

Institute for Theoretical Particle Physics

New Physics in $b \rightarrow c \tau \nu$: Impact of Polarisation Observables and $B_c \rightarrow \tau \nu$

M. Blanke, A. Crivellin, S. de Boer, T. Kitahara, M. Moscati, U. Nierste, I. Nišandžić

Based on Phys. Rev. D 99, 075006 | arXiv: 1811.09603

CONFERENCE ON FLAVOR PHYSICS AND CP VIOLATION, VICTORIA | May 2019

www.kit.edu

Motivation: the $R_{D^{(*)}}$ anomalies

Test of lepton flavour universality in $b
ightarrow c \ell
u$

$$R_{D^{(*)}} = \frac{\mathcal{BR}(B \to D^{(*)}\tau\nu)}{\mathcal{BR}(B \to D^{(*)}\ell\nu)}$$

- theoretically clean, since hadronic uncertainties largely cancel in ratio
- measured by BaBar, LHCb, Belle →2019: Semileptonic tagging [arXiv:1904.08794]
- $R_{\mu/e}$ agrees with SM \Rightarrow disagreement in τ -channel

Correlations between observables		Conclusions
000		0
	May 2019	2/12

Parametrisation of new physics

New physics lies above the scale m_B , so we can parametrise it in terms of four-fermion interactions

$$\begin{aligned} \mathcal{H}_{\text{eff}} =& 2\sqrt{2}G_F V_{\text{cb}}[(1+C_V^L)(\bar{c}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau}) + & \bullet \text{ no light } \nu_{\text{R}} \\ &+ C_S^R(\bar{c}P_Rb)(\bar{\tau}P_L\nu_{\tau}) + C_S^L(\bar{c}P_Lb)(\bar{\tau}P_L\nu_{\tau}) & \bullet \text{ NP in } \tau \text{ only} \\ &+ C_T(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau})] \end{aligned}$$

Procedure: perform a fit of the Wilson coefficients

- including all available data on the vertex $(\bar{c}\Gamma b)(\bar{\tau}\Gamma\nu_{\tau})$
- restricting to single-particle scenarios

One particle scenarios

$(C_V^L, C_S^L = -4C_T)$	Scalar Leptoquark S_1 , $SU(2)$ singlet
(C_S^R, C_S^L)	Charged Higgs
(C_V^L, C_S^R)	Vector Leptoquark U_1 , $SU(2)$ singlet
$C_S^L = 4 C_T$	Scalar Leptoquark S ₂ , SU(2) doublet

Introduction	New physics scenarios	Correlations between observables	Conclusions
0	00000	000	0
Marta Moscati, TTP, KIT	– New Physics in $b ightarrow c au u$	May 2019	4/12

$(\bar{c}\Gamma b)(\bar{\tau}\Gamma \nu_{\tau})$ – Fit

Observables available for the fit

• \mathcal{R}_D

• \mathcal{R}_{D^*}

•
$$au$$
 polarisation in $B \to D^*$:
 $P_{\tau}(D^*) = \frac{\Gamma(\tau^{\lambda=+1/2}) - \Gamma(\tau^{\lambda=-1/2})}{\Gamma(\tau^{\lambda=+1/2}) + \Gamma(\tau^{\lambda=-1/2})}$

•
$$D^*$$
 polarisation: $F_L(D^*) = \frac{\Gamma(D_L^*)}{\Gamma(D^*)}$

Predicted observables

•
$$P_{\tau}(D) = \frac{\Gamma(\tau^{\lambda=+1/2}) - \Gamma(\tau^{\lambda=-1/2})}{\Gamma(\tau^{\lambda=+1/2}) + \Gamma(\tau^{\lambda=-1/2})}$$

• $\mathcal{R}(\Lambda_c) = \frac{\mathrm{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathrm{BR}(\Lambda_b \to \Lambda_c \ell \nu)}$

