

Exotic mesons

Xiaolong Wang¹ (Presented by Jake Bennett²) (On behalf of the Belle Collaboration)

- 1. Fudan University, Shanghai, China
- 2. The University of Mississippi, US

Conference on Flavor Physics and CP Violation University of Victoria

May 7, 2019

Quarkonium

- Quarkonium: $q\overline{q}$, the simplest hadronic system
- Quarkonium spectrum is similar to atomic spectra
- Below DD/BB thresholds both charmonium and bottomonium are success stories for QCD
- The potential model:

Example potential from Barnes, Godfrey, Swanson:

$$V_{0}^{(c\bar{c})}(r) = -\frac{4}{3} \frac{\alpha_{s}}{r} + br + \frac{32\pi\alpha_{s}}{9m_{c}^{2}} \tilde{\delta}_{\sigma}(r)\vec{S}_{c} \cdot \vec{S}_{\bar{c}}$$
(Coulomb + Confinement + Contact)

$$V_{\text{spin-dep}} = \frac{1}{m_{c}^{2}} \left[\left(\frac{2\alpha_{s}}{r^{3}} - \frac{b}{2r} \right) \vec{L} \cdot \vec{S} + \frac{4\alpha_{s}}{r^{3}} T \right]$$
(Spin-Orbit + Tensor)
PRD72, 054026 (2005)

But there are many "exotic" states observed in recent decades that are hard to fit into the two families

Eichten et al., Rev. Mod. Phys.80,1161(2008)

Particle "Zoo" Status of the spectra

S. Olsen et al., Rev. Mod. Phys. 90, 015003(2018)

Particle "Zoo" Status of the spectra

BABAR BABAR BELLE BABAR

Processes used in exotic discoveries

J/ψ,ψ(2S)

сī

J^{PC}=0^{±+}

Y*

wwww

mm

R. F. Lebed et al., Prog. Part. Nucl. Phys 93, 143(2017)

ISR and e+e- collision

Events / 20 MeV/c² 00 05 05

3.8

Entries / 20 MeV/c² 00 01

0

sidebands

10

4.4

4.5

 $M(\pi^+\pi^-J/\psi)$ (GeV/c²)

······ Solution I

----- Solution II

5

Double charmonium production and yy collision

Some candidates for conventional quarkonium states

- ► $X^*(3860) \rightarrow x_{c0}(2P)$
- ► $Z(3930) \rightarrow x_{c2}(2P)$?
- ► $X(3823) \rightarrow \psi(1^{3}D_{2})$

Still many slots to be filled!

Most of the observed quarkonium-like states remain exotic candidate states!

Theoretical Interpretations of exotic states

- Most models can be classified according to quark clustering and degrees of freedom
 - Hadroquarkonium: compact quarkonium-like core surrounded by light quarks
 - Tetraquarks: compact diquark and anti-diquark substructures
 - Hadronic molecules: heavy and light quarks and anti-quarks combine to form a hadron pair
 - Hybrids: both quarks and gluons act as active degrees of freedom (contribute to quantum numbers)
 - Kinematical effects
 - All of the above...

More details from M. Voloshin, later this session

Recent results on candidate exotic hadrons

Belle:

- Y(4260) in B decays
- Search for spin partner state of Y(4630)
- ► Inclusive B → X_{cc}K and absolute production of X(3872) in B decays
- Search for double Z_c production at Belle

LHCb:

- ► $\eta_c \pi^-$ resonance in $B^0 \rightarrow \eta_c \pi^- K^+$ decays
- Search for beautiful tetraquarks
- Exotic contributions to $B^0 \rightarrow J/\psi \pi^- K^+$
- D0: Evidence for Z_c(3900) in semi-inclusive decays of b-flavored hadrons

- BESIII: (*see review by G. Mezzadri later)
 - e⁺e⁻ → γωJ/ψ
 - ► X(3872) → $\pi^0 x_{c1}$
 - ► $e^+e^- \rightarrow \omega x_{c0}$
 - e⁺e⁻ → DDππ

…

Y(4260) in B decays

- Y states observed in ISR by BaBar, Belle, CLEO
- ► $Y(4260) \rightarrow Y(4220)+Y(4320)$ in e⁺e⁻ direct production at BESIII
- Y(4008), Y(4260), Y(4360), Y(4660), ψ(4040), ψ(4160)
 → overpopulation of states!
- Y(4260): DD₁(2460) molecule? P-wave tetraquark?
- Remarkable: decay to D^(*)D^(*) not seen (although the phase space is large)

