Lattice QCD and current tensions in the Standard Model: $\left|V_{c b}\right|$ from $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ at non-zero recoil

Alejandro Vaquero

University of Utah

May $8^{\text {th }}, 2019$

On behalf of the Fermilab/MILC collaborations

The $V_{c b}$ matrix element: Tensions

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Determination	$\left\|V_{c b}\right\|\left(\cdot 10^{-3}\right)$
Exclusive	39.2 ± 0.7
Inclusive	42.2 ± 0.8
PDG 2016	

- Matrix must be unitary (preserve the norm)
- Based on CLN, motivated this work

The $V_{c b}$ matrix element: Measurement from exclusive

 processes$$
\underbrace{\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}_{\text {Experiment }}=\underbrace{\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{2}}\left(w^{2}-1\right)^{\frac{1}{2}} P(w)\left|\eta_{e w}\right|^{2}}_{\text {Known factors }} \underbrace{|\mathcal{F}(w)|^{2}}_{\text {Theory }}\left|V_{c b}\right|^{2}
$$

- The amplitude \mathcal{F} must be calculated in the theory
- Extremely difficult task, QCD is non-perturbative
- Can use effective theories (HQET) to say something about \mathcal{F}
- Separate light (non-perturbative) and heavy degrees of freedom as $m_{Q} \rightarrow \infty$
- $\lim _{m_{Q} \rightarrow \infty} \mathcal{F}(w)=\xi(w)$, which is the Isgur-Wise function
- We don't know what $\xi(w)$ looks like, but we know $\xi(1)=1$
- At large (but finite) mass $\mathcal{F}(w)$ receives corrections $O\left(\alpha_{s}, \frac{\Lambda_{Q C D}}{m_{Q}}\right)$
- Reduction in the phase space $\left(w^{2}-1\right)^{\frac{1}{2}}$ limits experimental results at $w \approx 1$
- Need to extrapolate $\left|V_{c b}\right|^{2}\left|\eta_{e w} \mathcal{F}(w)\right|^{2}$ to $w=1$
- This extrapolation is done using well established parametrizations

The $V_{c b}$ matrix element: The parametrization issue

All the parametrizations perform an expansion in the z parameter

$$
z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}
$$

- Boyd-Grinstein-Lebed (BGL)

$$
f_{X}(w)=\frac{1}{B_{f_{X}}(z) \phi_{f_{X}}(z)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

- $B_{f_{X}}$ Blaschke factors, includes contributions from the poles
- $\phi_{f_{X}}$ is called outer function and must be computed for each form factor
- Unitarity constrains $\sum_{n}\left|a_{n}\right|^{2} \leq 1$
- Caprini-Lellouch-Neubert (CLN)

$$
\mathcal{F}(w) \propto 1-\rho^{2} z+c z^{2}-d z^{3}, \quad \text { with } c=f_{c}(\rho), d=f_{d}(\rho)
$$

- Relies strongly on HQET, spin symmetry and (old) inputs
- Tightly constrains $\mathcal{F}(w)$: four independent parameters, one relevant at $w=1$

The $V_{c b}$ matrix element: The parametrization issue

- CLN + LCSR
- BGL + LCSR
- CLN seems to underestimate the slope at low recoil
- The BGL value of $\left|V_{c b}\right|$ is compatible with the inclusive one

$$
\left|V_{c b}\right|=41.7 \pm 2.0\left(\times 10^{-3}\right)
$$

From Phys. Lett. B769 (2017) 441-445 using Belle data from
arXiv:1702.01521 and the Fermilab/MILC'14 value at zero recoil

- Latest Belle dataset and Babar analysis seem to contradict this picture
- From Babar's paper arXiv:1903.10002 BGL is compatible with CLN and far from the inclusive value
- Belle's paper arXiv:1809.03290v3 finds similar results in its last revision
- The discrepancy inclusive-exclusive is not well understood
- Data at $w \gtrsim 1$ is urgently needed to settle the issue
- Experimental measurements perform badly at low recoil

We would benefit enormously from a high precision lattice calculation at $w_{\underline{\equiv}} \gtrsim 1$

The $V_{c b}$ matrix element: Tensions in lepton universality

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu_{\ell}\right)}
$$

- Current $\approx 4 \sigma$ tension with the SM

Introduction to Lattice QCD

$$
\mathcal{L}_{Q C D}=\sum_{f} \bar{\psi}_{f}\left(\gamma^{\mu} D_{\mu}+m_{f}\right) \psi_{f}+\frac{1}{4} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

