

Time-dependent CP violation in B_s^0 decays at LHCb

Emmy Gabriel (University of Edinburgh) on behalf of the LHCb Collaboration FPCP May 6-10 2019

Victoria, Canada

Motivation

The Standard Model (SM) fails to explain the matter-antimatter difference observed in our universe. Looking for new sources of CP violation (CPV) can help explain this asymmetry.

 B_s^0 mixing provides a sensitive probe to new physics. Measurement of the CP violation phase, $\phi_s^{c\bar{c}s} = -2\beta_s$, allows for precision SM tests.

Motivation

- $\phi_s^{c\bar{c}s} = -2\beta_s$ measured in B_s^0 decays. Dependent on the CKM angle β_s .
- Analogous to CKM angle β in the B^0 system.

• Interference between mixing and decay allows measurements of ϕ_s .

- Run 1 + 2015 + 2016 data [3.2 fb⁻¹] [0.3 fb⁻¹] [1.6 fb⁻¹]
- Decay dominated by a penguin loop:
 - \rightarrow Enhanced sensitivity to New Physics

2015 + 2016 data
 [0.3 fb⁻¹] [1.6 fb⁻¹]

Two analyses on $B_s^0 \rightarrow J/\psi h^+ h^-$: • $h^+ h^- = K^+ K^-$ (ϕ mass region) [0.99, 1.05]GeV/ c^2 • $h^+ h^- = \pi^+ \pi^-$

What do we want to measure?

Time-dependent angular analysis used to disentangle CP-even and CP-odd final states.

Simultaneous fit to the decay-time and three helicity angles performed to extract the fit parameters.

Predictions and Status

 $B_s^0 \to \phi \phi$

$$B_s^0 \to J/\psi K^+ K^-$$

$$B_s^0 \to J/\psi \pi^+ \pi^-$$

SM predictions: $\phi_s^{s\bar{s}s}$ in context of QCD factorisation close to zero by SM, with errors of ~2%. arXiv:0810.0249 Phys.Rev.D80:114026,2009

Certain BSM scenarios allow for significant CPV in $b \rightarrow s\bar{s}s$ penguin decays. Phys.Lett. B493 (2000) 366-374 J.Phys.G32:835-848,2006 Phys.Lett.B671:256-262,2009 SM prediction: $\phi_s^{c\bar{c}s \text{ SM}} = -36.9^{+1.0}_{-0.7} \text{ [mrad]}$

Experimental status: <u>HFLAV 2018</u>

FPCP 2019, Victoria

- 1. Selection
- 2. Decay-time resolution
- 3. Angular selection efficiency
- 4. Decay-time efficiency
- 5. Flavour tagging

1. Selection

- 2. Decay-time resolution
- 3. Angular selection efficiency
- 4. Decay-time efficiency

5. Flavour tagging

Signal selection

 $B^0_s \to \phi \phi$ LHCb-PAPER-2019-019

Neural network trained to remove background.

 $B^0_s \to J/\psi K^+ K^-$ LHCb-PAPER-2019-013

 $B_s^0 \to J/\psi \pi^+ \pi^$ arXiv:1903.05530

Boosted decision tree trained to remove background events.

 $\Lambda_b^0 \rightarrow J/\psi p K$ background subtracted using negative weighted MC.

~117 000 signal events.

Wrong sign $(\pi^{\pm}\pi^{\pm})$ combination used to determine combinatorial background shape.

~8500 signal events.

Emmy Gabriel

 I 8000
 LHCb Preliminary

 I 6000
 — Total

 I 4000
 — Signal

 I 12000
 — Signal

 I 0000
 — Background

9

5400

5500

 $m(J/\psi K^+K^-)$ [MeV/ c^2]

5300

0

5200

~33 500 signal events.

- 1. Selection
- 2. Decay-time resolution
- 3. Angular selection efficiency
- 4. Decay-time efficiency
- 5. Flavour tagging

Decay-time resolution

Necessary to resolve the fast flavour oscillations induced by $B_s^0 - \bar{B_s^0}$ mixing.

Decay-time resolution of ~41-45 fs reached at LHCb.

- 1. Selection
- 2. Decay-time resolution
- 3. Angular selection efficiency
- 4. Decay-time efficiency
- 5. Flavour tagging

Angular efficiency

Need to account for non-uniform selection efficiency in decay angles as a result of detector acceptance and kinematic selection.

