

Semileptonic Decays: $b \rightarrow c \ell \nu$

- Tree-level W exchange (in the SM)
- Approx. 25% of all *B* decays: huge statistics!

Semileptonic Decays: $b \rightarrow c \ell \nu$

- Tree-level W exchange (in the SM)
- Approx. 25% of all *B* decays: huge statistics!
- Theoretically clean:

Probe of lepton flavor universality $(\ell = e, \mu, \tau)$ up to masses: PS and FF effects

- Tree-level W exchange (in the SM)
- Approx. 25% of all *B* decays: huge statistics!
- Theoretically clean:

Probe of lepton flavor universality $(\ell = e, \mu, \tau)$ up to masses: PS and FF effects

Measurement of $|V_{cb}|$ inclusively (OPE) Hadronic matrix elements \implies measure $|V_{cb}|$ in exclusive modes

Two Anomalies/Puzzles

1. Inclusive $B \to X_c l \nu$ versus exclusive $B \to D^* l \nu$ $(l = e, \mu)$

$$|V_{cb}|_{X_c} \simeq (42.2 \pm 0.8) imes 10^{-3} \ |V_{cb}|_{D^*} \simeq (38.7 \pm 0.7) imes 10^{-3}$$

A 3σ tension?!?

2. Can factor out $|V_{cb}|$, and measure the ratios

$$R(D^{(*)}) \equiv \frac{\Gamma[B \to D^{(*)} \tau \nu_{\tau}]}{\Gamma[B \to D^{(*)} l \nu]}, \qquad l = e, \ \mu.$$

$R(D^{(*)})$ anomaly

Persistent signals lepton flavor universality violation for 7+ years

Also mild anomaly in $B_c \rightarrow J/\psi \tau \nu$, and (possibly) in $B \rightarrow X_c \tau \nu$. More measurements are coming (R(D) from LHCb)

$\rightarrow |V_{cb}|$ & Form Factor-ology

 $R(D^{(*)})$ & NP

Dean Robinson drobinson@lbl.gov

Puzzle: Hadronic Matrix Elements

For exclusive processes: Main theory uncertainty is mapping partons \rightarrow hadrons:

- $|V_{cb}|$: Need SM predictions for $\langle D^{(*)} | \overline{c} \Gamma b | \overline{B} \rangle$
- $R(D^{(*)})$: Some SM matrix elements couple $\sim m_{\tau}$. Suppressed in e, μ .

• $R(D^{(*)})$: Also need NP predictions for $\langle D^{(*)} | \overline{c} \Gamma b | \overline{B} \rangle$ for any NP current $V \pm A, S, P$ or T

FF parametrizations Schematically, for $B \rightarrow D^* I \nu$: $\langle D^* | \, \overline{c} \Gamma^{\mu} b \, | \overline{B} \rangle \sim FF_{\varepsilon}(q^2) \, \varepsilon^{\mu} + FF_B(q^2) \, p_B^{\mu} + FF_{D^*}(q^2) \, p_{D^*}^{\mu}$ $rac{d\Gamma[B
ightarrow D^* l
u]}{dw} \sim |V_{cb}|^2 \sqrt{w^2 - 1} imes \mathcal{F}(w)^2 \; ,$ Comb. of FFs. Phase space $\rightarrow 0$ $\mathcal{F}(1)$ computed by as $w \to 1$ lattice $d \ \Gamma(B \to D^* \ I \ \overline{\psi}_l) \ / \ d \ w \ [10^{-15} \ GeV]$ • Obtain $|V_{cb}|\mathcal{F}(1)$ by fitting $d\Gamma/dw$ and $B \rightarrow D^* I \overline{\nu}_I$ extrapolating to w = 1 $B \rightarrow D^* \tau \overline{v}$ • $\mathcal{F}(1)$ from lattice $\implies |V_{ch}|$ Extrapolation into low stats region highly sensitive to FF fit! 1.0 1.1 1.2 1.3 1.4 1.5 Also: NP predictions!

