Pentaquarks

Lorenzo Capriotti on behalf of the LHCb Collaboration with results from the Belle Collaboration

FPCP, Victoria BC 07/05/2019

Quarkonia spectroscopy

The excitation spectrum of a $[Q\overline{Q}]$ state is well described by a semi-relativistic phenomenological potential (effective Cornell potential)

$$V(r) = -\frac{4}{3}\frac{\alpha_s(r)}{r} + \sigma r + \delta(1/r^2)$$

- A short-distance colour potential
- A long-distance **confinement** term
- **Spin-spin** and **spin-orbit** corrections

Developed in the 70's, particularly accurate to describe and predict the spectrum of $[c\bar{c}]$ and $[b\bar{b}]$ states.

[Phys. Rev. D 21, 203 (1980)]

Charmonium spectrum

In the last 15 years a large number of states have been discovered which contain a $c\bar{c}$ pair but do not fit in the expected spectrum

Adapted from [Rev. Mod. Phys. 90, 15003 (2018)]

Exotic candidates

All the unpredicted states are labelled as **exotic** states.

- $\bullet\,$ They must contain a $c\bar{c}$ pair as they all decay into a final state with a charmonium
- They do not present the same properties expected from a pure $c\bar{c}$ state As an example, look at X(3872):
 - The first exotic state ever observed (Belle, 2003)
 - Extremely narrow to be above the open charm threshold
 - $\bullet\,$ Radiative decay rates do not match prediction for a $c\bar{c}$ state
 - Decays into two different final states with different isospin (maximal violation)

Furthermore, the Z states are charged and this implies a minimal quark content of $[c\bar{c}d\bar{u}]$

Models for multiquark states

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Several models have been proposed to describe the exotic states. Main interpretations:

Mesonic (baryonic) molecule

- Low binding energy, narrow states
- Only S-wave, few states predicted
- Independently decaying components

Compact multiquark

- Tightly bound states
- Large widths in principle
- Many states expected

Other models are in principle allowed, as well as mixture of different models

Pentaquarks

The charmonium spectrum is the ideal place to look for unexpected states

- Large mass difference between states wrt light $[q\bar{q}]$ states
- Clean environment
- Wide range of detailed studies (better than bottomonium spectrum)

This presentation will focus on measurements and searches for states with 5 constituent quarks $[qqqq\bar{q}]$, in particular $[qqqc\bar{c}]$

OBSERVATION OFPENTAQUARKS IN $\Lambda_b^0 \to J/\psi K^- p$ DECAYS (RUN 1)

Analysis of $\Lambda_b^0 \to J/\psi K^- p$ decays

Structures are visible, over a non-resonant distribution, in the $m_{J/\psi p}$ spectrum from $\Lambda_b^0 \to J/\psi K^- p$ decays using the full LHCb Run 1 statistics (3 fb⁻¹)

The resonant contributions are expected to be dominated by $\Lambda^* \to K^- p$ decays, need to check if structures in $m_{J/\psi p}$ are reflections in Dalitz plot

[Phys. Rev. Lett. 115, 072001 (2015)]

Analysis strategy

- 14 well established $\Lambda^* \to pK^$ resonances to take into account
- 5 decay angles $+ m_{Kp}$ (6D fit)
- Helicity formalism
- Background-subtracted data

State	J^P	M_0 (MeV)	Γ_0 (MeV)	# Reduced	# Extended
A(1405)	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
A(1520)	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
A(1600)	$1/2^{+}$	1600	150	3	4
A(1670)	$1/2^{-}$	1670	35	3	4
A(1690)	$3/2^{-}$	1690	60	5	6
A(1800)	$1/2^{-}$	1800	300	4	4
A(1810)	$1/2^{+}$	1810	150	3	4
A(1820)	$5/2^{+}$	1820	80	1	6
A(1830)	$5/2^{-}$	1830	95	1	6
A(1890)	$3/2^{+}$	1890	100	3	6
A(2100)	$7/2^{-}$	2100	200	1	6
A(2110)	$5/2^{+}$	2110	200	1	6
A(2350)	$9/2^{+}$	2350	150	0	6
A(2585)	?	≈ 2585	200	0	6

Lorenzo Capriotti - Pentaquarks

[[]Phys. Rev. Lett. 115, 072001 (2015)]

Fit projections and results

To have an acceptable fit two new P_c^+ states need to be included

- Black points: data
- Red points: amplitude fit
- $P_c(4380)^+$, $J^P = 3/2^-$, $\Gamma = 205 \pm 18$ MeV, significance 9σ
- $P_c(4450)^+, J^P = 5/2^+, \Gamma = 39 \pm 5$ MeV, significance 12σ

[Phys. Rev. Lett. 115, 072001 (2015)]

Model-independent confirmation

To confirm the previous result, the analysis is repeated using a different, model-independent approach.

