Sensitivity to the X(3872) total width at the Belle II experiment

Hikari Hirata (Nagoya University) for the Belle II collaboration

FPCP 2019 University of Victoria, May 9th 2019

- One candidate of exotic hadrons.
 - It was discovered in B decay.

X(3872)

- One candidate of exotic hadrons.
 - It was discovered in **B decay.**

 $c\bar{c}$ component is included.

ho meson component (I=1) is dominant $ightarrow u\bar{u}/d\bar{d}$ is also included.

- Various decay modes are observed.
- M_{X(3872)} = 3871.69 ± 0.17 MeV/c²
 → Consistent with D⁰D̄^{*0} threshold within the error.

— J^{PC} = 1⁺⁺

 \rightarrow Support interpretation as pure $D\bar{D}^*$ molecule.

Counter evidence of pure molecule model

- Should be suppressed for a molecule.
 - → Consistent with cross section for pure $c\bar{c}$ state ($\chi_{c1}(2P)$). → $D\bar{D}^* - c\bar{c}$ mixture state?

4/12

- Need further information about production and decay.
 - \rightarrow Current X(3872) total width:

 $\Gamma_{\rm tot} < 1.2 {\rm ~MeV}$

We aim to measure significant X(3872) total width.

 \rightarrow Provides us partial widths for each decay mode.

$$\Gamma(X(3872) \to f) = \frac{\operatorname{Br}(B^{\pm} \to K^{\pm}X(3872)) \times \operatorname{Br}(X(3872) \to f)}{\operatorname{Br}(B^{\pm} \to K^{\pm}X(3872))} \times \Gamma_{\text{tot}}$$

Belle II experiment

• Goal of integrated luminosity:

50 $ab^{-1} = 25.5 \times 10^{10} B$ meson pairs (× 50 that of Belle).

Strategy for improvement of sensitivity

- Previous study (Phys. Rev. D 84, 052004 (2011))
 - Use $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ mode.
 - Fit signal component of mass spectrum with Breit-Wigner convoluted with mass resolution.

"Improvement of mass resolution is essential"

★ In general, decay mode with small Q-value has good mass resolution.

• However, the signal yield is too low to measure total width so far.

Strategy for improvement of sensitivity

- Previous study (Phys. Rev. D 84, 052004 (2011))
 - Use $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ mode.

Belle II is suitable for this measurement thanks to huge data sample.

In this presentation, <u>analysis overview</u> and <u>sensitivity of total width</u> with simulation will be shown.

▶ However, the signal yield is too low to measure total width so far.

Reconstruction and selection

Event selection

- For final state particle, PID, tracking (K^{\pm} , π^{\pm}) and cluster information (γ).
- For D⁰ and π^0 mesons, signal regions are selected, and mass-constrained fits are used.
- For B mesons, beam-energy-constrained mass and CMS energy difference.
- In order to reduce multiplicity of B candidates, best candidate selection is performed by selecting a candidate with minimum χ^2_{BCS} .

$$\chi^2_{BCS} = \left(\frac{\Delta M_{D^0}}{\sigma M_{D^0}}\right)^2 + \left(\frac{\Delta M_{\bar{D^0}}}{\sigma M_{\bar{D^0}}}\right)^2 + \left(\frac{\Delta M_{\pi^0}}{\sigma M_{\pi^0}}\right)^2 + \left(\frac{E_B - E_{\text{beam}}}{\sigma_{(E_B - E_{\text{beam}})}}\right)^2$$

 \rightarrow Compared with previous study ($J/\psi \pi^+\pi^-$ mode), Signal yields is around half, but the mass resolution is 3 times better.

 $D^0 \overline{D}{}^0 \pi^0$ mode provides a sample with the good mass resolution.

- Total width is extracted by fitting the mass spectrum.
- Check if the total width is obtained by the fit correctly.
 - → Linear relation between the total width generated in the simulation and that obtained by fit.

"Confirmed that there is no bias in the fit."

Sensitivity to total width of X(3872)

• Sensitivity is estimated with toy-MC samples.

With the full data sample of Belle II (50 ab⁻¹), total width with values up to
[90% C.L.] ~ 180 keV
[3σ significance] ~ 280 keV
[5σ significant] ~ 570 keV
can be measured.