 Simulated events with same selection as data events to determine the efficiency correction.

• Similar procedure for $B_s^0 \rightarrow J/\psi h^+ h^-$ decays.

- 1. Selection
- 2. Decay-time resolution
- 3. Angular selection efficiency
- 4. Decay-time efficiency
- 5. Flavour tagging

Decay-time efficiency

 $B^0_s \to \phi \phi$ LHCb-PAPER-2019-019

Run 1: $B_s^0 \to D_s^- \pi^+$ Run 2: $B^0 \to J/\psi K^{*0}$

Different control samples used in Run 1 and Run 2 due to difference in the High Level Trigger (HLT). $B^{0}_{s} \to J/\psi\pi^{+}\pi^{-} \qquad B^{0}_{s} \to J/\psi K^{+}K^{-}_{\text{LHCb-PAPER-2019-013}}$

 $B^0 \to J/\psi K^{*0}$ used as control mode.

- 1. Selection
- 2. Decay-time resolution
- 3. Angular selection efficiency
- 4. Decay-time efficiency
- 5. Flavour tagging

- Aim: tag the flavour of the B meson at production.
- Precision of ϕ_s measurement scales with the tagging power.
- Tagging algorithms calibrated using modes with known flavour. E.g. $B^+ \to J/\psi K^+$, $B_s^0 \to D_s^- \pi^+$.

ε = tagging efficiencyD = dilution factor

Tagging power achieved:

 $B^0_s \to J/\psi \pi^+\pi^-$ arXiv:1903.05530

$$\epsilon D^2 = 5.06 \pm 0.38\%$$

 $B^0_s
ightarrow J/\psi K^+K^-$ LHCb-PAPER-2019-013

 $\epsilon D^2 = 4.73 \pm 0.34\%$

 $B^0_s \to \phi \phi$ Lhcd-paper-2019-019

 $\epsilon D^2 = 5.74 \pm 0.43\%$

- 1. Selection
- 2. Decay-time resolution
- 3. Angular selection efficiency
- 4. Decay-time efficiency
- 5. Flavour tagging

Fit projections

Simultaneous fit to decay time and helicity angles.

Total fit CP-even P-wave CP-odd P-wave S-wave combined with double S-wave

S-wave component stems from the $f^0(980)$ resonance (close to the $\phi(1020)$ in mass)

Simultaneous fit to decay time and helicity angles in 6 $m(K^+K^-)$ bins.

Fit projections $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

Simultaneous fit to decay time, helicity angles and $m(\pi^+\pi^-)$.

Results

 $B^0_s \to \phi \phi$ LHCb-PAPER-2019-019

Polarisation independent fit

 $\phi_s^{s\bar{s}s} = -0.073 \pm 0.115 \pm 0.027$ [rad] $|\lambda| = -0.99 \pm 0.05 \pm 0.01$

Most precise measurements to date in this decay mode. Measurements dominated by statistical error.

Results in agreement with SM predictions.

 $B^0_s o \phi \phi$ LHCb-PAPER-2019-019

Polarisation dependent fit

Assumptions (due to limited statistics):

- $\phi_{s,0}$ is CP conserving
- No direct CPV

$$\phi_{s,\parallel} = 0.014 \pm 0.055 \pm 0.011$$
 [rad]
 $\phi_{s,\perp} = 0.044 \pm 0.059 \pm 0.019$ [rad]

Stay tuned for update full Run 2 data result!

Results

Most precise single measurement of $\phi_s^{c\bar{c}s}$, $\Delta\Gamma_s$ and $\Gamma_s - \Gamma_d$.

All results are in agreement with SM predictions.

Emmy Gabriel

Combination

LHCb have performed many analyses measuring $\phi_s^{c\bar{c}s}$.