- $\bullet\,$ Minimal assumptions on the excited Λ^* spin and shapes
- $\bullet\,$ Can include also nonresonant K^-p and Σ^* contributions

The strategy is to describe the 2D plane $(m_{Kp}, \cos \theta_{\Lambda^*})$ expanding the helicity angle θ_{Λ^*} in Legendre polynomials:

$$dN/d(\cos\theta_{\Lambda^*}) = \sum_{l=0}^{l_{max}} \langle P_l^U \rangle P_l(\cos\theta_{\Lambda^*})$$

where

$$\left\langle P_l^U \right\rangle = \int_{-l}^{+l} d\cos\theta_{\Lambda^*} P_l(\cos\theta_{\Lambda^*}) dN/d(\cos\theta_{\Lambda^*})$$

and it is extracted from the m_{Kp} distribution in data.

If no exotic contribution is present and the structures in $m_{J/\psi p}$ are due to reflections, then this expansion will be enough to describe the $m_{J/\psi p}$ spectrum

[[]Phys. Rev. Lett. 117, 082002 (2016)]

Model-independent confirmation

ALMA MATER STUDIORUM

In practise, the Legendre moments include all contributions in K^-p with spin $2J_{max}$ or less, depending on the given m_{Kp} range, up to $J_{max} = 9/2$.

By looking at $m_{J/\psi p}$ it is clear that the distribution cannot be explained using only reflections.

The discrepancy is more than $9\sigma.$

[Phys. Rev. Lett. 117, 082002 (2016)]

EXOTIC RESONANCES AND RESCATTERING EFFECTS

• All intermediate particles must be on shell to have a threshold enhancement

- The Λ^* mass must lie within a kinematically allowed mass range
- One happens to exist: $\Lambda(1890)$

 \implies An observation of $P_c(4450)^+ \rightarrow J/\psi p$ from $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ decays would be harder to accommodate in this picture (dominated by N^*)

[Phys. Rev. D 92, 071502 (2015)], [Phys. Rev. D 93, 094001 (2016)]

The narrow structure at 4450 MeV/c^2 observed by LHCb happens to be located exactly at the $\chi_{c1}p$ mass threshold. This can be a signal of a kinematic enhancement due to rescattering effects.

Search for $P_c^+ \to \chi_{c1} p$

First observation of the decays $\Lambda^0_b\to \chi_{c1}pK^-$ and $\Lambda^0_b\to \chi_{c2}pK^-$

• First investigation, with limited statistics (3 fb⁻¹, full LHCb Run 1)

•
$$N(\Lambda_b^0 \to \chi_{c1} p K^-) = 453 \pm 25$$

- Not enough to analyse the $\chi_{c1}p$ mass spectrum, will be updated with Run 2 data
- First measurement of the branching fractions relative to $\Lambda_b^0 \to J/\psi p K^-$ • $\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.242 \pm 0.014 \pm 0.013 \pm 0.009$ • $\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)} = 0.248 \pm 0.020 \pm 0.014 \pm 0.009$

$$\frac{\mathcal{D}(\Lambda_b^{(n+1)} \to A^{(n+1)})}{\mathcal{B}(\Lambda_b^{(n+1)} \to J/\psi p K^{-})} = 0.248 \pm 0.020 \pm 0.014 \pm 0.009$$

[Phys. Rev. Lett. 119, 062001 (2017)]

Analysis of the $\Lambda_b^0 \to J/\psi p \pi^-$ channel

- Data: 3 fb⁻¹, full LHCb Run 1
- Thanks to the $\Delta I = 1/2$ rule the Λ^* contributions are suppressed
- 14 well established $N^* \to p\pi^$ resonances to take into account
- 5 decay angles $+ m_{Kp}$
- Helicity formalism
- Background-subtracted data

State	J^P	Mass (MeV)	Width (MeV)	RM	EM
NR pπ	1/2-			4	4
N(1440)	$1/2^{+}$	1430	350	3	4
N(1520)	3/2-	1515	115	3	3
N(1535)	1/2-	1535	150	4	4
N(1650)	1/2-	1655	140	1	4
N(1675)	5/2-	1675	150	3	5
N(1680)	$5/2^+$	1685	130		3
N(1700)	3/2-	1700	150		3
N(1710)	$1/2^{+}$	1710	100		4
N(1720)	$3/2^{+}$	1720	250	3	5
N(1875)	3/2-	1875	250		3
N(1900)	$3/2^{+}$	1900	200		3
N(2190)	7/2-	2190	500		3
N(2300)	$1/2^{+}$	2300	340		3
N(2570)	5/2-	2570	250		3
Free parameters					106

[Phys. Rev. Lett. 117, 082003 (2016)]

Fit projections and results

- Adding $P_c(4380)^+$, $P_c(4450)^+$ and a $Z_c(4200)^- \rightarrow J/\psi\pi^-$ contribution significantly improves the fit
- P_c^+ production rates as expected from previous observation (including Cabibbo suppression)

• Combined significance: 3.1σ

[Phys. Rev. Lett. 117, 082003 (2016)]

