkowiak University of Siegen

Conference on Flavor Physics and CP Violation 2 Victoria, BC, Canada

May 6th - May 10th

A

PHYSICS

TERA

SCALE

Helmholtz Alliance

Center for

Siegen

Particle Physics

AT THE

Federal Ministry of Education and Research

SPONSORED BY THE

New Physics beyond the Standard Model in B meson decays:

Branching fractions in rare decays:

 $B_s{}^0 \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \, and \, B^0 \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

- ATLAS result with 36.2 fb⁻¹ (effectively 26.3 fb⁻¹) of 13 TeV LHC data (Run 2, 2015-2016)
 + combination with 25 fb⁻¹ of 7-8 TeV LHC data (Run 1) [JHEP04 (2019) 098]
- CP violation parameters ϕ_s and $\Delta\Gamma_s$

 $B_s{}^0\to J/\psi\,\phi$

ATLAS result with 80.5 fb⁻¹ of 13 TeV LHC data (Run 2, 2015-2017)
 + combination with 19.2 fb⁻¹ of 7-8 TeV LHC data (Run 1)

[ATLAS-CONF-2019-009]

Prospects at the HL-LHC:

- $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ [ATL-PHYS-PUB-2018-005]
- $B_s^0 \rightarrow J/\psi \phi$ [ATL-PHYS-PUB-2018-041]

ATLAS B Physics Triggers

Mostly based on di-muon triggers

- $B_s^{\ 0} \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ analysis (Run 2, 2015-2016)
 - two muons with $p_{T,1}$ > 6 GeV, $p_{T,2}$ > 4 GeV in $|\eta|$ < 2.5,
 - 4 GeV < $m_{\mu\mu}$ < 8.5 GeV, L_{xv} > 0 (2016)
- $B_s^{\ 0} \rightarrow J/\psi \phi$ analysis (Run 2, 2015-2017)
 - $J/\psi \rightarrow \mu^+\mu^-$ decays with μ -p_T thresholds of either 4 GeV or 6 GeV (combination of multiple triggers)

$B_s^{\ 0} \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$

Wolfgang Walkowiak - University of Siegen:

Red 2007h

 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} - \text{Run 1}$

 $BR(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-})$ w.r.t. $BR(B^{\pm} \rightarrow J/\psi K^{\pm})$

Sensitive to New Physics in decay via loop diagrams

Run 1 result:

- BR(B⁰_s → $\mu^{+}\mu^{-}$) = (0.9 ^{+1.1}_{-0.8}) x 10⁻⁹
- BR(B⁰ → $\mu^+\mu^-$) < 4.2 x 10⁻¹⁰ at 95% CL
- Compatible with SM at ~ 2σ
- Lower in both BR compared to CMS&LHCb Run 1 combined
- Tension in B⁰ reduced with LHCb Run 2 measurement

BR(B⁰ $\rightarrow \mu^+\mu^-$) < 3.4 x 10⁻¹⁰ at 95% CL [PRL 118 (2017) 191801]

Combinatorial (b $\rightarrow \mu X$)x(bbar $\rightarrow \mu X$) pairs

- 15-variable BDT to reject dominant background
- Trained and tested on data sidebands and simulated signal events

Partially reconstructed ($b \rightarrow \mu \mu X$)

Real di-muons at low m_{in}

 $B \rightarrow \mu\mu X$, $B \rightarrow c\mu X \rightarrow s(d)\mu\mu X$, $B_c \rightarrow J/\psi \mu\nu$

Semi-leptonic decays ($B_{(s)}/\Lambda_b^0 \rightarrow h\mu\nu$, h = π ,K,p)

Wolfgang Walkowiak – University of Siegen

FPCP 2019, 2019-05-09 p. 6

 $B_s^0 \rightarrow \mu^+ \mu^- MC$

 10^{6}

10⁵

 10^{4}

 10^{3}

 10^{2}

10

-1

Continuum bkg MC

-0.8 -0.6 -0.4 -0.2

data mass sidebands

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 26.3 \text{ fb}^{-1}$

0.2

0

0.4

0.6

- $B \rightarrow hh'$ (h = π^{\pm} , K[±])
- Superimposed to signal
- Small contribution
- Studied with MC
- Validated in data control regions
- Fake rates with "tight" μ selection:
 - π: 0.1%
 - ♦ K: 0.08%
 - ◆ p: < 0.01%</p>
 - reduces mis-ID by 0.39²
 - in SR: 2.9 ± 2.0 events

Limited mass resolution:

