Early physics prospects for radiative and electroweak penguin decays at Belle II

Justin Tan On behalf of the Belle II Collaboration

University of Melbourne, Belle II (Presented by Abi Soffer, Tel Aviv U.) FPCP 2019, May 6-10 2019

Flavor Physics

Precision flavor physics

Compare precise experimental measurements of observables in B decays with theoretical predictions; interpret discrepancies in terms of new physics.

- Look for indirect effects of heavy unknown particles in low energy observables of *B* mesons.
- b → s(d) transitions are flavor changing neutral currents, loop + CKM suppression:
 - ► Rare, challenging to observe.
 - Exceptionally sensitive to virtual NP contributions.

Figure 1: Radiative $b \rightarrow s\gamma$ (top) and electroweak $b \rightarrow s\ell^+\ell^-$ (bottom) penguins

• Incorporate NP effects by modification of couplings between light fields in in effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left(\sum_i \lambda_{\text{CKM}}^i C_i(\mu) Q_i(\mu) + \text{h.c.} \right)$$
(1)

- ► *C_i*: Wilson coefficients, encode high-energy contributions.
- ► *Q_i*: Local operators constructed from light fields.
- NP modifies Wilson coefficients:

$$C_i = C_i^{\rm SM} + C_i^{\rm NP} \tag{2}$$

- Operators relevant to $b \to s(d)\gamma$, $b \to s\ell\ell$: Q_7, Q_9, Q_{10} . Approximate mediator exchange with local point interaction.
- Combined fits to different experimental measurements \rightarrow model-independent constraints on $C_i \rightarrow$ constrain parameter space of NP models.

Data-Taking

- Target: $50 \times 10^9 e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ events by 2027.
- Large statistics \rightarrow high precision measurements of important penguin decay observables. $\mathcal{B}(b \to s\gamma), \mathcal{B}(b \to s\ell\ell), R_{Xs}$, etc.

Justin Tan

Analysis Strategies

Fully Inclusive

- Semi-leptonic tag: reconstruct *B*_{tag} in SL decay mode.
- Fully hadronic tag: reconstruct *B*_{tag} in hadronic decay mode.
- Low $\epsilon_{\rm SIG} \rightarrow$ statistically limited.
- Systematics from neutral hadrons faking photons.

Semi-Inclusive

- Reconstruct hadronic X in as many distinct final states as possible (\approx 40).
- Determine flavor, charge.
- Distinguish $b \rightarrow s$ and $b \rightarrow d$.
- Systematics from fragmentation + excluded final states.

$b ightarrow s(d) \gamma$

- Inclusive $B \rightarrow X_s \gamma$ theoretically and experimentally clean.
- $\mathcal{B}(B \to X_s \gamma)$ represents strongest constraint on NP in C_7 .
 - Percent-level precision achievable with full dataset.
- A_{CP} , ΔA_{CP} , Δ_{0+} expected to be determined to sub-percent precision with full dataset.

$b ightarrow s(d) \gamma$

- $b \rightarrow d\gamma$ transition largely experimentally untested, especially important.
 - Only accessible through sum-of-exclusives method.
 - Increase in luminosity → addition of previously missing high-multiplicity modes → reduced systematics.
 - Improved PID expected to significantly improve S/B.
- $\mathcal{B}(B \to X_d \gamma)$ expected to reach 14%.
- A_{CP} , Δ_{0+} expected $\approx 4\%$ precision.

reco. method	tagging	effi.	S/B	q	p_B	A_{CP}	Δ_{0+}	ΔA_{CP}
sum-of-exclusive	none	high	$\mathbf{moderate}$	s or d	yes	yes	yes	yes
fully-inclusive	had. ${\cal B}$	very low	very good	\boldsymbol{s} and \boldsymbol{d}	yes	\mathbf{yes}	yes	yes
	SL ${\cal B}$	very low	very good	\boldsymbol{s} and \boldsymbol{d}	no	\mathbf{yes}	yes	yes
	\mathbf{L}	moderate	good	\boldsymbol{s} and \boldsymbol{d}	no	\mathbf{yes}	no	no
	none	very high	very bad	\boldsymbol{s} and \boldsymbol{d}	no	no	no	no

$b \to s \ell \ell$

- Inclusive $B \to X_q \ell \ell$ analysis possible at Belle II.
 - Complement LHCb + cross-check exclusive $b \rightarrow q\ell\ell$ anomalies.
- Test lepton flavor universality via inclusive ratio R_{Xs}
 - Percent-level precision achievable with full dataset.
- mumu/ee ratio for the inclusive decay B—>Xsll
- Low radiation length in tracking volume \rightarrow very good e^+e^- resolution.