B_c

 $BR(B_c \rightarrow \tau \nu)$ not measured. We perform the fit requiring

- BR($B_c \rightarrow \tau \nu$) < 10% [Akeroyd, Chen (2017)]
- BR($B_c \rightarrow \tau \nu$) < 30% [Alonso, Grinstein, Martin Camalich (2016)]
- BR($B_c \rightarrow \tau \nu$) < 60% [Conservative limit]

Introduction O New physics scenarios

Correlations between observables

Conclusions 0 5/12

Marta Moscati, TTP, KIT – New Physics in b
ightarrow c au
u

Fit results

Mediator	p-value (%)	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{\tau}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
Charged Higgs _{60%}	77.4	0.333 0.0 σ	0.299 +0.1 σ	0.54 -0.7 σ	-0.27 +0.2 <i>σ</i>	0.38	0.38
Charged Higgs _{30%}	29.9	0.348 +0.4 σ	0.280 -1.2 <i>σ</i>	0.51 -1.0 <i>σ</i>	-0.35 0.0 <i>σ</i>	0.41	0.37
Charged Higgs _{10%}	3.2	0.360 +0.8 σ	0.263 -2.2 <i>σ</i>	0.48 −1.4 <i>σ</i>	-0.44 -0.1 σ	0.43	0.36
Scalar LQ <i>S</i> _{2;60,30%}	25.0	0.333 0.0 σ	0.297 0.0 σ	0.45 -1.7 <i>σ</i>	-0.41 -0.1 σ	0.40	0.38
Scalar LQ S _{2;10%}	7.1	0.326 -0.2 σ	0.276 -1.4 <i>σ</i>	0.46 -1.6 <i>σ</i>	-0.44 -0.1 σ	0.38	0.36

Introduction	New physics scenarios	Correlations between observables	Conclusions
0	000000	000	0
Marta Moscati, TTF	, KIT – New Physics in $b \rightarrow c \tau \nu$	May 2019	6/12

Correlation: BR($B_c \rightarrow \tau \nu$) and $\mathcal{R}(D^{(*)})$

If the charged Higgs or the scalar LQ S_2 are responsible for the anomaly, we expect BR($B_c \to \tau \nu) > 10\%$

Mediator	p-value (%)	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{\tau}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
Charged Higgs	77.4	0.333	0.299	0.54	-0.27	0.38	0.38
		0.0 σ	$+0.1\sigma$	-0.7σ	$+0.2\sigma$		
Charged Higgs _{30%}	29.9	0.348	0.280	0.51	-0.35	0.41	0.37
	20.0	$+0.4 \sigma$	-1.2σ	-1.0σ	0.0 σ		
Charged Higgs	3.2	0.360	0.263	0.48	-0.44	0.43	0.36
Unarged mgg310%	0.2	$+0.8\sigma$	-2.2σ	-1.4σ	-0.1σ		
Scalar I O S	25.0	0.333	0.297	0.45	-0.41	0.40	0.38
Ocalal LQ 02;60,30%	20.0	0.0 σ	0.0 σ	-1.7σ	-0.1σ		
Scalar I O S	7 1	0.326	0.276	0.46	-0.44	0.38	0.36
Scalar L& 32;10%	7.1	-0.2σ	-1.4σ	-1.6σ	-0.1σ		

L.	i	-	-1	-	12	-	-
In							

New physics scenarios

Correlations between observables

Conclusions

Marta Moscati, TTP, KIT – New Physics in b
ightarrow c au
u

May 2019

7/12

Impact of $F_L(D^*)$

The current value of $F_L(D^*)$ favors the charged Higgs scenario

 $F_L(D^*) = 0.60 \pm 0.08 \pm 0.035$ [Belle, 2018]

Mediator	p-value (%)	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{\tau}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
Scalar LQ S ₁	31.5	0.327 -0.2 σ	0.300 +0.2 <i>σ</i>	0.47 -1.5 <i>σ</i>	-0.48 -0.2 <i>σ</i>	0.21	0.38
Charged Higgs _{60%}	77.4	0.333 0.0 σ	0.299 +0.1 σ	0.54 -0.7 σ	-0.27 +0.2 <i>σ</i>	0.38	0.38
Vector LQ U ₁	25.9	0.337 +0.1 σ	0.296 -0.1 σ	0.46 -1.6 <i>σ</i>	-0.50 -0.2 <i>σ</i>	0.29	0.38
Scalar LQ <i>S</i> _{2;60,30%}	25.0	0.333 0.0 σ	0.297 0.0 σ	0.45 -1.7 <i>σ</i>	-0.41 -0.1 σ	0.40	0.38

τ.					