'Standard' Approach hep-ph/9712417 [Caprini, Lellouch, and Neubert]

- $\mathsf{CLN:}\ \mathsf{Dispersion}\ +\ \mathsf{analyticity}\ +\ \mathsf{HQET}$
- HQET:

$$FF \sim 1(0) + \Lambda_{\text{QCD}}/m_{c,b} + lpha_s + ...$$

- Makes use of QCD sum rule predictions: model dependence
- FF ratios, $\mathcal{F}^2 \sim \text{quadratic}(R_1, R_2)$

 $R_i(w) = R_i(1) + \mathsf{fixed}(w-1) + \mathsf{fixed}(w-1)^2 + \dots$

Not implemented self-consistently at NLO in HQET

'Standard' Approach hep-ph/9712417 [Caprini, Lellouch, and Neubert]

- $\mathsf{CLN:}\ \mathsf{Dispersion}\ +\ \mathsf{analyticity}\ +\ \mathsf{HQET}$
- HQET:

$$FF \sim 1(0) + \Lambda_{ ext{QCD}}/m_{c,b} + lpha_s + ...$$

- Makes use of QCD sum rule predictions: model dependence
- FF ratios, $\mathcal{F}^2 \sim \mathsf{quadratic}(R_1, R_2)$

 $R_i(w) = R_i(1) + \mathsf{fixed}(w-1) + \mathsf{fixed}(w-1)^2 + \dots$

Not implemented self-consistently at NLO in HQET

- Self-consistent SM + NP treatment in new adaptation w/o QCDSR

1703.05330 [Bernlochner, Ligeti, Papucci, DR] 'BLPR'

Lattice

Ultimate: Lattice QCD calculation of all NP matrix elements Fermilab/MILC & HPQCD

Current status: 1902.08191 [FLAG 2019]

w > 1 results not yet available for D^* SM see Alejandro's talk

 $\mathcal{F}(1) = 0.904(12)$

BGL [Boyd, Grinstein, and Lebed]

Uses only dispersion relations and analyticity hep-ph/9508211

• Form factors

$$FF(w) \sim \sum a_n z^n, \qquad z = z(w)$$

- unitarity bound $\sum |a_n|^2 < 1$
- For SM $m_\ell = 0$, 3 FFs, g, f and \mathcal{F}_1

$$\left\{a_n^g, a_n^f, a_n^{\mathcal{F}_1}\right\} \longleftrightarrow \left\{a_n, b_n, c_n\right\}.$$

- No QCDSR; more 'model-independent'
- No HQET
- Drawback: Can't use for NP analyses or $R(D^{(*)})$ predictions

$|V_{cb}|$ extractions

2017: BGL + Belle unfolded data 1702.01521 yields higher $\left|V_{cb}\right|$

$$\begin{split} |V_{cb}|_{\mathsf{CLN}} &= (38.2 \pm 1.5) \times 10^{-3} , \quad \mbox{1702.01521 [Belle]} \\ |V_{cb}|_{\mathsf{BGL}_{332}} &= (41.7^{+2.0}_{-2.1}) \times 10^{-3} , \quad \mbox{1703.06124, 1707.09509 [Bigi, Gambino, Schacht]} \\ |V_{cb}|_{\mathsf{BGL}_{222}} &= (41.9^{+2.0}_{-1.9}) \times 10^{-3} , \quad \mbox{1703.08170 [Grinstein, Kobach]} \\ \end{split}$$

$|V_{cb}|$ extractions

2017: BGL + Belle unfolded data 1702.01521 yields higher $\left|V_{cb}\right|$

- Nested hypothesis test: a test of an *N*-parameter fit hypothesis versus N + 1.
- Set threshold for accept/reject via $\Delta \chi^2 = \chi^2_N \chi^2_{N+1} < 1$ (1-dof χ^2)
- For Belle 2017 tagged dataset: 'n_an_bn_c' = '222' (6 parameters) appears optimal 1902.09553

New
$$|V_{cb}|$$
 from Belle untagged dataset:
 $|V_{cb}|_{\mathsf{BGL}_{122}} = (38.4 \pm 0.7) \times 10^{-3}$ 1809.03290 [Belle]

Tensions

But: The BGL best fits that lift $|V_{cb}|$ lead to HQET tensions 1708.07134, 1902.09553