- Overlap of B⁰_s and B⁰ peaks
- statistically separated by fit

$\mathbb{R}^{\circ}_{(s)} \to \mu^{+}\mu^{-} - Normalization Channel$

 $B^{\pm} \rightarrow J/\psi K^{\pm}$ yield: 70000 unbinned ML fit to m J/wK 60000 50000 Efficiency relative to $B^0_{(s)} \rightarrow \mu^+ \mu^-$: 40000 30000 Extracted from MC 20000 10000 Fiducial volume: $p_{T}(B) > 8 \text{ GeV}, |\eta_{B}| < 2.5$ Pull Data-MC discrepancies \rightarrow systematic uncertainties Effective B⁰ lifetime Events / 0.01 25000 20000 \rightarrow 2.7% correction R_a uncertainties Contribution [%] Source 0.8Statistical 15000 **BDT** input variables 3.2 10000 Kaon tracking efficiency 1.5 5000 Muon trigger and reconstruction 1.0Kinematic reweighting (DDW) 0.8 1.4 Pile-up reweighting 0.6 0.8 0.6 $R_{\epsilon} = \epsilon_{J/\nu\kappa}/\epsilon_{\mu\mu} = 0.1176 \pm 0.0009 \text{ (sys)} \pm 0.0047 \text{ (stat)}$

 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ – Signal Yield

Unbinned ML fit to m_{uu} in 4 BDT bins

- Signals and B → hh'
 3 double-Gaussians with common mean
- Combinatorial background 1^{rst} order polynomial
- b → $\mu\mu$ X, exponential
- Semi-leptonic background absorbed in exponential

Extracted yields:

• $N_s = 80 \pm 22$ $N_d = -12 \pm 20$

Consistent with SM expectations:

N_s = 91
N_d = 10

Branching fraction (Neyman construction): $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.21^{+0.96+0.49}_{-0.91-0.30}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10}$ @ 95% CL

[JHEP04 (2019) 098]

data-driven shape

parameters and

normalizations

FPCP 2019, 2019-05-09 p. 9

Wolfgang Walkowiak - University of Siegen

$\mathsf{B}_{(s)}$ $\rightarrow \mu^{+}\mu^{-}$ – Results: Run 2 and Combination

Run 2 (2015/16) only

Run 1 + Run 2 (2015/16)

- BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}) = (3.2^{+1.1}_{-1.0}) \times 10^{-9}$
- BR(B⁰ → $\mu^+\mu^-$) < 4.3 x 10⁻¹⁰ at 95% CL

■ BR(B⁰_s →
$$\mu^{+}\mu^{-}$$
) = (2.8 ^{+0.8}_{-0.7}) x 10⁻⁹

■ BR(B⁰ →
$$\mu^{+}\mu^{-}$$
) < 2.1 x 10⁻¹⁰ at 95% CL

Compatible with SM at 2.4 σ

[JHEP04 (2019) 098]

CP Violation in $B_s^0 \rightarrow J/\psi \phi$

Wolfgang Walkowiak - University of Siegen

w 🚺

$f B_s^0 \rightarrow J/\psi \phi$: Run 2 B_s^0 Flavor Tagging

$\rightarrow J/\psi \phi$: Run 2 Unbinned ML Fit B_s^0

- Unbinned maximum likelihood fit: B⁰ properties
 - $m_i, \sigma_{mi}, t_i, \sigma_{ti}, p_{Ti}, p_i(B|Q_x)$
- transversity angles
 - $\Omega_{i} (\theta_{Ti}, \phi_{Ti}, \psi_{Ti})$
- signal parameters:

10

0

2

 $\phi_{s}, \Delta \Gamma_{s}, \Gamma_{s}, |A_{0}(0)|^{2}, |A_{\parallel}(0)|^{2},$ $\delta_{\parallel}, \delta_{\perp}, |A_{s}(0)|^{2}, \delta_{\perp} - \delta_{s}$

ATLAS Preliminary

√s = 13 TeV, 80.5 fb

[ATLAS-CONF-2019-009]

Data

- - Signal

proper decay

6

8

10

Proper Decay Time [ps]

12

14

time

- Total Fit

--- Background

- Prompt J/ψ

B

К^{. ф}

K⁺

K-

В

 $|/\psi|$

Wolfgang Walkowiak - University of Siegen

 $B_{s}^{0} \rightarrow J/\psi \phi$: ATLAS CPV Results (1)

Run 2 only (80.5 fb⁻¹):

Run 1 (19.2 fb⁻¹) & Run 2 (80.5 fb⁻¹):

 $\rightarrow J/\psi \phi$: ATLAS CPV Results (2)

ATLAS Run 1 & Run 2 combined (19.2 fb⁻¹ + 80.5 fb⁻¹)

