Pentaquarks

Lorenzo Capriotti
on behalf of the LHCb Collaboration
with results from the Belle Collaboration

FPCP, Victoria BC
07/05/2019

Quarkonia spectroscopy

The excitation spectrum of a $[Q \bar{Q}]$ state is well described by a semi-relativistic phenomenological potential (effective Cornell potential)

$$
V(r)=-\frac{4}{3} \frac{\alpha_{s}(r)}{r}+\sigma r+\delta\left(1 / r^{2}\right)
$$

- A short-distance colour potential
- A long-distance confinement term
- Spin-spin and spin-orbit corrections

Developed in the 70's, particularly accurate to describe and predict the spectrum of $[c \bar{c}]$ and $[b \bar{b}]$ states.

[^0]
Charmonium spectrum

In the last 15 years a large number of states have been discovered which contain a $c \bar{c}$ pair but do not fit in the expected spectrum

Adapted from [Rev. Mod. Phys. 90, 15003 (2018)]

Exotic candidates

All the unpredicted states are labelled as exotic states.

- They must contain a $c \bar{c}$ pair as they all decay into a final state with a charmonium
- They do not present the same properties expected from a pure $c \bar{c}$ state As an example, look at $\mathrm{X}(3872)$:
- The first exotic state ever observed (Belle, 2003)
- Extremely narrow to be above the open charm threshold
- Radiative decay rates do not match prediction for a c \bar{c} state
- Decays into two different final states with different isospin (maximal violation)
Furthermore, the Z states are charged and this implies a minimal quark content of $[c \bar{c} d \bar{u}]$

Models for multiquark states

Several models have been proposed to describe the exotic states. Main interpretations:

Mesonic (baryonic) molecule

- Low binding energy, narrow states
- Only S-wave, few states predicted
- Independently decaying components

Compact multiquark

- Tightly bound states
- Large widths in principle
- Many states expected

Other models are in principle allowed, as well as mixture of different models

Pentaquarks

The charmonium spectrum is the ideal place to look for unexpected states

- Large mass difference between states wrt light $[q \bar{q}]$ states
- Clean environment
- Wide range of detailed studies (better than bottomonium spectrum) This presentation will focus on measurements and searches for states with 5 constituent quarks [$q q q q \bar{q}$], in particular $[q q q c \bar{c}]$

$$
\begin{gathered}
\text { OBSERVATION } \\
\text { OF } \\
\text { PENTAQUARKS } \\
\text { IN } \\
\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p \\
\text { DECAYS } \\
\text { (RUN 1) }
\end{gathered}
$$

Analysis of $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ decays

Structures are visible, over a non-resonant distribution, in the $m_{J / \psi p}$ spectrum from $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ decays using the full LHCb Run 1 statistics $\left(3 \mathrm{fb}^{-1}\right)$

The resonant contributions are expected to be dominated by $\Lambda^{*} \rightarrow K^{-} p$ decays, need to check if structures in $m_{J / \psi p}$ are reflections in Dalitz plot

[Phys. Rev. Lett. 115, 072001 (2015)]

Analysis strategy

- 14 well established $\Lambda^{*} \rightarrow p K^{-}$ resonances to take into account
- 5 decay angles $+m_{K p}$ (6 D fit)
- Helicity formalism
- Background-subtracted data

State	J^{P}	$M_{0}(\mathrm{MeV})$	$\Gamma_{0}(\mathrm{MeV})$	\# Reduced	\# Extended
$\Lambda(1405)$	$1 / 2^{-}$	$1405.1_{-1.0}^{+1.3}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	$3 / 2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	$1 / 2^{+}$	1600	150	3	4
$\Lambda(1670)$	$1 / 2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3 / 2^{-}$	1690	60	5	6
$\Lambda(1800)$	$1 / 2^{-}$	1800	300	4	4
$\Lambda(1810)$	$1 / 2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5 / 2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5 / 2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3 / 2^{+}$	1890	100	3	6
$\Lambda(2100)$	$7 / 2^{-}$	2100	200	1	6
$\Lambda(2110)$	$5 / 2^{+}$	2110	200	1	6
$\Lambda(2350)$	$9 / 2^{+}$	2350	150	0	6
$\Lambda(2585)$	$?$	≈ 2585	200	0	6