- Expect FF ratio $R_{1,2}(w) \sim 1$
- Large deviations for BGL fits

SM $R(D^{(*)})$ predictions

Coll.	Approach	R(D)	$R(D^*)$	corr.
1607.00299 [FLAG]	Lattice	0.300 ± 0.008	-	_
1606.08030 [Bigi, Gambino]	Lattice + Belle/BaBar	0.299 ± 0.003	_	—
1203.2654 [Fajfer, Kamenik, Nisandzic]	Cont.+ Belle	_	0.252 ± 0.003	_
1703.05330 [Bernlochner, Ligeti, Papucci, & DR]	Lattice + Belle + HQET NLO	0.299 ± 0.003	0.257 ± 0.003	0.44
1707.09509 [Bigi, Gambino, Schacht]	${\sf BGL} + {\sf BLPR} + 1/m_c^2$ error estimate	_	0.260 ± 0.008	_
1707.09977 [Jaiswal, Nandi, Patra]	$\frac{BGL/HQET+1/m_c^2}{parameter}$	0.299 ± 0.004	0.257 ± 0.005	~ 0.1
HFLAV	Arithmetic average	$\textbf{0.299} \pm \textbf{0.003}$	$\textbf{0.258} \pm \textbf{0.005}$	=

Main question: Are $1/m_c^2$ expected to be enhanced?

$1/m_c^2$ and $R(\Lambda_c)$

- Look at $\Lambda_b(=bdu) \rightarrow \Lambda_c \ell \nu$ baryon decay (LHCb)
- Exceptionally theoretically clean in HQET.

The brown muck is in spin-0 state: $\frac{1}{2}^+_c \otimes 0^+ = \frac{1}{2}^+$ HQ expansion has only 2 IW functions at NNLO!

• Fit to LHCb data $(I = \mu)$ plus lattice for first extraction of $1/m_c^2$ terms from exclusive data 1808.09464, 1812.07593 [Bernlochner, Ligeti, DR Sutcliffe]

$1/m_c^2$ and $R(\Lambda_c)$

- Look at $\Lambda_b (= bdu) \rightarrow \Lambda_c \ell \nu$ baryon decay (LHCb)
- Exceptionally theoretically clean in HQET.

The brown muck is in spin-0 state: $\frac{1}{2} \stackrel{+}{_{c}} \otimes 0^{+} = \frac{1}{2} \stackrel{+}{_{c}}$

 ${\rm HQ}$ expansion has only 2 IW functions at NNLO!

• Fit to LHCb data $(I = \mu)$ plus lattice for first extraction of $1/m_c^2$ terms from exclusive data 1808.09464, 1812.07593 [Bernlochner, Ligeti, DR Sutcliffe]

	LHCb + LQCD	Lattice	Model-dep hep-ph/9209269
$\widehat{b}_1/4m_c^2$	-0.066 ± 0.023		<i>O</i> (20%)
$\hat{b}_2/4m_c^2$	-0.056 ± 0.056		
$R(\Lambda_c)$	0.3237 ± 0.0036	0.3328 ± 0.0098	

- SM $1/m_c^2$ terms non-zero at $\sim 3\sigma!$
- Size is consistent with well-behaved HQ expansion (0.2 \sim 0.04)

$R(D^{(*)})$: What NP Models are interesting

A brief overview of what is, and is not, a compelling model to choose for $R(D^{(*)})$ explanations

or

What you need to know to build $R(D^{(*)})$ models

There is a huge literature on this; comprehensive citations requires a dedicated review!

General 4-Fermi basis

At dimension-6

$$\mathcal{O}_{\mathsf{6}}\sim rac{\mathcal{C}}{\Lambda^2} \Big(\overline{\mathbf{c}} \Gamma b\Big) \Big(\overline{ au} \Gamma'
u\Big) \qquad \mathcal{C}\in \mathbb{C}(\Rightarrow ext{cpv})$$

Wilson coefficients:

Simplified models:

Normalized against SM: $\Lambda~\sim~870\,GeV.$ For 20–30% enhancement, expect TeV scale NP

- No* NP in $B \to D^{(*)} I \nu$: $|V_{cb}|$ constraints.
- Simplified models mediators: EW charged scalars, W''s or leptoquarks $(\widetilde{R}_2, S_1, U_1, \ldots)$ see Marta's talk

Dean Robinson drobinson@lbl.gov

Immediate Dangers

Simplified models for $R(D^{(*)})$ explanations should be electroweak consistent in the UV.