Parameter	Value	Statistical	Systematic	s^{-1}
		uncertainty	uncertainty	$\Gamma_s[p]$
ϕ_s [rad]	-0.076	0.034	0.019	4
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$	0.068	0.004	0.003	
$\Gamma_s[\mathrm{ps}^{-1}]$	0.669	0.001	0.001	
$ A_{ }(0) ^2$	0.220	0.002	0.002	
$ A_0(0) ^2$	0.517	0.001	0.004	
$ A_{S} ^{2}$	0.043	0.004	0.004	
δ_{\perp} [rad]	3.075	0.096	0.091	
δ_{\parallel} [rad]	3.295	0.079	0.202	
$\delta_{\perp} - \delta_S$ [rad]	-0.216	0.037	0.010	

[ATLAS-CONF-2019-009]

- Consistent with results from CMS, LHCb and Standard Model
- Stringent single measurement of ϕ_s ,

 $\Delta\Gamma_{s}$, Γ_{s} and helicity function parameters

Still to add 60 fb⁻¹ of 2018 data

Ú

Comparison with CMS & LHCb:

[Preliminary HFLAV average, F. Dordei, CERN seminar 2019-05-07]

Preliminary HFLAV average: $\phi_s = -0.055 \pm 0.021 \text{ rad}$ $\Delta \Gamma_s = 0.0764^{+0.0034} \text{ ps}^{-1}$

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ and $B_{s}^{0} \rightarrow J/\psi \phi$ at the High-Luminosity LHC

$BR(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-})$ Prospects – HL-LHC (3 ab⁻¹)

All-Si Inner Tracker (ITk):

- improves:
 - B mass resolution σ_{mB}
 - proper time resolution σ_{t}

Pseudo-MC experiments

- Profile likelihood contours
- Based on Run 1 likelihood
 Dominant systematics:
- $\sigma(f_s/f_d) \sim 8.3\%$ "conservative"

ATLAS measurements of rare decays and CPV:

- $B_s^{\ 0} \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ with 36.2 fb⁻¹ of Run 2 data
 - Agrees with SM and other measurements
 - ♦ No sign for $B^0 → \mu^+ \mu^-$ in ATLAS data
 - Data taken in 2017 + 2018 still to be added (~107 fb⁻¹) [JHEP04 (2019) 098]
- CPV: ϕ_s and $\Delta \Gamma_s$ in $B_s^0 \rightarrow J/\psi \phi$ with 80.5 fb⁻¹ of Run 2 data
 - Single measurement precision comparable to LHCb
 - Reaching sensitivity to test SM prediction
 - Data taken in 2018 still to be added (~ 60 fb⁻¹) [ATLAS-CONF-2019-099]
- Both channels will profit from HL-LHC
 - Considerably increased statistics
 - Improved m_B resolution
 - Improved σ_t resolution
 - Promising to test SM [ATL-PHYS-PUB-2018-005, ATL-PHYS-PUB-2018-041]

Supporting Material

05-09

p. 21

 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} - \text{Run 1}$

 $\mathsf{BR}(\mathsf{B}_{\scriptscriptstyle(\mathsf{S})}^{0}\to\mu^{\scriptscriptstyle+}\mu^{\scriptscriptstyle-}) \text{ w.r.t. } \mathsf{BR}(\mathsf{B}^{\scriptscriptstyle\pm}\to\mathsf{J}/\psi\;\mathsf{K}^{\scriptscriptstyle\pm})$

 Sensitive to New Physics in decay via loop diagrams

Run 1 result:

- BR($B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$) = (0.9 ^{+1.1}_{-0.8})x10⁻⁹
- BR(B⁰ → $\mu^+\mu^-$) < 4.2x10⁻¹⁰ at 95% CL [Eur. Phys. J. C76 (2016) 513]

$$\mathbb{A}^{1}_{(s)} \to \mu^{+}\mu^{-} - Master Formula$$

Measurement w.r.t. $B^{\pm} \rightarrow J/\psi \ K^{\pm}$ with $J/\psi \rightarrow \mu^{+}\mu^{-}$

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+} \mu^{-}) = \frac{N_{d(s)}}{\varepsilon_{\mu^{+} \mu^{-}}} \times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-}) \right] \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{u}}{f_{d(s)}}$$
$$= N_{d(s)} \frac{\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-})}{\mathcal{D}_{\text{ref}}} \times \frac{f_{u}}{f_{d(s)}}, \qquad (1.1)$$

with

•
$$\mathcal{D}_{\mathrm{ref}} = N_{J/\psi K^+} \times (\varepsilon_{\mu^+\mu^-}/\varepsilon_{J/\psi K^+})$$

