

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Results from the CUORE experiment FPCP 2019, B. Schmidt 2019-05-09

Neutrinoless double beta decay

Implications/Motivation

- $\Delta L = 2$, i.e. lepton number violation
- Majorana mass contribution

Challenge

- Current competitive sensitivity $T_{1/2} > 10^{25 \sim 26}$ years
- Next generation $T_{1/2} > 10^{27 \sim 28}$ years

Candidate isotopes

 2vββ-isotopes with high Q-value: Even-even nuclei, where the single beta decay is forbidden or suppressed

Observable

• Line at the Q-value

Neutrinoless double beta decay light Majorana neutrino exchange

3

B. Schmidt FPCP 2019

$0\nu\beta\beta$ isotopes and sensitivity scaling

Isotope choice considerations:

The 11 experimentally considered candidate isotopes

4500 4000 3500 3000 ²¹⁴Bi ^oMo 208**T** ¹³⁰Te on 2500 ¹³⁶Xe ⁷⁶Ge 1500 1000 ¹²⁸Te 30 35 10 15 20 25 $\mathbf{0}$ Isotopic Abundance [atomic %]

high Q-value -> large phase space, typically low natural radioactivity backgrounds

good energy resolution or bg rejection techniques -> improve signal/background

large isotope mass/ abundance, cost effectiveness for scaling

Experimental sensitivity on $T_{1/2}$ with Bg

Cryogenic calorimeters in CUORE

$$\Delta T = \frac{E}{C}$$
$$R(T) = R_0 e^{\sqrt{T_0/T}}$$

Laboratori Nazionali del Gran Sasso

CUORE infrastructure

- At LNGS ~ 3600 m.w.e. •
- Pulse tube cooled (dry) fridge with • vibration dampening systems
- No particle ID -> careful material screening, lacksquaresmall amount of passive materials close to detectors (reduced amount of copper)
- Careful surface cleaning (plasma etching...), N₂ glove boxes for assembly
- more shielding ullet $35 \text{ cm Pb}, 18 \text{ cm PET} + 2 \text{ cm H}_{3}\text{BO}_{3}$ + 6 ton of lead < 4 K

CUORE detector

- At LNGS ~ 3600 m.w.e.
- Pulse tube cooled (dry) fridge with vibration dampening systems
- No particle ID -> careful material screening, small amount of passive materials close to detectors (reduced amount of copper)
- Careful surface cleaning (plasma etching...),
 N₂ glove boxes for assembly
- more shielding
 35 cm Pb, 18 cm PET + 2 cm H₃BO₃
 + 6 ton of lead < 4 K
- 742 kg of TeO₂, 206 kg of ¹³⁰Te
 19 towers, 4 columns, 13 floors (988 crystals)

CUORE detector optimization

First data taking campaign ($0v\beta\beta$ – **analysis**) Phys. Rev. Lett. 120, 132501 (2018) red:calibration, blue:bg, green:optimization, pink:test

Operational performance:

984/988 channels live Good performance channel, dataset pairs: 1811 (92% of live channels) (876 in DS1 + 935 in DS2)

CUORE data taking

Second data taking campaign since April 2018 ($2\nu\beta\beta$ analysis in preparation)

Fully recovered prev. operation performance At present taking physics data for new data release at TAUP 2019

..... BERKELEY LAE

CUORE analysis & performance

Efficiency after cuts:

	DATASET 1	DATASET 2
Trigger	(99.766 ± 0.003) %	(99.735 ± 0.004) %
Energy reconstruction	(99.168 ± 0.006) %	(99.218 ± 0.006) %
Base cuts	(95.63 ± 0.01) %	(96.69 ±0.01) %
Anti-coincidence	(99.4 ± 0.5) %	(100.0 ± 0.4) %
Pulse Shape Analysis	(91.1 ± 3.6) %	(98.2 ± 3.0) %
0vββ containment	$(88.345 \pm 0.085)\%$	
Total	(75.7 ± 3.0) %	(83.0 ± 2.6) %

Overall exposure weighted efficiency for $0\nu\beta\beta$ 80%

FWHM at 2615 keV in calibration data, exposure-weighted: 8.0 keV

CUORE results

..... **BERKELEY LAE**

CUPID - CUORE Upgrade with Particle ID

Thank you & stay tuned for