- Discretize space-time in a computer
- Perform simulations approaching the physical limit
- Finite lattice spacing $a \rightarrow 0$
- Finite volume $L \rightarrow \infty$
- $m_{\pi} \rightarrow m_{\pi}^{\text {Phys }}, m_{Q} \rightarrow m_{Q}^{\text {Phys }}$
- Extrapolate to physical conditions
- Perform a systematic error analysis using EFTs
- Use the path integral formulation and montecarlo simulations

$$
Z=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A e^{-S}, \quad S=\int d^{4} x \mathcal{L}_{Q C D}(\bar{\psi}, \psi, A)
$$

Calculating $V_{c b}$ on the lattice: Formalism

- Form factors

$$
\begin{gathered}
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{V}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{1}{2} \epsilon^{\nu *} \varepsilon_{\rho \sigma}^{\mu \nu} v_{B}^{\rho} v_{D^{*}}^{\sigma} h_{V}(w) \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{A}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}= \\
\frac{i}{2} \epsilon^{\nu *}\left[g^{\mu \nu}(1+w) h_{A_{1}}(w)-v_{B}^{\nu}\left(v_{B}^{\mu} h_{A_{2}}(w)+v_{D^{*}}^{\mu} h_{A_{3}}(w)\right)\right]
\end{gathered}
$$

- \mathcal{V} and \mathcal{A} are the vector/axial currents in the continuum
- The h_{X} enter in the definition of \mathcal{F}
- We can calculate $h_{A_{1,2,3}, V}$ directly from the lattice

Calculating $V_{c b}$ on the lattice: Formalism

- Helicity amplitudes

$$
H_{ \pm}=\sqrt{m_{B} m_{D^{*}}}(w+1)\left(h_{A_{1}}(w) \mp \sqrt{\frac{w-1}{w+1}} h_{V}(w)\right)
$$

$$
H_{0}=\sqrt{m_{B} m_{D^{*}}}(w+1) m_{B}\left[(w-r) h_{A_{1}}(w)-(w-1)\left(r h_{A_{2}}(w)+h_{A_{3}}(w)\right)\right] / \sqrt{q^{2}}
$$

$$
H_{S}=\sqrt{\frac{w^{2}-1}{r\left(1+r^{2}-2 w r\right)}}\left[(1+w) h_{A_{1}}(w)+(w r-1) h_{A_{2}}(w)+(r-w) h_{A_{3}}(w)\right]
$$

- Form factor in terms of the helicity amplitudes

$$
\chi(w)|\mathcal{F}|^{2}=\frac{1-2 w r+r^{2}}{12 m_{B} m_{D^{*}}(1-r)^{2}}\left(H_{0}^{2}(w)+H_{+}^{2}(w)+H_{-}^{2}(w)\right)
$$

Calculating $V_{c b}$ on the lattice: Available calculations

Zero recoil

- HPQCD'17
$|\mathcal{F}(1)|=0.895 \pm 0.010 \pm 0.024$ PRD97, 054502 (2018)
- Fermilab/MILC'14
$|\mathcal{F}(1)|=0.906 \pm 0.004 \pm 0.012$
PRD89, 114504 (2014)
- LANL/SWME In progress

Non-zero recoil

- JLQCD In progress
- Uses domain wall fermions
- ~ 8 different ensembles, lowest pion mass $\sim 230 \mathrm{MeV}$
- Unphysical b quark masses, extrapolation errors
- Fermilab/MILC In progress
- Uses Staggered asqtad light + Fermilab heavy
- 15 different ensembles, lowest pion mass ~ 180 MeV
- Physical b quark mass, discretization and matching errors

Two different approaches with very different systematics

Preliminary results taken from Y. Jang
slides during the KEK-FF 2019 meeting

Results: JLQCD

- Preliminary results taken from T. Kaneko's talk during the KEK-FF 2019 conference.

Results: Fermilab/MILC

- Preliminary blinded results, joint fit p - value $=0.36$

Results: Chiral-continuum fits

- Preliminary blinded results, joint fit p - value $=0.36$

Analysis: Preliminary error budget

Source	$h_{V}(\%)$	$h_{A_{1}}(\%)$	$h_{A_{2}}(\%)$	$h_{A_{3}}(\%)$
Statistics	1.1	0.4	4.9	1.9
Isospin effects	0.0	0.0	0.6	0.3
$\chi \mathbf{P T}$ /cont. extrapolation	$\mathbf{1 . 9}$	$\mathbf{0 . 7}$	$\mathbf{6 . 3}$	$\mathbf{2 . 9}$
Matching	1.5	0.4	0.1	1.5
Heavy quark discretization	1.4^{*}	0.4^{*}	5.8^{*}	1.3^{*}