- $N_{d(s)}$: $B^0(s) \rightarrow \mu^+ \mu^-$ signal yields
- $N_{J/\psi K}$: $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference channel yield
- ϵ_{u+u}^{-} and $\epsilon_{J/\psi K}$: acceptance times efficiency
- $f_u/f_{d(s)}$: ratio of hadronization probabilities of b-quark into B[±] and B⁰_(s) = 0.256 ± 0.013 [PRD 98 (2018) 03001]

■ B(B⁺ → J/ ψ K⁺) x B(J/ ψ → $\mu^{+}\mu^{-}$) = (1.010 ± 0.029)x10-3 x (5.961 ± 0.033)% [PRD 98 (2018) 03001]

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} - BDT$ Input Variables

Variable	Description	
p_{T}^{B}	Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p_{T}}^{B}$.	
$\chi^2_{\rm PV,DV}{}_{xy}$	Compatibility of the separation $\overrightarrow{\Delta x}$ between production (i.e. associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_{T} \cdot \sum_{\overrightarrow{\Delta x}_{T}} \cdot \overrightarrow{\Delta x}_{T}$, where $\sum_{\overrightarrow{\Delta x}_{T}}$ is the covariance matrix.	
$\Delta R_{\mathrm{flight}}$	Three-dimensional angular distance between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + (\Delta \eta)^2}$	
$ \alpha_{2\mathrm{D}} $	Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$.	
L_{xy}	Projection of $\overrightarrow{\Delta x}_{T}$ along the direction of $\overrightarrow{p}_{T}^{B}$: $(\overrightarrow{\Delta x}_{T} \cdot \overrightarrow{p}_{T}^{B})/ \overrightarrow{p}_{T}^{B} $.	
$\mathrm{IP}^{\mathrm{3D}}_B$	Three-dimensional impact parameter of the B candidate to the associated PV.	
DOCA _{µµ}	Distance of closest approach (DOCA) of the two tracks forming the <i>B</i> candidate (three-dimensional).	
$\Delta \phi_{\mu\mu}$	Azimuthal angle between the momenta of the two tracks forming the B candidate.	
$ d_0 ^{\max}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the <i>B</i> candidate, in the transverse plane.	
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the <i>B</i> candidate, in the transverse plane.	
$P_{ m L}^{ m min}$	The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$.	
<i>I</i> _{0.7}	Isolation variable defined as ratio of $ \vec{p}_T^B $ to the sum of $ \vec{p}_T^B $ and the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum.	
DOCA _{xtrk}	DOCA of the closest additional track to the decay vertex of the <i>B</i> candidate. Only tracks matched to the same PV as the <i>B</i> candidate are considered.	
$N_{ m xtrk}^{ m close}$	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk DV}}) < 1$. Only tracks matched to the same PV as the <i>B</i> candidate are considered.	
$\chi^2_{\mu,\mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed in the event.	[JHEP04 (2019) 09

$$\mathbb{R}^{0}_{(s)} \to \mu^{+}\mu^{-}$$
 – Systematic Uncertainties

Expected uncertainties on BR(B⁰_(s) $\rightarrow \mu^{+}\mu^{-}$):

Source	B_{s}^{0} [%]	<i>B</i> ⁰ [%]
f_s/f_d	5.1	-
B^+ yield	4.8	4.8
R_{ε}	4.1	4.1
$\mathcal{B}(B^+ \to J/\psi \ K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)$	2.9	2.9
Fit systematic uncertainties	8.7	65
Stat. uncertainty (from likelihood est.)	27	150

[JHEP04 (2019) 098]

- Dominated by statistical uncertainties
- Main fit systematic uncertainties:
 - Mass scale uncertainty
 - \bullet Parametrization of the b $\to \mu^+\mu^- X$ background

$\mathcal{G}_{s}^{0} \rightarrow J/\psi \phi$: Run 2 Analysis Strategy

Signal in interference of B_s^{0} mixing and decay \rightarrow proper decay time and flavor tagging!

Proper decay time (t_i):

$$t = \frac{L_{xy} m_B}{p_{T_B}}$$

 $B_s^{0}/\overline{B_s^{0}}$ flavor at production

Three oppposite-side taggers (M_i)

Unbinned maximum likelihood fit using:

- B_s^0 properties m_i , σ_{mi} , t_i , σ_{ti} , p_{Ti} , $p_i(B|Q_x)$
- transversity angles Ω_{i} (θ_{Ti} , ϕ_{Ti} , ψ_{Ti})
- signal parameters: ϕ_s , $\Delta \Gamma_s$,
 - $\boldsymbol{\Gamma}_{s}, \, |\boldsymbol{A}_{0}(0)|^{2}, \, |\boldsymbol{A}_{\parallel}(0)|^{2}, \, \boldsymbol{\delta}_{\parallel}, \, \boldsymbol{\delta}_{\perp}, \, |\boldsymbol{A}_{s}(0)|^{2}, \, \boldsymbol{\delta}_{\perp} \text{-} \boldsymbol{\delta}_{s}$

