

What we will, what we might, learn from Belle II and the LHCb upgrade?

Emi Kou (LAL-IN2P3)

FPCP 2019 @ Victoria 6-10 May 2019

Introduction: searching new physics in flavour physics

Flavour Physics within SM

In SM, the difference between mass and interaction basis explains, the GIM mechanism, the CP Violation! Very concise!

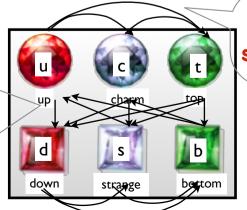
$$\mathcal{L}_{Y} = \sum_{ij} Y_{ij}^{u} \overline{Q_{iL}} \begin{pmatrix} \phi^{0} \\ \phi^{-} \end{pmatrix} u_{jR} + \sum_{ij} Y_{ij}^{d} \overline{Q_{iL}} \begin{pmatrix} -\phi^{-\dagger} \\ \phi^{0\dagger} \end{pmatrix} d_{jR} + h.c.$$

Glashow, Illiopolous, Maiani '70

$$(U_{L,R}^u)^{\dagger}U_{L,R}^u \equiv \mathbf{1}, \quad (U_{L,R}^d)^{\dagger}U_{L,R}^d \equiv \mathbf{1}$$

Flavour changing neutral current suppression

Cronin, Fitch, Christenson, Turlay '64


we finally uncertained uncerta

Vckm: Cabibbo-Kobayashi-Maskawa matrix

Yukawa coupling

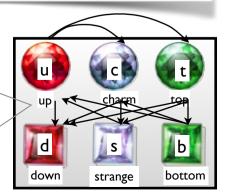
Cabibbo '63 Kobayashi, Maskawa '73

> $(U_L^u)^\dagger U_L^d \equiv V_{
> m CKM}$ Charged current: CKM matrix Origin of CP Violation (complex phase)!

FCNC suppressed

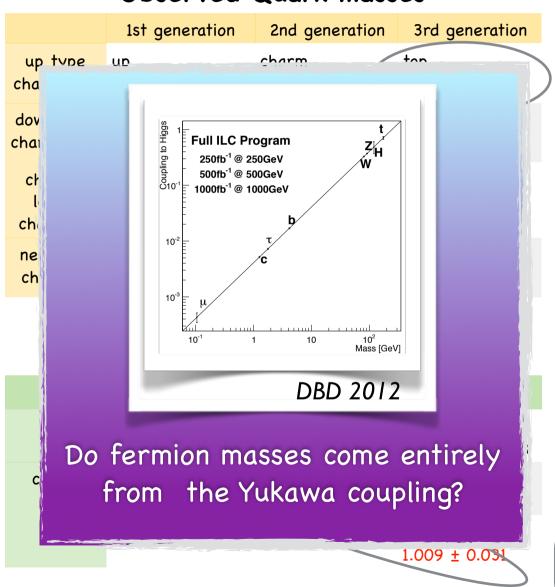
What has been confirmed?

Observed Quark masses

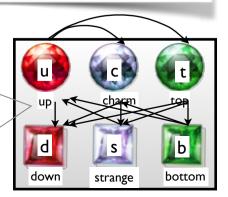

	1st generation	2nd generation	3rd generation
up type	up	charm	top
charge 2/3	2.2 <u>+</u> 0.5MeV	1.27±0.03GeV	173.21±0.87GeV
down type	down	strange	bottom
charge –1/3	4.7±0.5MeV	96±6MeV	4.18±0.04GeV
charged lepton charge -1	electron 0.511MeV	μ 105.7MeV	τ 1.78GeV
neutrinos	ν _e	υ μ	ντ
charge 0	<2.0eV	<0.17eV	<18.2eV

Observed Quark mixing V_{CKM}

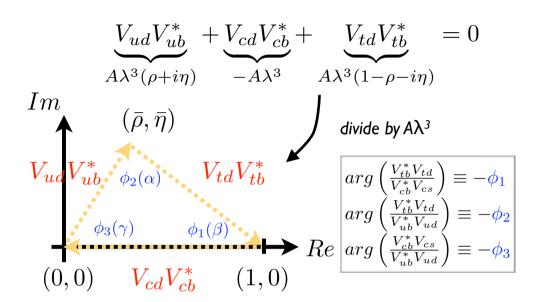
	down	strange	bottom
ир	Vub	Vus	Vub
	0.97417±0.00021	0.2248±0.0006	0.00409±0.0003
charm	Vcd	Vcs	Vcb
	0.220±0.005	0.995±0.016	0.0405±0.0015
top	Vtd	Vts	Vtb 1.009 ± 0.031


- ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
- √V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.
- √N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.