*Estimate, currently subject of intensive study

- Bold marks errors to be reduced/removed when using HISQ for light quarks
- Italic marks errors to be reduced/removed when using HISQ for heavy quarks
- Heavy HISQ would introduce new extrapolation errors
- We are adding a preliminary 2% error coming from HQ discretization to our form factors in our fits

Analysis: z-Expansion

- The BGL expansion is performed on different (more convenient) form factors

$$
\begin{aligned}
g & =\frac{h_{V}(w)}{\sqrt{m_{B} m_{D^{*}}}} \\
f & =\sqrt{m_{B} m_{D^{*}}}(1+w) h_{A_{1}}(w) \\
\mathcal{F}_{1} & =\sqrt{q^{2}} H_{0} \\
\mathcal{F}_{2} & =\frac{\sqrt{q^{2}}}{m_{D^{*}} \sqrt{w^{2}-1}} H_{S}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Phys.Lett. B769, 441 (2017), Phys.Lett. B771, 359 (2017) } \\
\\
=\frac{1}{\phi_{g}(z) B_{g}(z)} \sum_{j} a_{j} z^{j} \\
= \\
=\frac{1}{\phi_{f}(z) B_{f}(z)} \sum_{j} b_{j} z^{j} \\
= \\
=\frac{1}{\phi_{\mathcal{F}_{1}}(z) B_{\mathcal{F}_{1}}(z)} \sum_{j} c_{j} z^{j} \\
\phi_{\mathcal{F}_{2}}(z) B_{\mathcal{F}_{2}}(z)
\end{array} \sum_{j} d_{j} z^{j}
\end{aligned}
$$

- Constraint $\mathcal{F}_{1}(z=0)=\left(m_{B}-m_{D^{*}}\right) f(z=0)$
- Constraint $(1+w) m_{B}^{2}(1-r) \mathcal{F}_{1}\left(z=z_{\text {Max }}\right)=(1+r) \mathcal{F}_{2}\left(z=z_{\text {Max }}\right)$
- BGL (weak) unitarity constraints (all HISQ will use strong constraints)

$$
\sum_{j} a_{j}^{2} \leq 1, \quad \sum_{j} b_{j}^{2}+c_{j}^{2} \leq 1, \quad \sum_{j} d_{j}^{2} \leq 1
$$

Results: Pure-lattice prediction and joint fit

- Lattice + Belle' 18 BGL p - value $\sim O\left(10^{-5}\right)$
- Lattice only BGL $p-$ value $=0.56$, Belle'18 BGL $p-$ value $=0.09$
- We are carefully reviewing the latest developments

Results: Angular bins

Results: $R\left(D^{*}\right)$

- Pure lattice QCD prediction of $R\left(D^{*}\right)$
- Includes constraint $\mathcal{F}_{1}\left(w_{\text {Max }}\right)=\frac{1+r}{(1+w) m_{B}^{2}(1-r)} \mathcal{F}_{2}\left(w_{\text {Max }}\right)$

Results: Tensions in the BGL coefficients

- The b_{j} represent the small recoil behavior $\sim h_{A_{1}}$
- The c_{j} represent the large recoil behavior $\sim H_{0}$

Conclusions

What to expect

- Errors might not be improved compared to previous lattice estimations
- The main new information of this analysis won't come from the zero-recoil value, but from the slope
- Main sources of errors of our form factors are
- χ PT-continuum extrapolation
- HQ discretization
- Matching
- We need to understand better the current lattice and Belle data
- At this stage, no ETA for this paper (a few crosscheck remain)

The future

- Well established roadmap to reduce errors in our calculation with newer lattice ensembles
- Our next analysis will be joint $B \rightarrow D$ and $B \rightarrow D^{*}$ to benefit from strong unitarity constraints
- This roadmap is to be followed in other processes involving other CKM matrix elements

Analysis: What happens if I use CLN?

- CLN is much more constraining than BGL, using only 4 fit parameters

$$
\begin{aligned}
h_{A_{1}}(w) & =h_{A_{1}}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right] \\
R_{1}(w) & =R_{1}(1)-0.12(w-1)+0.05(w-1)^{2} \\
R_{2}(w) & =R_{2}(1)+0.11(w-1)-0.06(w-1)^{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& R_{1}(w)=\frac{h_{A_{1}}(w)}{h_{V}(w)} \\
& R_{2}(w)=\frac{\frac{m_{D^{*}} h_{A_{2}}(w)+h_{A_{3}}(w)}{h_{A_{1}}(w)}}{l}=\frac{m^{2}}{}
\end{aligned}
$$

Analysis: What happens if I use CLN?

- Lattice + Belle'18 CLN $p-$ value $=\sim O\left(10^{-13}\right)$
- Prediction for $h_{A_{1}}$ very constrained in the CLN parametrization