100

80

60

40

20

(dd) (ψ/L⁻π⁻

Ĕ

σ(e⁺e

- J/ψf₀(980) hadrocharmonium?
- (ccg) hybrid? (blocked by gluon fluxtube)
- Y(4260) → $\pi^+\pi^-\psi(2S)$ observed

Y(4260) in B decays

- Some predictions (e.g. mixed-state model based upon QCD sum rules), suggest $B^+ \rightarrow K^+Y(4260)$ with $Y(4260) \rightarrow \pi^+\pi^-J/\psi$ may have a branching fraction in the range 3.0 x 10⁻⁸ 1.8 x 10⁻⁶
- BaBar, Phys. Rev. D73, 011101(2006)
 - ► $B^+ \rightarrow K^+Y(4260), Y(4260) \rightarrow \pi^+\pi^-J/\psi$
 - 211 fb⁻¹, 128 ± 42 signal events (3.1σ)
 - Scaling for total Belle luminosity 711 fb⁻¹ would give S/sqrt(S+B) = 5.7
- D0, Phys. Rev. D98, 052010(2018)
 - 10.4 fb⁻¹, 167 ± 41 signal events (4.3σ) b-flavoured hadrons (B, Bs, B*,...)
 - Semi-inlusive (require $\pi^+\pi^-J/\psi$ secondary vertex)

Y(4260) in B decays - NEW Belle Result

CONTROL SIGNALS

Belle, 711 fb⁻¹ (full Belle data)

Event 1

4.5

Decay		$N_{\rm S}$	B	$\mathcal{B}_{ ext{PDG}}$	
$B^+ \to \psi(2S)K^+$	16.8	3481 ± 95	$(6.54\pm0.18)\times10^{-4}$	$(6.21\pm0.23)\times10^{-4}$	
$B^0 o \psi(2S) K^0$	10.3	856 ± 74	$(5.25\pm0.45)\times10^{-4}$	$(5.8\pm0.5)\times10^{-4}$	
$B^+ \to X(3872)K^+, X(3872) \to J/\psi \pi^+ \pi^-$	22.2	185 ± 13	$(9.07\pm0.64)\times10^{-6}$	$(8.6\pm0.8)\times10^{-6}$	
$B^0 \to X(3872)K^0, X(3872) \to J/\psi \pi^+ \pi^-$	13.1	29.9 ± 6.2	$(4.97 \pm 1.03) \times 10^{-6}$	$(4.3\pm1.3)\times10^{-6}$	

R. Garg, V. Bhardwaj, J. B. Singh, et al. (Belle Collaboration), arXiv:1901.06470 [hep-ex]

Decay	ϵ (%)	$N_{ m S}$	\mathcal{B}	$\Sigma (\sigma)$	U.L.
$B^+ \to Y(4260)K^+, Y(4260) \to J/\psi \pi^+ \pi^-$	19.8	$179 \pm 61^{+55}_{-41}$	$(9.8\pm3.3^{+3.0}_{-2.3})\times10^{-6}$	2.1	1.4×10^{-5}
$B^0 \to Y(4260)K^0, Y(4260) \to J/\psi \pi^+ \pi^-$	10.6	$39 \pm 28^{+7}_{-31}$	$(8.0\pm5.7^{+1.4}_{-6.3})\times10^{-6}$	0.9	1.7×10^{-5}

Factor ~3.3 more data than BaBar Neutral *B* decays added No signal observed Upper limit consistent with BaBar (branching fraction reaches 10^{-6} level)

15

Y(4630)/Y(4660)

- ▶ Discovered in ISR \rightarrow J^{PC}=1⁻⁻
- ► Y(4630) $\rightarrow \Lambda_c^+\Lambda_c^-$ and Y(4660) $\rightarrow \pi^+\pi^-\psi(2S)$ may be same state
 - Guo, Haidenbauer, et al., Phys. Rev. D82, 094008(2010)
- Highest charmed XYZ stated observed and confirmed so far
- → if a ccbar state, radius is about 2.2 fm (unstable, far beyond string breaking limit)
- The only quarkoniumlike state observed decaying into baryons*

PDG2018, only Y(4660)