[ATLAS-CONF-2019-009]

$\mathbb{G}_{s}^{0} \rightarrow J/\psi \phi$: Systematic Uncertainties

[ATLAS-CONF-2019-009]

Summary of systematic uncertainties assigned to physical parameters of interest

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
Tagging	1.7×10^{-2}	0.4×10^{-3}	0.3×10^{-3}	0.2×10^{-3}	0.2×10^{-3}	2.3×10^{-3}	1.9×10^{-2}	2.2×10^{-2}	2.2×10^{-3}
Acceptance	0.7×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.8×10^{-3}	0.7×10^{-3}	2.4×10^{-3}	3.3×10^{-2}	1.4×10^{-2}	2.6×10^{-3}
ID alignment	0.7×10^{-3}	0.1×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	$< 10^{-4}$	1.0×10^{-2}	7.2×10^{-3}	$< 10^{-4}$
<i>S</i> -wave phase	0.2×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.3×10^{-3}	$< 10^{-4}$	0.3×10^{-3}	1.1×10^{-2}	2.1×10^{-2}	8.3×10^{-3}
Background angles model:									
Choice of fit function	1.8×10^{-3}	0.8×10^{-3}	$< 10^{-4}$	1.4×10^{-3}	0.7×10^{-3}	0.2×10^{-3}	8.5×10^{-2}	1.9×10^{-1}	1.8×10^{-3}
Choice of $p_{\rm T}$ bins	1.3×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	0.4×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.5×10^{-3}	7.2×10^{-3}	1.0×10^{-3}
Choice of mass interval	0.4×10^{-3}	0.1×10^{-3}	0.1×10^{-3}	0.3×10^{-3}	0.3×10^{-3}	1.3×10^{-3}	4.4×10^{-3}	7.4×10^{-3}	2.3×10^{-3}
Dedicated backgrounds:									
B_d^0	2.3×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.2×10^{-3}	3.1×10^{-3}	1.4×10^{-3}	1.0×10^{-2}	2.3×10^{-2}	2.1×10^{-3}
Λ_b	1.6×10^{-3}	0.4×10^{-3}	0.2×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.8×10^{-3}	1.4×10^{-2}	2.9×10^{-2}	0.8×10^{-3}
Fit model:									
Time res. sig frac	1.4×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.5×10^{-3}	0.6×10^{-3}	0.6×10^{-3}	1.2×10^{-2}	3.0×10^{-2}	0.4×10^{-3}
Time res. $p_{\rm T}$ bins	3.3×10^{-3}	1.4×10^{-3}	0.1×10^{-2}	$< 10^{-4}$	$< 10^{-4}$	0.5×10^{-3}	6.2×10^{-3}	5.2×10^{-3}	1.1×10^{-3}
Total	1.8×10^{-2}	0.2×10^{-2}	0.1×10^{-2}	0.2×10^{-2}	0.4×10^{-2}	0.4×10^{-2}	9.7×10^{-2}	2.0×10^{-1}	0.1×10^{-1}

$\mathbb{R}^{0}_{s} \rightarrow J/\psi \phi$: Tagging Method Fractions

Fraction of events f_{+1} and f_{-1} with cone charges of +1 and -1, respectively, for signal and background events and for the different tag methods. The remaining fraction, $1 - f_{+1} - f_{-1}$, is the fraction of events from the continuous part of the distributions, and not explicitly shown in the table. Only statistical uncertainties are quoted.

Tag method	Sig	nal	Background		
	f_{+1} [%]	f_{-1} [%]	f_{+1} [%]	f_{-1} [%]	
Tight muon	6.9 ± 0.3	7.5 ± 0.3	4.7 ± 0.1	4.9 ± 0.1	
Electron	20 ± 1	19 ± 1	16.8 ± 0.2	17.3 ± 0.2	
Low- $p_{\rm T}$ muon	10.9 ± 0.5	11.7 ± 0.5	7.0 ± 0.1	7.6 ± 0.1	
Jet	4.51 ± 0.15	4.58 ± 0.16	3.76 ± 0.03	3.86 ± 0.03	

Relative fractions of signal and background events tagged using different tag methods. The efficiencies include both the continuous and the discrete contributions. Only statistical uncertainties are quoted.