25

RM N*+Z.+2P

M N^{*}

LHCb

10²

Yields/ (25 MeV)

RECENT SEARCHES FOR STRANGE AND BEAUTY PENTAQUARKS

Search for s-flavoured pentaquarks

- Strange-flavour analogue of the P_c^+ discovery channel: $\Lambda_c^+ \to \phi p \pi^0$
- This channel has never been studied before
- Dataset: 915 fb⁻¹ at $\Upsilon(4S)$ and $\Upsilon(5S)$ collected by the Belle experiment
- P_s^+ can be observed as peak in the ϕp mass spectrum if the same production mechanism holds, and if $m_{P_s^+} < m_{\Lambda_c^+} m_{\pi^0}$

[Phys. Rev. D 96, 051102 (2017)]

Search for s-flavoured pentaquarks

No signal is observed in a mass window of 20 MeV/ c^2 around the ϕ peak, upper limits at 90%CL are set on the branching fraction product, normalised using $\Lambda_c^+ \to p K^- \pi^+$ decays

 $\mathcal{B}(\Lambda_b^0 \to P_c(4450)^+ K^-) \times \dot{\mathcal{B}}(P_c(4450)^+ \to J/\psi p) = (1.3 \pm 0.4) \times 10^{-5}$

[Phys. Rev. D 96, 051102 (2017)]

Search for b-flavoured pentaquarks

- According to the Skyrme model, the heavier the constituent quarks are, the more tightly bound the state is
- $\bullet\,$ No searches for $b\mbox{-flavoured}$ pentaquarks have ever been published
- Full LHCb Run 1 integrated luminosity (3 fb^{-1})
- Four different states considered:
 - $P_{B^0p}^+ \rightarrow J/\psi K^+ p\pi^-$ • $P^+ \rightarrow J/\psi K^+ p\pi^-$
 - $P^+_{\Lambda^0_b \pi^+} \to J/\psi K^+ p \pi^+$
 - $P^-_{\Lambda^0_b \pi^-} \to J/\psi K^+ p \pi^-$
 - $P_{B_s^0 p}^+ \to J/\psi \phi p$
- Mass ranges chosen to be below the strong decay threshold

[RSPA 260, 1300 (1961)], [Phys. Rev. D 97, 032010 (2018)]

Search for b-flavoured pentaquarks

No signal is observed, upper limits at 90%CL are set on the production cross sections times the BR, normalised using $\Lambda_h^0 \to J/\psi K^- p$ decays

[Phys. Rev. D 97, 032010 (2018)]

OBSERVATION OFPENTAQUARKS IN $\Lambda_b^0 \to J/\psi K^- p$ DECAYS (RUN 1 + RUN 2)

Update with full Run 1 and Run 2 statistics

- Latest LHCb result on pentaquark searches: update of 2015 analysis
- Integrated luminosity 9 fb⁻¹, better data selection, increase in production cross-section (13 TeV instead of 7 and 8 TeV)
- 9 times more statistics \implies improved resolution on mass spectra

[arXiv:1904.03947]

Consistency check

First check: using the new dataset, the new selection and the same amplitude model we get compatible results

New features

- Increase in mass resolution (≈ 2.5 MeV)
- New narrow structure at 4.3 GeV, $P_c(4450)^+$ is resolved into two peaks
- Amplitude fit computationally challenging, currently work in progress
- Very narrow states, cannot be artificial reflections
- Cut at $m_{Kp} > 1.9$ GeV to suppress the dominant $\Lambda^* \to pK^+$ contributions
- 1-dimensional fit using different composition of Λ^* reflections to model the background
- This analysis is not sensitive to broad $J/\psi p$ contribution, like $P_c(4380)^+$

[arXiv:1904.03947]

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA

Fit to the $J/\psi p$ invariant mass

- The masses of the narrow peaks are just below the $\Sigma_c^+ \overline{D}^{(*)0}$ masses
- Although the compact pentaquark model is not ruled out, these features favour the molecular interpretation
- Need to measure quantum numbers and find isospin partners in order to have a definitive answer

State	$M \; [MeV]$	$\Gamma [MeV]$	(95% CL)	\mathcal{R} [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+~3.7}_{-~4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)	$0.53\pm0.16^{+0.15}_{-0.13}$

[arXiv:1904.03947]

Lorenzo Capriotti - Pentaquarks

CONCLUSIONS

Conclusions

- Exotic spectroscopy is an extremely rich and productive field
- Several observations and searches for pentaquark states in the last 4 years
- Quite a recent discovery this is just the beginning of a new era in both discovery of new states and understanding of QCD binding mechanisms
- We still do not know what the real nature of these new states is
- The LHCb Run 2 update measurement is the strongest evidence so far towards a molecular interpretation of the P_c^+ states
- Amplitude analysis is challenging, but ongoing
- LHCb clearly dominates the scene for now, waiting for Belle II to join

BACKUP