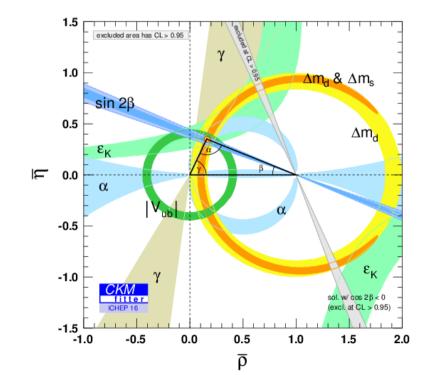
Vckm: Cabibbo-Kobayashi-Maskawa matrix

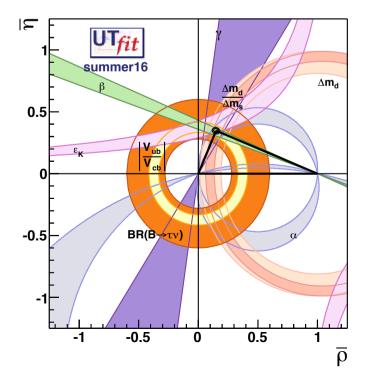

What has been confirmed?

Observed Quark masses



- ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
- √V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.
- √N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.


Vckm: Cabibbo-Kobayashi-Maskawa matrix



The Unitarity triangle: test of Unitarity?

Successful explanation of flavour physics up to now!
Hundreds of observables
(including dozens of CPV) are explained by this single matrix.

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also CP violation parameters can appear.

N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

SUSY: Quark and
Squark mass matrices
can not be
diagonalized at the
same time ---> FCNC
and CP violation

Mutli-Higgs model,

Left-Right

symmetric model:

Many Higgs

appearing in this

model ---> tree level

FCNC and CP

violation

Warped extradimension with
flavour in bulk:
Natural FCNC
suppression though,
K-K mixing might be
too large due to the
chiral enhancement

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also CP violation parameters can appear.

N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

SUSY: Quark and
Squark mass matrices
can not be
diagonalized at the
same time ---> FCNC
and CP violation

Mutli-Higgs model,

New

particle introduces new source

of flavour/CP violations. Then, if new

physics exist, we should observe those

phenomena at some point!

The strategies...

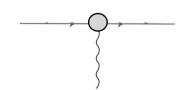
Strategy for discovery via precision

Discovery by the intensity frontier experiments.

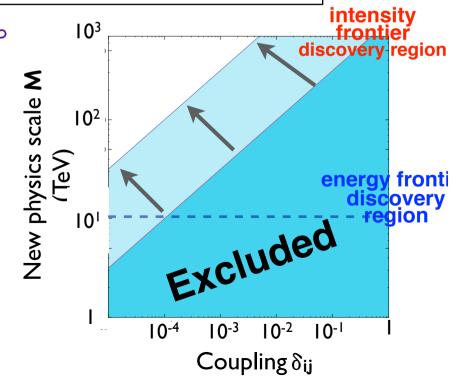
Reducing uncertainties = probing higher energies

WE WANT 5-7σ DEVIATION !!

$$\triangle_{NP}$$
 = Deviation from SM
= (exp. - SM) $\pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$
= $C/(M_{NP})^n$


new physics coupling c, new physics scale MNP

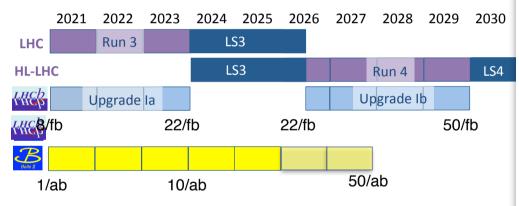
E.x. muon g-2


 3.6σ effect!

 $a\mu^{\text{exp.}}=116592091(54)(33) \times 10^{-11}$.

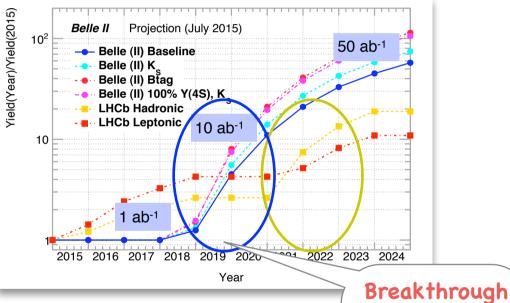
 $a\mu^{\text{the.}}=116591803(1)(42)(26) \times 10^{-11}$

 $\frac{\mathrm{e}}{\mathrm{M}} \overline{\psi} \sigma_{\mu\nu} \psi F^{\mu\nu}$



Strategy I: reducing experimental uncertainties

$$\Delta_{NP} = (exp. - SM) \pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$$


Future increase of the luminosity

in Heavy Flavour physics

BELLE2-NOTE-PH-2015-004

possible!