- Since ν_L ∈ L_L, all simplified model mediators are SU(3)_c and/or SU(2)_L charged. Strong collider constraints from pp → ττ or τ + MET modes 1609.07138, 1606.00524, 1705.00929
- If $c \in Q_L$, can have dangerous strange processes, e.g. $b \to s\nu\nu$ or $B_s \overline{B}_s$

Immediate Dangers

Simplified models for $R(D^{(*)})$ explanations should be electroweak consistent in the UV.

- Since ν_L ∈ L_L, all simplified model mediators are SU(3)_c and/or SU(2)_L charged. Strong collider constraints from pp → ττ or τ + MET modes 1609.07138, 1606.00524, 1705.00929
- If $c \in Q_L$, can have dangerous strange processes, e.g. $b \to s\nu\nu$ or $B_s \overline{B}_s$
- One loophole: Consider contributions from RH sterile ν 1804.04135 [Asadi, Buckley, Shih] 1804.04642 [Greljo, DR, Shakya, Zupan], 1807.04753, 1807.10745

 $B \rightarrow$ charm hadron $+ \tau +$ missing energy

- $\circ~$ Can make mediator that is EW sterile, colorless
- \circ Relax $b \rightarrow s$ problems
- $\circ~$ But: $\textit{pp} \rightarrow \tau \nu$ can still be dangerous!

$B_c \rightarrow \tau \nu$ bounds

 $B_c \rightarrow \tau \nu$ is necessarily modified by $b \rightarrow c \tau \nu$ enhancements! 1605.09308, 1611.06676

$$\Gamma[B_c \to \tau \nu] = \Gamma_{\rm SM} \left[1 + C_{RL}^V + \frac{m_{B_c}^2}{m_\tau(m_b - m_c)} \left(C_{LL}^S - c_{RL}^S \right) \right]^2$$

• Scalar operators lift chiral suppression. Enhancement: $\sim m_{B_c}/m_{ au} \sim 3.5$

$B_c \rightarrow \tau \nu$ bounds

 $B_c \rightarrow \tau \nu$ is necessarily modified by $b \rightarrow c \tau \nu$ enhancements! 1605.09308, 1611.06676

$$\Gamma[B_c \to \tau \nu] = \Gamma_{\rm SM} \left[1 + C_{RL}^V + \frac{m_{B_c}^2}{m_\tau (m_b - m_c)} \left(C_{LL}^S - c_{RL}^S \right) \right]^2$$

- Scalar operators lift chiral suppression. Enhancement: $\sim m_{B_c}/m_{ au} \sim 3.5$
- $B_c \rightarrow \tau \nu$ is not measured, but the B_c lifetime *is* and hadronic BRs are *estimated* in OPE. Sets requirement

 ${\sf Br}[B_c o au
u] \lesssim 10{ extsf{-40\%}}$ 1904.10432 or $\Gamma/\Gamma_{\sf SM} \lesssim 5{ extsf{-20}}$

• Dangerous for single scalar current models

NP Status

Latest (post-Moriond) global fits to $R(D^{(*)})$, plus $F_L(D^*)$, P_{τ}

1904.09311, 1904.10432, see Marta's and Jacky's talks

- W' models face tensions from pp
 ightarrow au au /
 u and flavor
- Leptoquark C_V and $C_{S\pm T}$ type models may be viable, though restricted by collider bounds (single or pair production + bc, $b\tau$, $c\tau$ final states) or b-sbounds (If there is a quark doublet involved)
- Pure $C_S(\Phi, \tilde{R}_2)$ leptoquark models face B_c lifetime tensions

But: MC Template Dependence

To measure $R(D^{(*)})$, expts perform a simultaneous BG+signal MC template float

What happens if you change the model-template?

But: MC Template Dependence

To measure $R(D^{(*)})$, expts perform a simultaneous BG+signal MC template float

What happens if you change the model-template?