[Phys. Rev. Lett. 115, 072001 (2015)]

Fit projections and results

To have an acceptable fit two new P_{c}^{+}states need to be included

- Black points: data
- Red points: amplitude fit
- $P_{c}(4380)^{+}, J^{P}=3 / 2^{-}, \Gamma=205 \pm 18 \mathrm{MeV}$, significance 9σ
- $P_{c}(4450)^{+}, J^{P}=5 / 2^{+}, \Gamma=39 \pm 5 \mathrm{MeV}$, significance 12σ
[Phys. Rev. Lett. 115, 072001 (2015)]

Model-independent confirmation

To confirm the previous result, the analysis is repeated using a different, model-independent approach.

- Minimal assumptions on the excited Λ^{*} spin and shapes
- Can include also nonresonant $K^{-} p$ and Σ^{*} contributions

The strategy is to describe the 2D plane ($m_{K p}, \cos \theta_{\Lambda^{*}}$) expanding the helicity angle $\theta_{\Lambda^{*}}$ in Legendre polynomials:

$$
d N / d\left(\cos \theta_{\Lambda^{*}}\right)=\sum_{l=0}^{l_{\max }}\left\langle P_{l}^{U}\right\rangle P_{l}\left(\cos \theta_{\Lambda^{*}}\right)
$$

where

$$
\left\langle P_{l}^{U}\right\rangle=\int_{-l}^{+l} d \cos \theta_{\Lambda^{*}} P_{l}\left(\cos \theta_{\Lambda^{*}}\right) d N / d\left(\cos \theta_{\Lambda^{*}}\right)
$$

and it is extracted from the $m_{K p}$ distribution in data.
If no exotic contribution is present and the structures in $m_{J / \psi p}$ are due to reflections, then this expansion will be enough to describe the $m_{J / \psi p}$ spectrum
[Phys. Rev. Lett. 117, 082002 (2016)]

Model-independent confirmation

In practise, the Legendre moments include all contributions in $K^{-} p$ with spin $2 J_{\max }$ or less, depending on the given $m_{K p}$ range, up to $J_{\max }=9 / 2$.

By looking at $m_{J / \psi p}$ it is clear that the distribution cannot be explained using only reflections.
The discrepancy is more than 9σ.
[Phys. Rev. Lett. 117, 082002 (2016)]

$$
\begin{gathered}
\text { EXOTIC } \\
\text { RESONANCES } \\
\text { AND } \\
\text { RESCATTERING } \\
\text { EFFECTS }
\end{gathered}
$$

Rescattering effects

The narrow structure at $4450 \mathrm{MeV} / c^{2}$ observed by LHCb happens to be located exactly at the $\chi_{c 1} p$ mass threshold. This can be a signal of a kinematic enhancement due to rescattering effects.

- All intermediate particles must be on shell to have a threshold enhancement
- The Λ^{*} mass must lie within a kinematically allowed mass range
- One happens to exist: $\Lambda(1890)$

\Longrightarrow An observation of $P_{c}(4450)^{+}$decaying in the $\chi_{c 1} p$ final state (and not $\chi_{c 0, c 2} p$) would confirm the exotic nature of the resonance
\Longrightarrow An observation of $P_{c}(4450)^{+} \rightarrow J / \psi p$ from $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$decays would be harder to accommodate in this picture (dominated by N^{*})
[Phys. Rev. D 92, 071502 (2015)], [Phys. Rev. D 93, 094001 (2016)]

Search for $P_{c}^{+} \rightarrow \chi_{c 1} p$

First observation of the decays $\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}$and $\Lambda_{b}^{0} \rightarrow \chi_{c 2} p K^{-}$