Search for spin partner state of Y(4630) in B decays

▶ $\eta_c(2S)f_0(980)$, mass 4613 ± 4 MeV, width ≈ 30 MeV [width dominated by $\eta_c(2S)$] → called Y_n

- F.K. Guo, J. Haidenbauer, C. Hanhart, U.G. Meißner, Phys. Rev. D 82, 094008 (2010)
- ▶ J^{PC} = 0⁻⁺, cannot be produced in ISR but can be sought in B decays
- > Y(4660) and its spin partner are sought in the $\Lambda_c^+\Lambda_c^-$ invariant mass spectrum

Neutral B decays: Belle EPJC.78.252 (2018) Neutral B decays: Belle EPJC.78.928 (2018)

17

- No significant signals seen in the $\Lambda_c^+ \bar{\Lambda}_c^-$ mass spectrum.
 - $\mathcal{B}(B^- \to K^- Y(4660)) \mathcal{B}(Y(4660) \to \Lambda_c^+ \bar{\Lambda}_c^-) < 1.2 \times 10^{-4} \text{ at } 90\% \text{ C.L.}$
 - $\mathcal{B}(B^- \to K^- Y_\eta) \mathcal{B}(Y_\eta \to \Lambda_c^+ \bar{\Lambda}_c^-) < 2.0 \times 10^{-4} \text{ at } 90\% \text{ C.L.}$

BRs of $B \rightarrow KX_{cc}$ and absolute production of X(3872) in B decays

 $Bf(B^{-} \to XK^{-})Bf(X \to J/\psi\pi^{+}\pi^{-}) = (8.20 \pm 0.93) \times 10^{-6}$ $Bf(B^- \to XK^-)Bf(X \to J/\psi\pi^+\pi^-\pi^0) = (8.2 \pm 4.2) \times 10^{-6}$ $Bf(B^{-} \to XK^{-})Bf(X \to J/\psi\gamma) = (2.8 \pm 0.8 \pm 0.1) \times 10^{-6}$ $Bf(B^{-} \to XK^{-})Bf(X \to \psi(2S)\gamma) = (9.5 \pm 2.7 \pm 0.6) \times 10^{-6}$ $Bf(B^{-} \rightarrow XK^{-})Bf(X \rightarrow D^{0}D^{0*} + c.c.) = (1.67 \pm 0.36 \pm 0.47) \times 10^{-4}$

 $\Rightarrow Bf(X \to J/\psi\pi^{+}\pi^{-}) < \frac{8.2 + 1\sigma}{8.2 + 8.2 + 2.8 + 9.5 + 167 - 1\sigma} \approx 6.6\% \quad @90\% \text{ C. L.}$

 $2.3\% < Bf(X \to J/\psi\pi^+\pi^-) < 6.6\%$ $1.4 \times 10^{-4} < Bf(B^- \rightarrow X(3872)K^-) < 3.2 \times 10^{-4}$ at 90% C.L. $Bf (B^{-} \to \psi(2S)K^{-}) = (6.48 \pm 0.35) \times 10^{-4}$ $Bf (B^{-} \to \chi_{c1}K^{-}) = (4.9 \pm 0.5) \times 10^{-4}$ $Bf (B^{-} \to \eta_{c}K^{-}) = (9.1 \pm 1.3) \times 10^{-4}$

ndt⁸ seen

not seen

not seen

181

746

218

1693

 $p\overline{p}$

 $\pi^{+}\pi^{-}\eta_{c}(1S)$

 $\pi^+\pi^-\chi_{c1}$

$B^+ \rightarrow K^+X_{cc}$

TAG

Particular situation at $\Upsilon(4S)$: m($\Upsilon(4S)$) = m_B+m_B

Y(4S)

B mesons at rest in center of mass system

Hierarchical full reconstruction of 1104 hadronic decays

Х -

 B^+

Kaon

- NeuroBayes neural-network package
- M. Feindt et al., NIM. A654, 432(2011)

$$M_{\rm miss(h)} = \sqrt{(p_{\rm e^+e^-}^* - p_{\rm tag}^* - p_{\rm h}^*)^2}/c$$

