Short Baseline Neutrino
Experiments

—-

J. Pedro Ochoa-Ricoux
University of California at Irvine
FPCP 2019 - Victoria, Canada



Neutrinos Matter!
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* We need to understand neutrinos if we want to understand our
universe!
Neutrinos are everywhere!
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— They are guiding the way to new physics



Short Basellne Neutrlno Experlments

 Short basellne (SB) neutrlno experlments are at the forefront of

our field:
—  Performing precision measurement of Our current picture
neutrino oscillation parameters of neutrinos
— Tackling open questions: m? —— m?
. . . . ? V“
What is the neutrino mass ordering* Normal |mmv. | Inverted
—  Are there more than 3 n_eutrinos m ] e — m— 11’
(and/or other new physics)? o 6 g
atmospheric !
: : : ~2x1073eV? ,
—  Studying a variety of neutrino e
m,2L — ~2x107eV~
sources and processes 2T S eolarixiosev? | 7
_________________________________________________________ ml"—— jrssal | E— ——’"3"
— Producing important flux and seetalk by K. I
cross-section measurements McFarland ;0 2

. mm

--------------------------------------------------------------

In this talk | will highlight the contributions of present and future
SB experiments with a focus on reactor experiments

Disclaimer: | am a member of the Daya Bay and JUNO collaborations
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Reactor Antineutrinos

* Nuclear power plants are an abundant and well-understood
source of electron antineutrinos:

fission process in a nuclear reactor
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— Neutrinos originate primarily from fission products of 4 isotopes:
235, 239Py, 241Py and 238U



als

T

* The primary detection channel in reactor experiments is the inverse
beta decay (IBD) reaction:
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— Coincidence between positron and neutron signals allows for
powerful background rejection

— Product of flux times IBD cross-section gives spectrum that peaks
around 3-4 MeV



Electron Antineutrino Disa

ppearance

* The disappearance of electron antineutrinos is given by:
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(disclaimer: only including a small subset of reactor experiments in this graph)



Ongoing React

or Experiments

* Three running experiments (Daya Bay, RENO and Double Chooz) were
designed to make a precision measurement of the 013 mixing angle

* Strategy: look for disappearance at short (~1-2 km) baselines:

— Need “small” detectors (tens or hundreds of tons)

— Looking for a small effect, so key is keeping systematics under control
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Detector Technology
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Three-zone detectors
* Similar detection technologies: <

Calibration units des| \Surrounded by instrumented shields
I 10 I o
sources and LEDE ! (water or LS) that also veto muons

inner water shield
outer water shield

Gd-doped

liquid scintillatc

(using Daya Bay as an illustration)
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The three experiments see a
clear oscillation signal consistent
with 3-flavor oscillations:
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‘Global Landscape

The most precise measurements of 613 come from reactor experiments:

Experiment Value
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Sterlle Neutrlnos

* Ongoing reactor experiments are also an ideal = | 2

ground to search for sterile neutrinos:
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(Measured) / (Expected from EH1)

The existence of sterile neutrinos could be detected via their modification

to the 3 active neutrinos’ oscillatory behavior if they mix with them

Accelerator (MINOS) and reactor (Daya Bay + Bugey-3) results have been

recently combined to yield stringent exclusion limits:

In region covered by Daya Bay, signal would
appear as an additional spectral distortion with
a frequency different from standard 3-neutrino
oscillations

0.9

------ Am, = 4x10° eV? - Amj, = 4x10”? eV?
sin°20,, = 0.05 assumed

-----------------------------------

#Il.

...............................

o s e 20 B

Prompt Energy (MeV)

2 (eV?d)

Am

102

10

107

107

107

104

LSND + MiniBooNE’s allowed parameter
space excluded < 0.8 eV2 @ 90% C.L.

| IIIIIII| | LN AL
PRL117,

151801
(2016)

| 99% C.L. Allowed
= CJLSND

— — MiniBooNE (V mode)
~ 98 Kopp et al. (2013)
{112 Gariazzo et al. (2016)
= 99% C.L. (CLg) Excluded
- — MiniBooNE

- — MINOS and Daya Bay/Bugey-3

| 11111

107

10™ 10°°

1072

107

-2 2 2
sin20,, = 41U, FIU |

—



Fermilab’s SB Neutrino Program

* Fermilab’s SB neutrino program FERMILAB-PUB-19-079-ND-T

will also tackle this question i Vu > Ve @ppearance
10 [ LsND 90%
—  Three detectors (MicroBooNE, : ] Lsnp 9o )
ICARUS and SBND) sampling | e
the same beam at 3 different > 1 —— BN 30
baselines RN WU
E 7
—  Will be able to make a definite I
test of all the currently allowed 10"

parameter space

(1) S. Gariazzo et al., arXiv:1703.00860 [hep-ph]
(2) M. Dentler et al., arXiv:1803.10661 [hep-ph]
1 1] I 1

— All 3 experiments expected to ot

-3 | —2 " -1
be online by 2020 10 10 10 1
sin°20,,,
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Reactor Antineutrino Anomaly

* Ongoing reactor experiments have also shed light on yet another
anomaly:

— The reactor antineutrino anomaly (RAA): data from short baseline reactor
experiments show a ~2.50 deficit with respect to the most recent flux
prediction models

e (Causes of the anoma|y? (from L. Bernard’s talk at Moriond 2019)
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—  Experimental . g -
systematics? defioit - - ;LO; ___________ -
Extremely unlikely... 3 0e E
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— New Physics (oscillations to 507 B

a 4th ~eV sterile neutrino )? 2 00 Reactor Atmospheric Solar |
05— anomaly anomaly anomaly —