Tag method	Signal efficiency [%]	Background efficiency [%]
Tight muon	4.00 ± 0.06	3.16 ± 0.01
Electron	1.87 ± 0.04	1.48 ± 0.01
Low- $p_{\rm T}$ muon	2.91 ± 0.05	2.64 ± 0.01
Jet	14.4 ± 0.1	11.96 ± 0.02
Untagged	76.7 ± 0.3	80.77 ± 0.05

$I = B_s^0 \rightarrow J/\psi \phi$: Correlations of Fit Parameters

[ATLAS-CONF-2019-009]

Fit correlations between the physical parameters of interest.

	$\Delta\Gamma$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	-0.111	0.038	0.000	-0.008	-0.015	0.019	-0.001	-0.011
ΔΓ	1	-0.563	0.092	0.097	0.042	0.036	0.011	0.009
Γ_s		1	-0.139	-0.040	0.103	-0.105	-0.041	0.016
$ A_{\parallel}(0) ^2$			1	-0.349	-0.216	0.571	0.223	-0.035
$ A_0(0) ^2$				1	0.299	-0.129	-0.056	0.051
$ A_{S}(0) ^{2}$					1	-0.408	-0.175	0.164
δ_{\parallel}						1	0.392	-0.041
δ_{\perp}							1	0.052

$f B_s^0 \rightarrow J/\psi \phi$: Results Overview ϕ_s

ϕ_{s} [rad]	Value	Stat. uncertainty	Syst. uncertainty	Reference
ATLAS Run 2 (80.5 fb ⁻¹)	-0.068	0.038	0.018	ATLAS-CONF-2019-009
ATLAS Run 1 (19.2 fb ⁻¹)	-0.090	0.078	0.041	JHEP 08 (2016) 147
ATLAS Run 1+Run 2 (19.2 + 80.5 fb ⁻¹)	-0.076	0.034	0.019	ATLAS-CONF-2019-009
Standard Model	-0.0363	+0.(-0.0	0016 0015	Phys. Rev. D 84 (2011) 033005
CMS Run 1 (19.7 fb ⁻¹)	-0.075	0.097	0.031	Phys. Lett B 757 (2016) 97
LHCb Run 1 ($B_s^0 \rightarrow J/\psi \phi$, 3.0 fb ⁻¹)	-0.058	0.049	0.006	Phys. Rev. Lett. 114 (2015) 041801
LHCb Run 1 ($B_s^0 \rightarrow \psi(2S) \phi$, 3.0 fb ⁻¹)	0.23	+0.29 -0.28	0.02	Phys. Lett B 762 (2016) 253
LHCb Run 2 ($B_s^0 \rightarrow J/\psi \pi^+ \pi^-$, 1.9 fb ⁻¹)	-0.057	0.060	0.011	arXiv:1903.05530
LHCb Run 2 ($B_s^0 \rightarrow J/\psi K^+K^-$, 1.9 fb ⁻¹)	-0.080	0.041	0.006	LHCB-PAPER-2019-013
LHCb Run 2 ($B_s^0 \rightarrow J/\psi K^+K^-, \pi^+\pi^-$ combined, 1.9 fb ⁻¹)	-0.040	0.0)25	LHCB-PAPER-2019-013 arXiv:1903.05530 Moriond: K. Govorkova

$\mathbb{G}_{s}^{0} \rightarrow J/\psi \phi$: Results Overview $\Delta\Gamma_{s}$

ΔΓ _s [ps ⁻¹]	Value	Stat. uncertainty Syst. uncerta		Reference
ATLAS Run 2 (80.5 fb ⁻¹)	0.067	0.005	0.002	ATLAS-CONF-2019-009
ATLAS Run 1 (19.2 fb ⁻¹)	0.085	0.011	0.007	JHEP 08 (2016) 147
ATLAS Run 1+Run 2 (19.2 + 80.5 fb ⁻¹)	0.068	0.004	0.003	ATLAS-CONF-2019-009
Standard Model	0.087	0.021		arXiv:1102.4274
CMS Run 1 (19.7 fb ⁻¹)	0.095	0.013	0.007	Phys. Lett. B 757 (2016) 97
LHCb Run 1 ($B_s^{0} \rightarrow J/\psi \phi$, 3.0 fb ⁻¹)	0.0805	0.0091	0.0032	Phys. Rev. Lett. 114 (2015) 041801
LHCb Run 1 ($B_s^{0} \rightarrow \psi(2S) \phi$, 3.0 fb ⁻¹)	0.066	+0.041 -0.044	0.007	Phys. Lett B 762 (2016) 253
LHCb Run 2 ($B_s^0 \rightarrow J/\psi K^+K^-$, 1.9 fb ⁻¹)	0.0772	0.0077	0.0026	LHCB-PAPER-2019-013
LHCb Run 2 ($B_s^{0} \rightarrow J/\psi K^+K^-, \pi^+\pi^-$ combined, 1.9 fb ⁻¹)	0.0813	0.0048		LHCB-PAPER-2019-013 arXiv:1903.05530 Moriond: K. Govorkova