Mode	Yield	Significance (σ)	$\epsilon(10^{-3})$	${\cal B}~(10^{-4})$	World average for \mathcal{B} (10 ⁻⁴) [10]
η_c	2590 ± 180	14.2	2.73 ± 0.02	$12.0 \pm 0.8 \pm 0.7$	9.6 ± 1.1
J/ψ	1860 ± 140	13.7	2.65 ± 0.02	$8.9\pm0.6\pm0.5$	10.26 ± 0.031
χ_{c0}	430 ± 190	2.2	2.67 ± 0.02	$2.0 \pm 0.9 \pm 0.1 \ (< 3.3)$	$1.50\substack{+0.15 \\ -0.14}$
χ_{c1}	1230 ± 180	6.8	2.68 ± 0.02	$5.8\pm0.9\pm0.5$	4.79 ± 0.23
$\eta_c(2S)$	1050 ± 240	4.1	2.77 ± 0.02	$4.8\pm1.1\pm0.3$	3.4 ± 1.8
$\psi(2S)$	1410 ± 210	6.6	2.79 ± 0.02	$6.4\pm1.0\pm0.4$	6.26 ± 0.24
$\psi(3770)$	-40 ± 310	-	2.76 ± 0.02	$-0.2 \pm 1.4 \pm 0.0 \ (< 2.3)$	4.9 ± 1.3
X(3872)	260 ± 230	1.1	2.79 ± 0.01	$1.2 \pm 1.1 \pm 0.1 \ (< 2.6)$	(< 3.2)
X(3915)	80 ± 350	0.3	2.79 ± 0.01	$0.4 \pm 1.6 \pm 0.0 \ (< 2.8)$	-

Almost reaching the sensitivity of product branching fraction $B^+ \rightarrow K^+ X(3872), X(3872) \rightarrow D^0 \overline{D}^0 \pi^0$ $\mathcal{B}=(1.0\pm0.4)\times10^{-4} \text{ (PDG 2018)}$

Y. Kato, T. lijima, et al. (Belle Collaboration), Phys. Rev. D97 (2018) 012005

Search for double Z_c production at Belle

- ► $e^+e^- \rightarrow Z_c(3900)^+\pi^-$ observed at BESIII and Belle
- ► $e^+e^- \rightarrow Z_b^+\pi^-$ observed at Belle, near 10.86 GeV
- Search for $e^+e^- \rightarrow Z_c^+Z_c^-$ at 10.52, 10.58 and 10.86 GeV
- Search also in Y(1S) and Y(2S) decays (9.46 GeV and 10.02 GeV)

Z_c states	Z_c labels in Ref. [23]	Mass	Width
$Z_c^+(3900)$	$X^+(3900)$	3886.6 ± 2.4	28.1 ± 2.6
$Z_{c}^{+}(4200)$	$X^+(4200)$	4196^{+35}_{-32}	370^{+100}_{-150}
$Z_{c1}^+(4050)$	$X^{+}(4050)$	4051_{-40}^{+24}	82^{+50}_{-28}
$Z_{c2}^+(4250)$	$X^{+}(4250)$	4248^{+190}_{-50}	177^{+320}_{-70}
$Z_c^+(4050)$	$X^{+}(4055)$	4054 ± 3.2	45 ± 13
$Z_c^+(4430)$	$X^{+}(4430)$	4478^{+15}_{-18}	181 ± 31

 $M^{2}(\psi(2S),\pi^{+}) \text{ GeV}^{2}/c^{4}$

Born cross section in [fb]

Search for double Z_c production at Belle s/5 MeV/d 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 3.8 3.9 4 4.1 4.2 37 3.8 3.9 4 4.1 4.2 $M(\pi^{*}J/\psi)(GeV/c^{2})$ M(π*J/ψ)(GeV/c²) M(π*J/ψ)(GeV/c²) 3.8 3.9 4 M(π⁺J/ψ)(GeV/c²) 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 3.8 4.1 4.1 4.2 3.9 4 M(π+J/ψ)(GeV/c²) M(π*J/ψ)(GeV/c²) - باللاب 0 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 4.1 4.2 3.6 3.8 3.9 4 4.1 3.8 3.9 4 M(π*J/ψ)(GeV/c²) $M(\pi^+J/\psi)(GeV/c^2)$ M(π*J/ψ)(GeV/c²) 0 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 3.6 3.7 3.8 3.9 4 4.1 4.2 3.7 3.8 3.9 4 4.1 4.2 $M(\pi^+J/\psi)(GeV/c^2)$ $M(\pi^*J/\psi)(GeV/c^2)$ M(π*J/ψ)(GeV/c²) പ്

0 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

M(π⁺J/ψ)(GeV/c²)