$b \to s \ell \ell$

- Complete angular analysis of b → sℓℓ possible at Belle II.
 - Initially semi-inclusive, fully-inclusive possible in long-term.
- Measurements of A_{FB} (2-3% precision) expected to tightly constrain C₉, C₁₀.
- Roughly same sensitivity to *B* → *K*^{*}ℓℓ channels as LHCb.
 - Independent verification of P'_5, R_K, R_{K*}.
 - Possible to confirm R_K anomaly with 20 ab⁻¹ of data at 5σ.

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab ⁻¹	Belle II 50 ab ⁻¹
R_K ([1.0, 6.0] GeV ²)	28%	11%	3.6%
$R_K \ (> 14.4 \text{GeV}^2)$	30%	12%	3.6%
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%
R_{K^*} (> 14.4 GeV ²)	24%	9.2%	2.8%
R_{X_s} ([1.0, 6.0] GeV ²)	32%	12%	4.0%
$R_{X_s} \ (> 14.4 {\rm GeV^2})$	28%	11%	3.4%

$B \to K^{(*)} \nu \bar{\nu}$

- Probe dark sector coupling and $b \rightarrow s$ transition.
 - Or any exotic final state with missing energy signature.
- Expected $\mathcal{B}_{K^{(*)}\nu\nu}$ sensitivity $\approx 10\%$ with 50 ab^{-1} .
- Clean environment \rightarrow identify signal peak in missing 4-momentum in CM frame, $E_{\text{miss}}^* + cp_{\text{miss}}^*$.

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${\rm Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${\rm Br}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
${ m Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	-	0.079
$F_I(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077

- Belle II uniquely positioned to measure important penguin observables to high precision.
- Clean environment at Belle II grants access to unique observables.
- Uncertainties mostly orthogonal to LHCb complementary analyses, independent verification.
- Strong model-independent constraints on NP through C_7 , C_9 , C_{10} with full 50 ab^{-1} target data sample.

	Prospects	Precision by 2022
$b ightarrow s(d) \gamma$	Improved Precision in $\mathcal{B}_{s\gamma}$ $(\mathcal{B}_{d\gamma})$	4% (20%)
$b ightarrow s\ell\ell$	Measure $R(X_s)(A_{FB})$	pprox 11% (8%)
$B o K^{(*)} \ell \ell$	Verify R_{K} (R_{K*}) anomalies	pprox 11%~(10%)
$b ightarrow K^{(*)} u u$	Observe if at expected SM rate	pprox 26%

Backup

$b \rightarrow s(d)\gamma$

Observables	Belle $0.71 \mathrm{ab^{-1}}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3% 2	0223.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.81%	0.63%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%
$A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.52%	0.19%
$A_{CP}(B^0 \to X_s^0 \gamma)_{\text{sum-of-ex}}$	1.8%	0.72%	0.26%
$A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$	1.8%	0.69%	0.25%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm lep-tag}$	4.0%	1.5%	0.48%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	8.0%	2.2%	0.70%
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.5%	0.98%	0.30%
$\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	16%	4.3%	1.3%
$Br(B \to X_d \gamma)_{sum-of-ex}$	30%	20%	14%
$\Delta_{0+}(B \to X_d \gamma)_{\text{sum-of-ex}}$	30%	11%	3.6%
$A_{CP}(B^+ \to X^+_{u\bar{d}}\gamma)_{\text{sum-of-ex}}$	42%	16%	5.1%
$A_{CP}(B^0 \to X^0_{d\bar{d}}\gamma)_{\text{sum-of-ex}}$	84%	32%	10%
$A_{CP}(B \to X_d \gamma)_{\text{sum-of-ex}}$	38%	14%	4.6%
$\Delta A_{CP}(B \to X_d \gamma)_{\text{sum-of-ex}}$	93%	36%	11%

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] {\rm GeV^2})$	26%	9.7~%	3.1~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9~%	2.6~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	21%	8.1~%	2.6~%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] {\rm GeV^2})$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] {\rm GeV}^2)$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	19%	7.3%	2.4%
$\Delta_{\rm CP}(A_{\rm FB}) \; ([1.0, 3.5] {\rm GeV^2})$	52%	19%	6.1%
$\Delta_{\rm CP}(A_{\rm FB})~([3.5, 6.0]{\rm GeV^2})$	42%	16%	5.2%
$\Delta_{\rm CP}(A_{\rm FB}) \ (> 14.4 \ {\rm GeV^2})$	38%	15%	4.8%

Figure 2: Belle II sensitivites to $b \rightarrow s\ell\ell$ observables subject to hadronic mass requirement $M_{Xs} < 2.0$ GeV.