LHC / HL-LHC Plan

[https://hilumilhcds.web.cern.ch/about/hl-lhc-project]

- HL-LHC parameters: [CERN-2017-007-M]
- Aim: > 10 x $\int Ldt$ of LHC \rightarrow 3 000 - 4 000 fb⁻¹
- Peak L_{inst} ~ 5 ... 7.5 x 10³⁴ cm⁻² s⁻¹
- <µ> = 140 ... 200 pp interactions, every 25 ns

ATLAS upgrades:

- Detector & trigger, esp. new all-Si Inner TracKer (ITK)
- improves
 - B mass resolution σ_{mB}
 - proper time resolution σ_{t}

HL-LHC Challenge

HL-LHC tī event in ATLAS ITK at <µ>=200

tt event in ATLAS ITk
<µ> = 200
p_⊤(tracks) > 1 GeV

12 cm

2.5 mm

ATLAS Upgrade Program

system	phase0 / run 2	phase 1 / run 3	phase 2 / run 4				
Pixel	IBL at R=34 mm, new cooling, new services		replaced by ITk pixel				
SCT			replaced by ITk strips				
TRT			decommissioned				
LAr	all new power supplies	new L1 trigger electronics	new readout electronics (input to L0Calo), 40 MHz streaming, High Granularity Timing Detector (HGTD)				
Tile	new low voltage power supplies		readout electronics, 40 MHz streaming, improved drawer mechanics, new HV power supplies				
RPC	gas leak repairs	BMG (sMDT) in acceptance gaps, BIS78 chambers between barrel and end-caps	new chambers in inner barrel				
TGC		New Small Wheel (sTGC + MicroMegas)	new front-end electronics, forward tagger (option)				
MDT			replace all front-end electronics				
Trigger	new L1Topo, upgraded CTP, partial FTK L2 + EF \rightarrow HLT	new FEX, full FTK, new muon-CTP interface HLT: multi-threading, offline-like algorithms	L0 (Calo, Muons) 1 MHz, 10 μs latency optional: L1 (L0 at 4 MHz, L1Track) 800 kHz, 35 μs latency				
DAQ	custom hard-/firmware	FELIX for some systems	FELIX for all systems				
	Wolfgang Walkowiak – University of Siegen [LHCC-I-023, CERN-LHCC-2015-020] FPCP 2019, 2019-05-09 p. 36						

Prospects for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ – Mass Separation

BR(B⁰_(s) $\rightarrow \mu^{+}\mu^{-}$) Prospects – Run 2 (130 fb⁻¹)

Signal statistics estimate:

- Based on Run 1 result
- Full Run 2 $\rightarrow \int L dt \sim 130 \text{ fb}^{-1}$
- $\sigma_{_{bb}}$: 8 TeV \rightarrow 13/14 TeV : factor ~1.7
- 2MU6 || MU6_MU4 topological triggers
- total: N_{Run2} ~ 7 x N_{Run1}

Pseudo-MC experiments

- 2D Neyman construction
- Based on Run 1 likelihood

Systematic uncertainties

- External:
 - f_s/f_d , BR(B[±] \rightarrow J/ ψ K[±]) \rightarrow keep as in Run 1
- \rightarrow keep as in R Internal:
 - fit shapes, efficiencies, ...
 - \rightarrow scale with statistics

FPCP 2019, 2019-05-09 p. 38

[ATL-PHYS-PUB-2018-005]

Uncertainties on BR($B_s^0 \rightarrow \mu^+ \mu^-$) and BR($B^0 \rightarrow \mu^+ \mu^-$): [ATL-PHYS-PUB-2018-005]

	$\mathcal{B}(B)$	$_{s}^{0} \rightarrow \mu^{+}\mu^{-})$	${\cal B}(B^0\to\mu^+\mu^-)$		
	stat $[10^{-10}]$	$stat + syst [10^{-10}]$	stat $[10^{-10}]$	$stat + syst [10^{-10}]$	
Run 2	$7 \mathrm{x} \mathrm{N}_{\mathrm{R1}}$ 7.0	8.3	1.42	1.43	
HL-LHC: Conservative	15x $\mathrm{N_{_{R1}}}3.2$	5.5	0.53	0.54	
HL-LHC: Intermediate	$60 \mathrm{x} \mathrm{N_{R1}} 1.9$	4.7	0.30	0.31	
HL-LHC: High-yield	75x $\mathrm{N_{R1}}1.8$	4.6	0.27	0.28	