3.8 3.9

M(π⁺J/ψ)(GeV/c²)

4.1 4.2

3.9

4 M(π⁺J/ψ)(GeV/c²)

3.8

4.1 4.2

4.2

Mode	\sqrt{s} N^{fit}	N ^{UL}	ε	$\Sigma \sigma_{\rm syst}$	$\sigma \times \\ \mathcal{B}(Z^+ \to \pi^+ I/2b)$	$\sigma^{\rm UL} \times \\ \mathcal{B}(Z^+ \to \pi^+ L/2^{\rm t})$		
$\frac{e^+e^- \to Z^+(3900)Z^-(3900)}{2}$	10.52 - 4.9 +	3.6 7.2	41.5	- 10.3	$\frac{\mathcal{D}(\mathcal{Z}_c^- \to \pi^+ J/\psi)}{-1.6 \pm 1.2}$	$\frac{\mathcal{B}(\mathcal{Z}_c^- \to \pi^+ J/\psi)}{2.3}$		
$e^+e^- \rightarrow Z_c^+(4200)Z_c^-(4200)$	$10.52 - 27.5 \pm$	57.8 82.8	43.7	- 34.2	-8.5 ± 18.1	26.5		
$e^+e^- \rightarrow Z_c^+(3900)Z_c^-(4200) + c.c.$	$10.52 \mid -0.5 \pm 1$	5.0 28.4	21.0 .	- 22.9	-0.3 ± 9.7	18.3		
$e^+e^- \to Z_c^+(3900)Z_c^-(3900)$	10.58 11.8 \pm 1	3.0 32.2	41.5 0	.9 12.7	0.5 ± 0.5	1.3		
$e^+e^- \rightarrow Z_c^+(4200)Z_c^-(4200)$	10.58 132.1 ± 1	73.0 390.1	43.4 0	.8 35.4	5.1 ± 6.9	15.5		
$e^+e^- \rightarrow Z_c^+(3900)Z_c^-(4200) + c.c.$	$10.58 - 7.7 \pm 3$ $10.867 - 1.4 \pm 3$	46 90	$ 20.8 \cdot 41.5 \cdot .$	- 20.7	-0.6 ± 3.2 -0.3 ± 1.1	$\frac{5.1}{2.2}$		
$e^+e^- \rightarrow Z_c^+(4200)Z_c^-(4200)$	$10.867 - 0.2 \pm 4$	1.6 93.7	43.7	- 33.2	-0.1 ± 9.4	21.9		
$e^+e^- \rightarrow Z_c^+ (3900) Z_c^- (4200) + c.c.$	$10.867 30.3 \pm 1$	6.7 53.9	20.5 1	.9 16.3	14.6 ± 8.4	26.6		
$\sqrt{s}=9.46 \text{ GeV}$ (with	$\sigma(e^+e^- ightarrow Y)$ h $\Upsilon(5S) ightarrow Z_0$	(4260))≏ (′)±π∓ a	265 pt and $Y($	o at √: (4260)∙	s=4.26 GeV $ ightarrow Z_c^\pm(3900)\pi^{\pm}$	F)		
\sqrt{s} =10.02 GeV								
\sqrt{s} =10.52 GeV		Search for Z _c pair productions						
$\sqrt{s}{=}10.58~{ m GeV}$		in e⁺e⁻ collision						
\sqrt{s} =10.86 GeV			No o	bviou	s signal obs	erved		
Column:			Tho		f Born cross	soctions		
$e^+e^- \rightarrow Z^{\pm}(3000) Z^{\pm}(3000)$			are set at the fb level					
$C C 7 Z_c (3300) Z_c (3300)$			are set at the intevel					
$e^+e^- \to Z_c^{\pm}(3900)$	$Z_{c}^{+}(4200$)						
$e^+e^- \rightarrow Z_c^{\pm}$ (4200))							
		-						
Data set, in	which		24					
			ZI					
\angle_{b} were of	bserved	S	Jia, C. F	P. Shen,	C. Z. Yuan, et al.	(Belle Collaboration		
	Phy	Phys. Rev. D 97 (2018) 112004						

Search for beautiful tetraquarks Motivation

- No hadron containing more than two heavy quarks has been observed so far
- Theoretical predictions for $X_{\overline{bbbb}}$:
 - Mass within [18.4; 18.8] GeV/c²
 - Mass typically below $\eta_b \eta_b$ threshold, therefore decay to $\Upsilon l^+ l^- (l = e, \mu)$