Eg BaBar SM \rightarrow 2HDM Type II Courtesy F Bernlochner

Fitting to expt measurements tells you confidence to reject SM, not accept NP! NP needs to be included a priori (a "forward-folded" analysis)

But: MC Template Dependence

To measure $R(D^{(*)})$, expts perform a simultaneous BG+signal MC template float

What happens if you change the model-template?

Eg BaBar SM \rightarrow 2HDM Type II Courtesy F Bernlochner

Efficient MC reweighting for self-consistent direct expt WC fits! Hammer: Implementing/ed in LHCb and Belle II analysis frameworks

Stopgap for analyses: Check expected variation in the diff. information. E.g. p_{ℓ} , m_{miss}^2 , E_D , opening angles etc

Dean Robinson drobinson@lbl.gov

Outlook

- More data is needed to settle $|V_{cb}|$ measurements and FF params. At least some new evidence that HQET expansion is well-behaved for baryons
- Self-consistent FF parametrization implementations available for NP predictions
- Prolific NP analyses with multiple constraints from collider and flavor data; possibly viable leptoquark models
- Template dependence will be resolved with direct Wilson Coefficient fits by expts (Hammer)

Thanks!

\rightarrow Extras and Details

ระสารการเปล่า พระพรรมมาก

Inclusive $B \to X_c \ell \nu$

- X_c can be a multibody state with arbitrary invariant mass.
- In $m_b \rightarrow \infty$ limit, the inclusive hadronic decay \Leftrightarrow free quark decay
- More generally, rate calculable via an OPE

$$\sum_{X_c} \langle B | J^{\dagger} | X_c \rangle \langle X_c | J | B \rangle \sim \langle B | T [J^{\dagger} J] | B \rangle$$

• Incorporates radiative α_s and non-perturbative $1/m_b$ corrections . OPE predictions up to and including $\Lambda^2_{\rm QCD}/m_b^2$ have been computed see e.g. 1406.7013 [Ligeti Tackmann]

Branching Ratios

Predictions for $R(X_c)$ incl. two-loop QCD 1506.08896 [Freytsis, Ligeti Ruderman]

$$R(X_c) = 0.223 \pm 0.004$$
.

Another way to see the anomaly: Current inclusive BR HFLAV

$${
m Br}[B o X_c e
u] = (10.65 \pm 0.16)\%$$
,
 $\implies {
m Br}[B o X_c au
u] = (2.38 \pm 0.05)\%$

But the direct sum

$$Br[B \rightarrow D\tau\nu] + Br[B \rightarrow D^*\tau\nu] + Br[B \rightarrow D^{**}\tau\nu]_{pred} \simeq 3\%!$$

Directly measuring $Br[B \rightarrow X\tau\nu]$ at Belle II (and/or with BaBar data) would be interesting! [There is a Belle thesis result $R(X_c) = 0.298 \pm 0.012 \pm 0.018$]

Form Factor Basis (HQ)

Form factors encode matrix element structure in terms of momenta, polarizations, as allowed by Poincaré symmetry + parity. (NB: $v = p_B/m_B$, $v' = p_{D^{(*)}}/m_{D^{(*)}}$)

$$\begin{split} \overline{B} \to D^* & \qquad \begin{pmatrix} \langle D^* | \overline{c}b | \overline{B} \rangle = 0, \\ \langle D^* | \overline{c}\gamma^5 b | \overline{B} \rangle = -\sqrt{m_B m_{D^*}} h_P (\epsilon^* \cdot v), \\ \langle D^* | \overline{c}\gamma^\mu b | \overline{B} \rangle = i\sqrt{m_B m_{D^*}} h_V \varepsilon^{\mu\nu\alpha\beta} \epsilon^*_{\nu} v'_{\alpha} v_{\beta}, \\ \langle D^* | \overline{c}\gamma^\mu \gamma^5 b | \overline{B} \rangle = \sqrt{m_B m_{D^*}} \left[h_{A_1} (w+1) \epsilon^{*\mu} - h_{A_2} (\epsilon^* \cdot v) v^{\mu} - h_{A_3} (\epsilon^* \cdot v) v'^{\mu} \right], \\ \langle D^* | \overline{c}\sigma^{\mu\nu} b | \overline{B} \rangle = -\sqrt{m_B m_{D^*}} \varepsilon^{\mu\nu\alpha\beta} \left[h_{T_1} \epsilon^*_{\alpha} (v+v')_{\beta} + h_{T_2} \epsilon^*_{\alpha} (v-v')_{\beta} \right. \\ & + h_{T_3} (\epsilon^* \cdot v) v_{\alpha} v'_{\beta} \right]. \end{split}$$