- First investigation, with limited statistics $\left(3 \mathrm{fb}^{-1}\right.$, full LHCb Run 1)
- $\mathrm{N}\left(\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}\right)=453 \pm 25$
- Not enough to analyse the $\chi_{c 1} p$ mass spectrum, will be updated with Run 2 data
- First measurement of the branching fractions relative to $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$
- $\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\right)}=0.242 \pm 0.014 \pm 0.013 \pm 0.009$
- $\frac{\mathcal{B}\left(\Lambda_{b}^{o} \rightarrow \chi_{c 1} p K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{O} \rightarrow J / \psi p K^{-}\right)}=0.248 \pm 0.020 \pm 0.014 \pm 0.009$

[Phys. Rev. Lett. 119, 062001 (2017)]

Analysis of the $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$channel

- Data: $3 \mathrm{fb}^{-1}$, full LHCb Run 1
- Thanks to the $\Delta I=1 / 2$ rule the Λ^{*} contributions are suppressed
- 14 well established $N^{*} \rightarrow p \pi^{-}$ resonances to take into account
- 5 decay angles $+m_{K p}$
- Helicity formalism
- Background-subtracted data

State	J^{P}	Mass (MeV)	Width (MeV)	RM	EM
$N R p \pi$	$1 / 2^{-}$	\ldots	\ldots	4	4
$N(1440)$	$1 / 2^{+}$	1430	350	3	4
$N(1520)$	$3 / 2^{-}$	1515	115	3	3
$N(1535)$	$1 / 2^{-}$	1535	150	4	4
$N(1650)$	$1 / 2^{-}$	1655	140	1	4
$N(1675)$	$5 / 2^{-}$	1675	150	3	5
$N(160)$	$5 / 2^{+}$	1655	130	\cdots	3
$N(1700)$	$3 / 2^{-}$	1700	150	\cdots	3
$N(1710)$	$1 / 2^{+}$	1710	100	\cdots	4
$N(1720)$	$3 / 2^{+}$	1720	250	3	5
$N(1875)$	$3 / 2^{-}$	1875	250	\cdots	3
$N(1900)$	$3 / 2^{+}$	1900	200	\cdots	3
$N(2190)$	$7 / 2^{-}$	2190	500	\cdots	3
$N(2300)$	$1 / 2^{+}$	2300	340	\cdots	3
$N(2570)$	$5 / 2^{-}$	2570	250	\cdots	3
Free parameters			40	106	

[Phys. Rev. Lett. 117, 082003 (2016)]

Fit projections and results

- Adding $P_{c}(4380)^{+}, P_{c}(4450)^{+}$and a $Z_{c}(4200)^{-} \rightarrow J / \psi \pi^{-}$contribution significantly improves the fit
- P_{c}^{+}production rates as expected from previous observation (including Cabibbo suppression)
- Combined significance: 3.1σ

[Phys. Rev. Lett. 117, 082003 (2016)]

> RECENT
> SEARCHES
> FOR
> STRANGE
> AND
> BEAUTY PENTAQUARKS

Search for s-flavoured pentaquarks

- Strange-flavour analogue of the P_{c}^{+}discovery channel: $\Lambda_{c}^{+} \rightarrow \phi p \pi^{0}$
- This channel has never been studied before
- Dataset: $915 \mathrm{fb}^{-1}$ at $\Upsilon(4 S)$ and $\Upsilon(5 S)$ collected by the Belle experiment
- P_{s}^{+}can be observed as peak in the ϕp mass spectrum if the same production mechanism holds, and if $m_{P_{s}^{+}}<m_{\Lambda_{c}^{+}}-m_{\pi^{0}}$

[Phys. Rev. D 96, 051102 (2017)]

Search for s-flavoured pentaquarks

No signal is observed in a mass window of $20 \mathrm{MeV} / c^{2}$ around the ϕ peak, upper limits at $90 \% \mathrm{CL}$ are set on the branching fraction product, normalised using $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$decays

$$
\mathcal{B}\left(\Lambda_{c}^{+} \rightarrow P_{s}^{+} \pi^{0}\right) \times \mathcal{B}\left(P_{s}^{+} \rightarrow \phi p\right)<8.3 \times 10^{-5}
$$