• Cross-section:
$$\sigma(pp \rightarrow X_{b\bar{b}b\bar{b}}) \times Br(X_{b\bar{b}b\bar{b}} \rightarrow 2l^+ 2l^-) \sim 1 \, \text{fb}$$

Lattice QCD calculations do not find any evidence of this state

Analysis strategy

- 1. Search in $\Upsilon(1S)[\rightarrow \mu^+\mu^-]\mu^+\mu^-$ spectra
- 2. Normalization decay: $\Upsilon(1S) \rightarrow \mu^+\mu^-$
- 3. Data of 6.3fb⁻¹ collected in
 - I. 2011@7TeV,
 - II. 2012@8TeV,
 - III. 2015-2017@13TeV

22

Search for beautiful tetraquarks

σ(X_{bbbb}) ~ 60-70 MeV/c², multiplied by a scaling factor taken from simulation

Cut-based selection

- Search for $X_{b\bar{b}b\bar{b}}$ in mass range [17.5; 20] GeV/c²
- Fiducial region: $p_T(\mu^{\pm}) < 30 \text{ GeV/c}, 2.0 < y < 4.5$

No significant excess is seen in data,

therefore upper limit is set:

 $S = \sigma(pp \rightarrow X) \times Br(X \rightarrow Y(1S)\mu^+\mu^-) \times Br(Y(1S) \rightarrow \mu^+\mu^-)$

Likelihood profile as a function of S is integrated to determine upper limits

$\eta_c \pi^-$ resonance in $B^0 \rightarrow \eta_c \pi^- K^+$ decays Motivation

- Important input for understanding nature of exotic hadrons, in particular of $Z_c(3900)^{-1}$ discovered in $J/\psi\pi^{-1}$ system from Y(4260) decays
 - ► $Z_c(3900)^-$ as analogue of quarkonium hybrids $\rightarrow \eta_c \pi^-$ resonance $J^P = 0^+$, 1⁻, 2⁺ (based on lattice QCD)

 W^+

- E. Braaten, Phys. Rev. Lett. 111(2013)162003
- ► $Z_c(3900)^-$ as hadrocharmonium $\rightarrow \eta_c \pi^-$ resonance m = 3800 MeV/c²
 - M. B. Voloshin, Phys. Rev. D87, 091501(2013)
- ► Diquark model $\rightarrow \eta_c \pi^-$ resonance below the open-charm threshold J^P = 0⁺
 - L. Maiani et al., Phys. Rev. D71, 014028(2005)
- Therefore, search for an $\eta_c \pi^-$ resonance in $B^0 \rightarrow \eta_c \pi^- K^+$ decays

24

$\eta_c \pi^-$ resonance in $B^0 \rightarrow \eta_c \pi^- K^+$ decays

- ► Good description is achieved by adding an exotic $Z_c(4100)^- \rightarrow \eta_c \pi^-$ component
- Evidence for exotic $Z_c(4100)^-$ resonance (3.4 σ significance considering systematics)
- Both J^P= 0⁺ and J^P= 1⁻ are consistent with the data

M = $4096 \pm 20^{+18}_{-22}$ MeV/c2, $\Gamma = 152 \pm 58^{+60}_{-35}$ MeV

Quasi-two-body branching fraction:

 $B(B^0 \rightarrow Z_c(4100)^- K^+, Z_c(4100)^- \rightarrow \eta_c \pi^-) = (1.89 \pm 0.64^{-0.67}_{+0.73}) \times 10^{-5}$

Exotic contributions to $B^0 \rightarrow J/\psi \pi^- K^+$ Motivation

- $Z_c(4430)$ ⁻ state discovered by Belle in $Z_c(4430)$ ⁻ → ψ(2S)π⁻ (Phys.Rev.Lett.100,142001(2008))
 - not confirmed by BaBar (Phys.Rev.D79,112001(2009))
 - confirmed by LHCb (Phys.Rev.Lett.112,222002(2014))
- ► $Z_c(4430)^- \rightarrow J/\psi\pi^-$ not yet confirmed
 - ► Belle finds evidence for $Z_c(4430)^- \rightarrow J/\psi\pi^-$ in B⁰ $\rightarrow J/\psi\pi^-K^+$, and also observed a new state $Z_c(4200)^- \rightarrow J/\psi\pi^-$ (Phys.Rev.D90,112009(2014))