CMS & LHCb combined (Run 1): [Nature 522 (2015) 68] • BR($B_s^0 \to \mu^+ \mu^-$) = 2.8^{+0.7}_{-0.6})x10⁻⁹, BR($B^0 \to \mu^+ \mu^-$) = (3.9^{+1.6}_{-1.4})x10⁻¹⁰ LHCb (2015+2016): • BR($B_s^0 \to \mu^+ \mu^-$) = 3.0 ± 0.6^{+0.3}_{-0.2})x10⁻⁹ [Phys. Rev. Let. 118 (2017) 191801]

$f = B_s^0 \rightarrow J/\psi \phi$ Pileup Stability for HL-LHC (3 ab⁻¹)

Dependence of the MC-true based proper decay time resolution (left) and bias of the the proper decay time reconstruction (right) of the $B_s^{\ 0} \rightarrow J/\psi \phi$ on the number of reconstructed primary vertices. All samples use 6 GeV muon p_τ cuts.

$B_{s}^{0} \rightarrow J/\psi \phi$ Tag Power for HL-LHC (3 ab⁻¹)

Dependence of the ϕ_s precision, δ_{ϕ_s} , on Tag Power (TP), for a broad range of TP values for each of the upgrade trigger threshold scenarios.

$$\mathbb{G}_{s}^{0} \rightarrow J/\psi \phi$$
 Predictions for HL-LHC (3 ab⁻¹)

Summary of $B_s^{\ 0} \rightarrow J/\psi$ performance for existing data and predictions for HL-LHC. The precision on ϕ_s is statistical only.

Period	$L_{\rm int}$ [fb ⁻¹]	$N_{ m sig}$	$f_{ m sig}$	Tag Power [%]	$\sigma(\tau)$ [ps]	$\delta_{\phi_s}^{\mathrm{stat}}$ [rad]	$\delta^{\mathrm{stat}}_{\Delta\Gamma_s} \mathrm{[ps^{-1}]}$
						measured	measured
						(extrapolated)	(extrapolated)
2012	14.3	73693	0.20	1.49	0.091	0.082	0.013
2011	4.9	22690	0.17	1.45	0.100	0.25 (0.22)	0.021 (0.023)
						$\delta_{\phi_s}^{\text{stat}}$ [rad]	
						extrapolated	
HL-LHC	3000						
Trigger µ6µ6		$9.72 \cdot 10^{6}$	0.17	1.49	0.048	0.004	0.0011
Trigger µ10µ6		$5.93 \cdot 10^{6}$	0.17	1.49	0.044	0.005	0.0014
Trigger µ10µ10		$1.75 \cdot 10^6$	0.15	1.49	0.038	0.009	0.003

[ATL-PHYS-PUB-2018-041]

$I = B_s^0 \rightarrow J/\psi \phi CPV Prospects - HL-LHC (3 ab^{-1})$

Experimental summary of the ϕ_s measurements with superimposed ATLAS HL-LHC extrapolations, including both the projected statistical and systematic uncertainties.

ATLAS Inner Tracker (ITk) Upgrade

New all-silicon detector:

- ITk pixel (13 m²):
 - 5 barrel, 5 EC layers (with rings)
 - Inclined sensors
 - Extends to η_{max} = 4.0 (2.5 now)
 - Innermost layer at 36 mm
 - ~ 580 M channels (80 M now)
- ITk strips (160 m²):
 - 4 barrel layers, 6 EC rings
 - ~ 50 M channels (6 M now)
 - Strip occupancy < 1%</p>

ITk material considerably less than current ID

- Improved tracking efficiency
- Better mass resolution

$\mathbb{G}_{s}^{0} \rightarrow J/\psi \phi$ Proper Time Resolution – Run 2

Insertable B Layer (IBL) added in Run 2:

- σ_{t} improves by ~ 30%
- Further improvement expected for ITk layout

Prospects for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ – Mass Separation

Dedicated $B_s^{\ 0} \rightarrow \mu^+\mu^-$ MC: • Run 2 conditions like 2015

- HL-LHC & HL-ATLAS:
 - ↓ L_{inst} = 7.5 x 10³⁴ cm²s⁻¹
 at 14 TeV CME
 <µ> = 200 pile-up events
 - ITk: inclined design, up to |η| < 4,
 50 x 50 μm² pixels

Candidate selection ~ Run 1

- B_s^{0} : oppositely charged μ^{\pm} ,
 - $p_{T}(\mu_{1,2}^{t}) > 5.5 \text{ GeV}$
- Two-track vertex fit
 m(B_s⁰) from ID/ITk-only tracks

[CERN-LHCC-2017-021, ATLAS-TDR-030]

ATLAS ID and ITk Material Budgets

[CERN-LHCC-2017-020, ATLAS-TDR-029]

Material budget of ITk is greatly reduced.