Maybe-... M0.4—_1I IIIIlIlIOI lIIlIlIIll lIIIIII|2I llllllll3l IIIIIII|4I IIIIIIIISI lIIllH6

— Problems with the 0 0 Re::lfctor To [1)2tector Dligtance(m%O 0 +0

prediction? Likely (see
next slides)
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light in the last few years P
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These findings spurred an
aggressive program of very
short baseline (~10-30m)
reactor experiments

Main goals:

Search for oscillations to a
~eV scale sterile neutrino

+ directly measure 235U
yield and spectrum
(in some cases)

+ reactor monitoring and
nonproliferation
(in some cases)

Use a variety of approaches

(reactor type, segmentation,
... etc)

Xperiments

DANSS* 3000 MW
(Russia) LEU fuel
NEOS* 2800 MW
(S Korea) LEU fuel
NUuLAT 40 MW
(USA) 235
Neutrino-4* 100 MW
(Russia) 235
PROSPECT"* 85 MW
(USA) 235|
SolLid 72 MW
(UK Fr Bel US) 235
Chandler 72 MW
(USA) 235|J
Stereo” 57 MW
(France) 235

(*= have released results)
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PROSPECT
(segmented detector)
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Best measurement of 235U spectrum so far.
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Exclusion limit from Phase |. No

sterile neutrino from this or
other experiment yet.

Note: there is a sterile neutrino claim by Neutrino-4 that is in tension with the other data
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Looking Ahead: th

e JUNO Experiment

* There is also a major multipurpose reactor neutrino experiment being
constructed in China: the Jiangmen Underground Neutrino Observatory (JUNO)

- “Medium” baseline of 53km from two major power plants (10 reactors)

7/ 0 fiyZZhoneshans = A
o4 Y Zhu Hai ’61\ aitoizkoNP P
=/
- Hong Kong

Yangjiang'NPP

BhcnZhen = . g
N
L Daya Bay

Top muon veto
Outer water tank Scintillator panels

Muon Cherenkov veto x

Steel support structure \

optical separation

17,000 20-inch PMTs
25,000 3-inch PMTs

Water buffer

Acrylic sphere
diameter: 35.4m

Liquid scintillator
20 kt of LAB

- Given the larger baseline, the detector will have to be MASSIVE (20 ktons)

(Note: a similar proposal in Korea, RENO-50, has now been abandoned) 18



Physics goals:

- Determination of the neutrino
mass ordering

- Sub-percent precision on
sin220812, Am221 and |[Am2¢]

- Geoneutrinos, supernova neutrinos,
solar neutrinos, atmospheric neutrinos

.............................

v, spectrum at JUNO, L = 52.5 km]

—No osc.
---1-P,, 08C.
—Pge for NO

— P, for 1O

!

.....

1 sin?26
13

A PO

- Search for new physics and others T s e s e T
B Am,, B E, [MeV]
JUNO is pushing limits
of liquid scintillator KamLAND JUNO Relative
_ (as reference) Gain
detection technology —
Total light | 250 pe/MeV | 1200 pe/MeV 5
Will deploy a SB detector  piotocathode
called TAO to measure fine  coverage 34% 75% ~2
structure in unoscillatea Light yield |1.5 g/ PPO|3-5g/IPPO| ~1.5
Spectrum Attenuation 15/16 m 25/35 m ~0.8
Data-taking to begin in PMT QEXCE | ~15% ~30% ~2

2021
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Coherent Elastlc Vv Nucleon Scatterlng

P

A new detection channel has just begun to be 0 Srfeaﬁttfifg
exploited at short baselines: CEVNS 71

- Pro: high cross-section (can be orders of

- Con: very challenging to observe (only X/@

CEVNS: a neutrino scatters off a nucleus 7
whose nucleons recoil in phase boson

nucle_ar

secondary
recoils

magnitude higher than IBD)

signal is low-energy recoiling nucleus)

scintillation

CEVNES can be used to study a variety of physics topics, including:

Complete Standard Model picture of neutrino interactions

Search for sterile neutrinos with neutral currents (all flavor disappearance)
Neutrinos from core-collapse supernovae (especially for flavors other than ve)
Search for neutrino magnetic moment and non-standard interactions

Probe nuclear structure
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Coherent Elastlc Vv Nucleon Scatterlng

CEVNS was first observed by
the COHERENT collaboration
in 2017

- Neutrinos from spallation
neutron source at Oak Ridge
National Lab

- Using different complementary

technologies, but pioneer
detector was Csl[Na]

- 6.70 significance with A u
14.6 kg detector! 5
Many other experiments g
ramping up
B

- List includes CONUS,
Texono, Connie, Red100,
Miner, NU-CLEUS, among
others
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Conclusions

==—c= _——= =~

Cutting edge neutrino physics are being done at short baselines

Leading precision in oscillation parameters, searches for sterile
neutrinos, high-precision measurements of reactor antineutrino

flux and spectral shape, and others.

A bright future is on the horizon:

— Experiments at very short baselines from nuclear reactors are
starting to shed light on the reactor “anomalies”

— Large future facilities like JUNO and the Fermilab SB program are
well underway and will come online soon

— Many more experiments will study CEVNS in the near future

Stay tuned, and be prepared for some surprises!
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