Analysis strategy

- Large statistics of ~5×10⁵ events allow independent fits in bins over m(K⁺π⁻)
- Purity > 90% in all $m(K^+\pi^-)$ bins
- Poor knowledge of the conventional K^{*0} spectrum
- Use a model-independent approach only requiring knowledge of the J_{max} (highest spin of K^{*0} contributions)

Exotic contributions to $B^0 \rightarrow J/\psi \pi^- K^+$

- Kinematic variables: m(K⁺π⁻), χ , θ_l , θ_V
- > 3D angular fits in bins of $m(K^+\pi^-)$
- ▶ Fit model includes only K^{*0} contributions with allowed J up to J_{max}
- Fine m(K⁺ π^-) binning: conclusion is independent of K^{*0} line shapes

 $\leftarrow J/\psi$

 B^0

 $K\pi$

Exotic contributions to $B^0 \rightarrow J/\psi \pi^- K^+$

The likelihood ratio test demonstrates that data reject K^{*0} only hypothesis with 10o significance

Dalitz plot for background-subtracted data $m(J/\psi\pi^-)$ [MeV] LHCb 60 4500 50 40 4000 30 20 3500 -10800 1000 1200 1400 $m(K^+\pi^-)$ [MeV]

Indications of the Z(4200)- seen by Belle

The nature of the non- K^{*0} contributions can be investigated with a future amplitude analysis

Summary

- The LHCb experiment provides a significant contribution to the knowledge of exotic hadron spectroscopy:
 - Search for beautiful tetraquarks $X_{b\overline{b}b\overline{b}} \rightarrow \Upsilon(1S)\mu^+\mu^-$, upper limit is set
 - ► Evidence for an $\eta_c(1S)\pi^-$ resonance in $B^0 \rightarrow \eta_c(1S)\pi^-K^+$ decays
 - Model-independent observation of exotic contributions to $B^0 \rightarrow J/\psi \pi$ -K⁺ decays
- Analyses in Belle still ongoing:
 - Searches for partner states
 - Different production mechanisms (ISR vs. B decays vs. Y decays)
 - Absolute branching fraction
 - Searches for Z_c pair production
- Belle II has started taking data!
 - Huge new data sample will be used to study exotic states

Thank you!

How exotic? X(3872) as an example

J^{PC} = 1⁺⁺

- Strong coupling to DD*
- No charged or neutral partner observed
 - Coupled channel, good description
 - PTEP9, 093D01(2013)

gluons

Search for a strange pentaquark P_s state at Belle

• LHCb observed hidden charm pentaquark state in $\Lambda_b^0 \to K^- P_c^+ \to K^- (J/\psi p).$ R. Aaij et al., PRL115, 072002(2015)

Analogue search for hidden-strange pentaquark by switching b → c(Λ⁰_b → Λ⁺_c), c → s(J/ψ → φ): Λ⁺_c → π⁰P⁺_s → π⁰(φp).
 Λ⁺_c → π⁰φp decay has not been observed so far.

• Perform 2D fit to $M_{K^+K^-\rho\pi^0}$ vs $M_{K^+K^-}$ plane.

B. Pal et al., Phys.Rev.D96, 051102(R)(2017)

- No significant Λ⁺_c signal is observed. New upper limits:
 - $\mathcal{B}(\Lambda_c^+ \to \phi \rho \pi^0) < 15.3 \times 10^{-5}$

1.1

- $\mathcal{B}(\Lambda_c^+ \to \phi p \pi^0)_{NR} < 6.3 \times 10^{-5}$
- Also perform 2D fit in each $M_{K^+K^-}$ bin. No significant P_s^+ signal.

32

• $\mathcal{B}(\Lambda_c^+ \to \pi^0 P_s^+) \times \mathcal{B}(P_s^+ \to \phi p) < 8.3 \times 10^{-5}.$

$\eta_c \pi^-$ resonance in $B^0 \rightarrow \eta_c \pi^- K^+$ decays

Dominant uncertainty from external branching fractions

Eur.Phys.J. C78,1019(2018)

$\eta_c \pi^-$ resonance in $B^0 \rightarrow \eta_c \pi^- K^+$ decays

2D fit $m(p\bar{p}K^{+}\pi^{-})$ -m(pp) for Run-I and Run-II