Form factors $h_{\Gamma_i} = h_{\Gamma_i}(w)$ or $h_{\Gamma_i}(q^2)$: for $B \to D^{(*)} l \nu \, w - 1 \lesssim 0.6$

Truncation dependence

Nested hypothesis test: a test of an N-parameter fit hypothesis versus N + 1.

- Define a space of BGL models
- Set threshold for accept/reject via $\Delta \chi^2 = \chi^2_N \chi^2_{N+1} < 1$ (1-dof χ^2)

n _c	1	2	3	1	2	3	1	2	3
1	$\begin{array}{c} 33.2\\ 38.6\pm1.0 \end{array}$	$\begin{array}{c} 31.6\\ 38.6\pm1.0 \end{array}$	$\begin{array}{c} 31.2\\ 38.6\pm1.0 \end{array}$	$\begin{array}{c} 33.0\\ 39.0\pm1.5\end{array}$	$\begin{array}{c} 29.1\\ 40.7\pm1.6\end{array}$	$\begin{array}{c} 28.9\\ 40.7\pm1.6\end{array}$	30.4 40.7 ± 1.7	$\begin{array}{c} 29.1\\ 40.6\pm1.8\end{array}$	$\begin{array}{c} 28.9\\ 40.6\pm1.8\end{array}$
2	32.9 38.8 ± 1.1	31.3 38.7 ± 1.1	$\begin{array}{c} 31.1\\ 38.8\pm1.0 \end{array}$	32.7 39.5 ± 1.7	27.7 41.7 ± 1.8	$\begin{array}{c} 27.7\\ 41.6\pm1.8\end{array}$	29.2 41.8 ± 2.0	$\begin{array}{c} 27.7\\ 41.8\pm2.0 \end{array}$	27.7 41.7 ± 2.0
3	$\begin{array}{c} 31.7\\ 39.0\pm1.1 \end{array}$	$\begin{array}{c} 31.3\\ 38.6\pm1.2 \end{array}$	$\begin{array}{c} 31.0\\ 38.6\pm1.1 \end{array}$	$\begin{array}{c} 29.1\\ 41.9\pm2.0 \end{array}$	$\begin{array}{c} 27.7\\ 41.8\pm2.0 \end{array}$	27.6 41.7 ± 2.0	29.2 41.8 ± 2.0	27.6 41.7 ± 1.9	$\begin{array}{c} 23.2\\ 41.4\pm2.0 \end{array}$
	$n_b = 1$		$n_b = 2$		n _b = 3				

- For Belle 2017 tagged dataset: 'n_an_bn_c' = '222' (6 parameters) appears optimal 1902.09553
- The preferred 5 parameter fit is '221' $(a_{0,1}^g, a_{0,1}^f, a_1^{\mathcal{F}_1})$

MC Template Dependence

To measure $R(D^{(*)})$ /observables, expts perform a simultaneous BG+signal MC template float

Huge amount of MC just for SM study What happens if you change the model-template?

- The D^* and τ decay: interference effects $[\mathcal{O}(m_{\tau}/m_B) \text{ for SM, but } \mathcal{O}(1) \text{ with NP!}]$
- Phase space cuts
 - \Rightarrow Total acceptances change!
- τ frame not* reconstructible
- Downfeed BGs from orbitally excited $D^{**} \rightarrow D^{(*)}X$ states [very sensitive to (the same) NP! 1711.03110]

Extracted Belle spectra for SM \rightarrow 2HDM Type II

Signal Model Dependence

[Belle 1507.03233]

 H^+

Stopgap

Check expected variation in the differential information of fit from SM. E.g. p_{ℓ} , m_{miss}^2 , E_D , opening angles etc

B-----

SM disjoint from 2σ fit region: Possibly unreliable conclusions!