(as a reference)
$\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow P_{c}(4450)^{+} K^{-}\right) \times \mathcal{B}\left(P_{c}(4450)^{+} \rightarrow J / \psi p\right)=(1.3 \pm 0.4) \times 10^{-5}$
[Phys. Rev. D 96, 051102 (2017)]

Search for b-flavoured pentaquarks

- According to the Skyrme model, the heavier the constituent quarks are, the more tightly bound the state is
- No searches for b-flavoured pentaquarks have ever been published
- Full LHCb Run 1 integrated luminosity $\left(3 \mathrm{fb}^{-1}\right)$
- Four different states considered:
- $P_{B^{0} p}^{+} \rightarrow J / \psi K^{+} p \pi^{-}$
- $P_{\Lambda_{b}^{0} \pi^{+}}^{+} \rightarrow J / \psi K^{+} p \pi^{+}$
- $P_{\Lambda_{b}^{0} \pi^{-}}^{-} \rightarrow J / \psi K^{+} p \pi^{-}$
- $P_{B_{s}^{0} p}^{+} \rightarrow J / \psi \phi p$
- Mass ranges chosen to be below the strong decay threshold

[RSPA 260, 1300 (1961)], [Phys. Rev. D 97, 032010 (2018)]

Search for b-flavoured pentaquarks

No signal is observed, upper limits at $90 \% \mathrm{CL}$ are set on the production cross sections times the BR, normalised using $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ decays

[^1]\[

$$
\begin{gathered}
\text { OBSERVATION } \\
\text { OF } \\
\text { PENTAQUARKS } \\
\text { IN } \\
\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p \\
\text { DECAYS } \\
\text { (RUN } 1+\text { RUN 2) }
\end{gathered}
$$
\]

Update with full Run 1 and Run 2 statistics

- Latest LHCb result on pentaquark searches: update of 2015 analysis
- Integrated luminosity $9 \mathrm{fb}^{-1}$, better data selection, increase in production cross-section (13 TeV instead of 7 and 8 TeV)
- 9 times more statistics \Longrightarrow improved resolution on mass spectra

[arXiv:1904.03947]

Consistency check

First check: using the new dataset, the new selection and the same amplitude model we get compatible results

New features

- Increase in mass resolution ($\approx 2.5 \mathrm{MeV}$)
- New narrow structure at 4.3 GeV , $P_{c}(4450)^{+}$is resolved into two peaks
- Amplitude fit computationally challenging, currently work in progress
- Very narrow states, cannot be artificial reflections
- Cut at $m_{K p}>1.9 \mathrm{GeV}$ to suppress the dominant $\Lambda^{*} \rightarrow p K^{+}$contributions
- 1-dimensional fit using different composition of Λ^{*} reflections to model the background
- This analysis is not sensitive to broad $J / \psi p$ contribution, like $P_{c}(4380)^{+}$

Fit to the $J / \psi p$ invariant mass

- The masses of the narrow peaks are just below the $\Sigma_{c}^{+} \bar{D}^{(*) 0}$ masses
- Although the compact pentaquark model is not ruled out, these features favour the molecular interpretation
- Need to measure quantum numbers and find isospin partners in order to have a definitive answer

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$(95 \% \mathrm{CL})$	$\mathcal{R}[\%]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	(<27)	$0.30 \pm 0.07_{-0.09}^{+0.34}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	(<49)	$1.11 \pm 0.33_{-0.10}^{+0.22}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$	(<20)	$0.53 \pm 0.16_{-0.13}^{+0.15}$

CONCLUSIONS

Conclusions

- Exotic spectroscopy is an extremely rich and productive field
- Several observations and searches for pentaquark states in the last 4 years
- Quite a recent discovery - this is just the beginning of a new era in both discovery of new states and understanding of QCD binding mechanisms
- We still do not know what the real nature of these new states is
- The LHCb Run 2 update measurement is the strongest evidence so far towards a molecular interpretation of the P_{c}^{+}states
- Amplitude analysis is challenging, but ongoing
- LHCb clearly dominates the scene for now, waiting for Belle II to join

BACKUP

[^0]: [Phys. Rev. D 21, 203 (1980)]

[^1]: [Phys. Rev. D 97, 032010 (2018)]