- Belle II is capable of measuring total widths.
- Next, we need detailed study of the effect of mass resolution and background (shape and beam background)
 → Suppress systematics
 - \rightarrow Suppress systematics.

Conclusion

- In order to derive X(3872) partial widths for each decay mode, we aim at significant measurement of X(3872) total width.
- Sensitivity to the total width at Belle II is estimated by simulation
 - We used a sample with good mass resolution, $D^0 \overline{D}^0 \pi^0$ decay mode.
 → There is no bias in total width extraction.
 - With the full data sample of Belle II, it is possible to measure total width with $3\sigma(5\sigma)$ significance with values up to 280(570) keV.
- Next, we need detailed study of effect of mass resolution and background (shape and beam background).
- We also plan to measure precise mass spectrum to test possibility of cusp.

Stay tuned!

Thank you for your attention.

Partial width for $X(3872) \rightarrow J/\psi\gamma$

$$\Gamma(X(3872) \to J/\psi\gamma) = \Gamma_{tot} \times \underline{BR(X(3872) \to J/\psi\gamma)}_{< \sim 1\%} < 0.01 \times \Gamma_{tot}$$

If Γ_{tot} upper limit = 180 keV, $\Gamma(X(3872) \rightarrow J/\psi\gamma) < 18 \text{ keV}$

[1] S. Dubnicka, et. al., Phys. Rev. D 81, 114007 (2010)
[2] F. Aceti, et. al., Phys. Rev. D 86, 113007 (2012)
[3] Y. Dong, et. al, J. Phys. G: Null.Part. Pays. 38, 015001 (2011)

Partial width for $X(3872) \rightarrow J/\psi\gamma$

$$\Gamma(X(3872) \to J/\psi\gamma) = \Gamma_{tot} \times \underline{BR(X(3872) \to J/\psi\gamma)}_{< \sim 1\%} < 0.01 \times \Gamma_{tot}$$

If Γ_{tot} upper limit = 180 keV, $\Gamma(X(3872) \rightarrow J/\psi\gamma) < 18 \text{ keV}$

S. Dubnicka, et. al., Phys. Rev. D 81, 114007 (2010)
 F. Aceti, et. al., Phys. Rev. D 86, 113007 (2012)
 Y. Dong, et. al, J. Phys. G: Null.Part. Pays. 38, 015001 (2011)

$Br(B^{\pm} \rightarrow K^{\pm}X(3872))$ measurement

- With the full data sample of Belle II, it is possible to measure with 7σ significance (naive expectation).
- More realistic simulation is on going.

Statistical and systematic uncertainty

- Systematics ~ +200/-660 keV (Phys. Rev. D 96, 074014 (2017))
 - * Naive expectation from previous study of $D^0 \overline{D}^{*0}$ mode

• Statistical uncertainty

Summary table of total width sensitivity and statical error obtained by fit

Integrated Iumi. [ab-1]	3σ significance [keV]	Statistical error [keV]
10	1000	± 550
20	580	± 140
30	440	± 150
40	360	± 90
50	280	± 80

 With >20 ab⁻¹, systematic error become dominant → Make it suppress

Relation between mass resolution and Q value

- Consider a decay mode of particle A, $A \rightarrow bcd \cdots$
- Reconstructed mass M

$$M = \sqrt{\left(\sum_{i=bcd\cdots} E_i\right)^2 - \left(\sum_i \overrightarrow{P}_i\right)^2}$$

 \rightarrow Mass resolution σM can be derived as follows

$$\sigma M = \sqrt{\sum_{i} \left(\frac{\partial M}{\partial E_{i}}\right)^{2} (\sigma E_{i})^{2} + \sum_{i} \left(\frac{\partial M}{\partial P x_{i}}\right)^{2} (\sigma P x_{i})^{2} + \cdots}$$

$$\begin{cases} \frac{\partial M}{\partial E_i} = \frac{E_i}{M} \\ \frac{\partial M}{\partial Px_i} = \frac{Px_i}{M} \\ \vdots \end{cases}$$

For the smaller Q-value mode, E, Px_i , Py_i , Pz_i are smaller. \rightarrow Therefore, the mass resolution are small.