Polarisation observables

0	000000	
Marta Moscati, TTP, KIT	– New Physics in $b \rightarrow c$	$\tau \nu$

orrelations between observab	oles	Conclusions
00		0
	May 2019	9/12

Polarisation observables

Polarisation observables distinguish new physics scenarios

Introduction	New physics scenarios	Correlations between observables		Conclusions
Marta Moscati, TTP, KIT – Ne	w Physics in $b \rightarrow c \tau \nu$	•00	May 2019	9/12

Correlation between $\mathcal{R}(\Lambda_c)$ and $\mathcal{R}(D^{(*)})$

Introduction O	New physics scenarios	Correlations between observables	Conclusions O
Marta Moscati, TTP, KIT – New Physics in $b ightarrow c au u$		May 2019	10/12

Correlation between $\mathcal{R}(\Lambda_c)$ and $\mathcal{R}(D^{(*)})$

Fitting the current $\mathcal{R}(D^{(*)})$ central values always implies an increase of $\mathcal{R}(\Lambda_c)$

Introduction	New physics scenarios	Correlations between observables	Conclusions
0	000000	000	0
Marta Moscati, TTP, KIT – New Physics in $b ightarrow c au u$			10/12

$\mathcal{R}(\Lambda_c)$ sum rule

The numerical expressions for $\mathcal{R}(\Lambda_c)$ and $\mathcal{R}(D^{(*)})$ lead to the sum rule

$$rac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\mathrm{SM}}(\Lambda_c)} = \ 0.262 rac{\mathcal{R}(D)}{\mathcal{R}_{\mathrm{SM}}(D)} + 0.738 rac{\mathcal{R}(D^*)}{\mathcal{R}^{\mathrm{SM}}(D^*)} + x$$

•
$$x \sim \mathcal{O}(0.1(\frac{\Lambda_{\text{EW}}}{\Lambda_{\text{NP}}})^2)$$

 heavy quark limit: R(Λ_c), R(D^(*)) correspond to the (same) branching ratios at the quark level

Standard Model

 $\mathcal{R}_{SM}(\Lambda_c) = 0.33 \pm 0.01$

[Detmold, Lehner, Meinel 2015]

 $\mathcal{R}_{\text{SM}}(\Lambda_c) = 0.324 \pm 0.004$

[Bernlochner, Ligeti, Robinson, Sutcliffe 2018]

New Physics

 $\mathcal{R}_{NP}(\Lambda_c) = 0.38 \pm 0.02 \pm 0.01$

May 2019

$\mathcal{R}(\Lambda_c)$ will serve as cross-check of the $\mathcal{R}(D^{(*)})$ measurements

Introduction		
0		

New physics scenarios

Correlations between observables

Conclusior 0 11/12

Marta Moscati, TTP, KIT – New Physics in b
ightarrow c au
u

Summary

- Update of the $b \rightarrow c \tau \nu$ fit, including $F_L(D^*)$ and new Belle data
- Analysis of correlations between observables:
 - BR($B_c \rightarrow \tau \nu$) and $\mathcal{R}(D^{(*)})$: charged Higgs and scalar Leptoquark S_2 predict BR($B_c \rightarrow \tau \nu$) > 10%
 - polarisation observables crucial in distinguishing new physics scenarios
 - $\mathcal{R}(\Lambda_c)$ will serve as cross-check of $\mathcal{R}(D^{(*)})$