LHCb Run 1 analyses

 $\Delta \Gamma_s [\mathrm{ps}^{-1}]$ HFLAV D0 8 fb⁻¹ [1] $B^0_s \to \psi(2S)\phi$ PDG 2018 68% CL contours $(\Delta \log \mathcal{L} = 1.15)$ [2] $B_s^0 \to D_s^+ D_s^-$ 0.12 CMS 19.7 fb⁻¹ [3] $B_s^0 \rightarrow J/\psi K^+ K^-$ (high mass range) 0.10 ombined CDF 9.6 fb⁻¹ $[4] B^0_s \to J/\psi K^+ K^-$ 0.08 LHCb 3 fb⁻¹ $[5] B^0_s \to J/\psi \pi^+ \pi^-$ ATLAS 19.2 fb⁻¹ 0.06 -0.4 -0.2 -0.0 0.2 0.4

 $\phi_s^{c\bar{c}s}$ [rad]

Combination

LHCb have performed many analyses measuring $\phi_s^{c\bar{c}s}$.

Conclusion

- The latest CP violation measurements presented have made a tremendous improvement in the experimental precision.
- Currently LHCb is producing some of the world's most precise ϕ_s measurements.
- With the ongoing upgrade and more Run 2 data to analyse, the statistical precision of these measurements will increase further.

FPCP 2019, Victoria

Thank you for your attention. Questions?

FPCP 2019, Victoria

	$B^0_s ightarrow J/\psi K^+K^-$ Phys. Rev. Lett. 114, 041801	$B^0_s ightarrow J/\psi \pi^+\pi^-$ Phys. Lett. B736 (2014) 186			
	Run 1 results	Run 1 results			
Parameter	Value	$\phi_s = 70 \pm 68 \pm 8 \text{ mrad}$			
$ \frac{\Gamma_s \text{ (ps}^{-1})}{\Delta \Gamma_s \text{ (ps}^{-1})} \\ \frac{ A_{\perp} ^2}{ A_0 ^2} $	$\begin{array}{c} 0.6603 \pm 0.0027 \pm 0.0015 \\ 0.0805 \pm 0.0091 \pm 0.0032 \\ 0.2504 \pm 0.0049 \pm 0.0036 \\ 0.5241 \pm 0.0034 \pm 0.0067 \end{array}$	$ \lambda = 0.89 \pm 0.05 \pm 0.01$			
δ_{\parallel} (rad) δ_{\perp} (rad) ϕ_s (rad) $ \lambda $	$\begin{array}{c} 3.26^{+0.10+0.06}_{-0.17-0.07}\\ 3.08^{+0.14}_{-0.15}\pm 0.06\\ -0.058\pm 0.049\pm 0.006\\ 0.964\pm 0.019\pm 0.007\end{array}$				
$\Delta m_s \ (\mathrm{ps}^{-1})$	$17.711^{+0.055}_{-0.057} + 0.011$				

Emmy Gabriel

$B_s^0 \to \phi \phi$	
Phys. Rev. D 90, 052011	

Pup	1 roculto
NUT	TESULLS
Parameter	Best fit value
$\overline{\phi_s} \text{ (rad)}$	-0.17 ± 0.15
$ \lambda $	1.04 ± 0.07
$ A_{\perp} ^2$	0.305 ± 0.013
$ A_0 ^2$	0.364 ± 0.012
$\delta_1 \ (\mathrm{rad})$	0.13 ± 0.23
$\delta_2 \ (\mathrm{rad})$	2.67 ± 0.23
$\overline{\Gamma_s \text{ (ps}^{-1})}$	0.662 ± 0.006
$\Delta\Gamma_s \ (\mathrm{ps}^{-1})$	0.102 ± 0.012
$\Delta m_s \ (\mathrm{ps}^{-1})$	17.774 ± 0.024

Predictions arXiv:1309.2293

⁷ fb⁻¹ 50 fb⁻¹

	2003	2013	Stage I		Stage II	
$ V_{ud} $	0.9738 ± 0.0004	$0.97425 \pm 0 \pm 0.00022$	id		id	
$ V_{us} ~(K_{\ell 3})$	$0.2228 \pm 0.0039 \pm 0.0018$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id	
$ \epsilon_K $	$(2.282 \pm 0.017) \times 10^{-3}$	$(2.228 \pm 0.011) imes 10^{-3}$	id		id	
$\Delta m_d ~ [{ m ps}^{-1}]$	0.502 ± 0.006	0.507 ± 0.004	id		id	
$\Delta m_s ~[{ m ps}^{-1}]$	$> 14.5 \ [95\% \ { m CL}]$	17.768 ± 0.024	id		id	
$ V_{cb} imes 10^3 \ (b o c \ell \bar{ u})$	$41.6 \pm 0.58 \pm 0.8$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3	[17]
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.90 \pm 0.08 \pm 0.68$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08	[17]
$\sin 2eta$	0.726 ± 0.037	0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008	[17]
$\alpha \pmod{\pi}$	—	$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5\pm2)^\circ$	[17]	$(91.5\pm1)^\circ$	[17]
$\gamma \pmod{\pi}$	—	$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1\pm4)^\circ$	[17, 18]	$(67.1 \pm 1)^{\circ}$	[17, 18]
eta_s	—	$0.0065\substack{+0.0450\\-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004	[18]
$\mathcal{B}(B o au u) imes 10^4$	_	1.15 ± 0.23	0.83 ± 0.10	[17]	0.83 ± 0.05	[17]
$\mathcal{B}(B o \mu u) imes 10^7$	_		3.7 ± 0.9	[17]	3.7 ± 0.2	[17]
$A^d_{ m SL} imes 10^4$	10 ± 140	23 ± 26	-7 ± 15	[17]	-7 ± 10	[17]
$A_{ m SL}^s imes 10^4$	—	-22 ± 52	0.3 ± 6.0	[18]	0.3 ± 2.0	[18]
$ar{m}_c$	$1.2\pm0\pm0.2$	$1.286 \pm 0.013 \pm 0.040$	1.286 ± 0.020		1.286 ± 0.010	
$ar{m}_t$	167.0 ± 5.0	$165.8 \pm 0.54 \pm 0.72$	id		id	
$lpha_s(m_Z)$	$0.1172 \pm 0 \pm 0.0020$	$0.1184 \pm 0 \pm 0.0007$	id		id	
B_K	$0.86 \pm 0.06 \pm 0.14$	$0.7615 \pm 0.0026 \pm 0.0137$	0.774 ± 0.007	[19, 20]	0.774 ± 0.004	[19, 20]
${f_B}_s {\rm [GeV]}$	$0.217 \pm 0.012 \pm 0.011$	$0.2256 \pm 0.0012 \pm 0.0054$	0.232 ± 0.002	[19, 20]	0.232 ± 0.001	[19, 20]
B_{B_s}	1.37 ± 0.14	$1.326 \pm 0.016 \pm 0.040$	1.214 ± 0.060	[19, 20]	1.214 ± 0.010	[19, 20]
${f_B}_s/{f_B}_d$	$1.21 \pm 0.05 \pm 0.01$	$1.198 \pm 0.008 \pm 0.025$	1.205 ± 0.010	[19, 20]	1.205 ± 0.005	[19, 20]
B_{B_s}/B_{B_d}	1.00 ± 0.02	$1.036 \pm 0.013 \pm 0.023$	1.055 ± 0.010	[19, 20]	1.055 ± 0.005	[19, 20]
${ ilde B}_{B_{m{s}}}/{ ilde B}_{B_{m{d}}}$	—	$1.01\pm0\pm0.03$	1.03 ± 0.02		id	
$ ilde{B}_{B_{s}}$	_	$0.91 \pm 0.03 \pm 0.12$	0.87 ± 0.06		id	

Decay-time resolution

Run 1:
$$B_s^0 \to D_s^- \pi^+$$

Run 2: $B^0 \to J/\psi K^{*0}$

Different samples used in Run 1 and Run 2 due to difference in the Higher Level Trigger (HLT).

Want a decay-time unbiased control sample. Run 1: stripping line for control sample is BDT based (same bias as our decay). Run 2: completely decay-time unbiased stripping/trigger selection.

 $B^0_s \to \phi \phi$

LHCb-PAPER-2019-019

External Inputs

 B_s^0 decay width, Γ_s , and decay width difference, $\Delta\Gamma_s$, Gaussian constrained to values measured in Run 1 $B_s^0 \rightarrow J/\psi\phi$ and $B_s^0 \rightarrow J/\psi\pi\pi$ combination (arXiv:1411.3104).

With enough control over the decay time acceptance, the mode could also provide an important measurement of $\Delta\Gamma_s$.

External inputs of the B_s^0 oscillation frequency improves the accuracy of the measurement (arXiv:1304.4741).

Emmy Gabriel (UoE)

Approval to go to PAPER