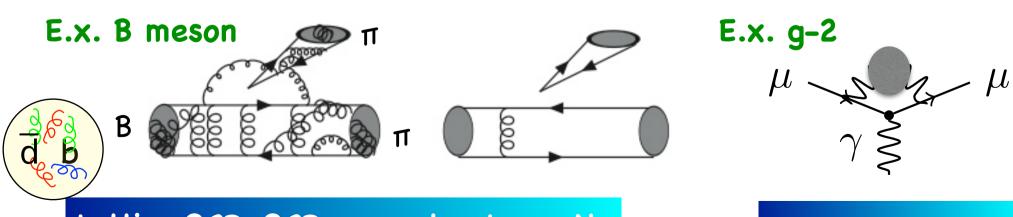
- ▶ Belle II increases the luminosity (50 times by 2027)
- ► Hadronic channels become available after LHCb upgrade (starting 2021)
- Reducible systematic errors can also be reduced as statistics increases

Strategy I: reducing experimental uncertainties

Many statistical uncertainties become at a few per-cent level: increasing number of systematic uncertainties (of order of a few per-mill!) are to be taken into account.

Observable	LHCb 2018	Upgrade (50 fb ⁻)
$2\beta_s(B_s^0 \to J/\psi \phi)$	0.025	0.008
$2\beta_s(B_s^0 \to J/\psi f_0(980))$	0.045	0.014
$a_{ m sl}^s$	0.6×10^{-3}	0.2×10^{-3}
$2eta_s^{ m eff}(B_s^0 o\phi\phi)$	0.17	0.03
$2eta_s^{ ext{eff}}(B_s^0 o K^{*0}\overline{K}^{*0})$	0.13	0.02
$2\beta^{\rm eff}(B^0 \to \phi K_S^0)$	0.30	0.05
$2eta_s^{ m eff}(B_s^0 o\phi\gamma)$	0.09	0.02
$ au^{ m eff}(B^0_s o\phi\gamma)/ au_{B^0_s}$	5 %	1 %
$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.025	0.008
$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	6 %	2 %
$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.08	0.025
$\mathcal{B}(B^+\to\pi^+\mu^+\mu^-)/\mathcal{B}(B^+\to K^+\mu^+\mu^-)$	8 %	2.5 %
$\mathcal{B}(B_s^0 o \mu^+\mu^-)$	0.5×10^{-9}	0.15×10^{-9}
$\mathcal{B}(B^0 o \mu^+\mu^-)/\mathcal{B}(B_s^0 o \mu^+\mu^-)$	~100 %	~35 %
$\gamma(B \to D^{(*)}K^{(*)})$	4°	0.9°
$\gamma(B_s^0 \to D_s K)$	11°	2.0°
$\beta(B^0 \to J/\psi K_{\rm S}^0)$	0.6°	0.2°
$A_{arGamma}$	0.40×10^{-3}	0.07×10^{-3}
$\Delta \mathcal{A}_{CP}$	0.65×10^{-3}	0.12×10^{-3}

LHCb upgrade LOI: CERN-LHCC-2011-001 see alo PoS(FPCP2016) 041


e.g. systematic uncertainty for φs measurement with Bs->J/psi KK

Source	$ A_0 ^2$	$ A_{\perp} ^2$	$\phi_s [\mathrm{rad}]$	$ \lambda $	$\delta_{\perp} - \delta_0 \; [\mathrm{rad} \;]$	$\delta_{\parallel} - \delta_0 \; [{\rm rad} \;]$	$\Gamma_s - \Gamma_d [\mathrm{ps}^{-1}]$	$\Delta\Gamma_s$ [ps ⁻¹]	$\Delta m_s [\mathrm{ps}^{-1}]$
Mass width parametrisation	0.0006	0.0005	-	_	0.05	0.009	=	0.0002	0.001
Mass factorisation	0.0002	0.0004	0.004	0.0037	0.01	0.004	0.0007	0.0022	0.016
Multiple candidates	0.0006	0.0001	0.0011	0.0011	0.01	0.002	0.0003	0.0001	0.001
Fit bias	0.0001	0.0006	0.001	21	0.02	0.033	=	0.0003	0.001
$C_{\rm SP}$ factors	-	0.0001	0.001	0.0010	0.01	0.005	-	0.0001	0.002
Quadratic OS tagging	-	-	-	-	-	-	-	-	-
Time res.: statistical	-	-	-	-	-	-	-	-	-
Time res.: prompt	-	-	-	-	-	0.001	-	-	0.001
Time res.: mean offset	-	-	0.0032	0.0010	0.08	0.001	0.0002	0.0003	0.005
Time res.: Wrong PV	-	-		_	ie ie	0.001	-	-	0.001
Ang. acc.: statistical	0.0003	0.0004	0.0011	0.0018	-	0.004	-	-	0.001
Ang. acc.: correction	0.0020	0.0011	0.0022	0.0043	0.01	0.008	0.0001	0.0002	0.001
Ang. acc.: low-quality tracks	0.0002	0.0001	0.0005	0.0014	1-	0.002	0.0002	0.0001	-
Ang. acc.: $t \& \sigma_t$ dependence	0.0008	0.0012	0.0012	0.0007	0.03	0.006	0.0002	0.0010	0.003
Dectime eff.: statistical	0.0002	0.0003	-	-	-	-	0.0012	0.0008	-
Dectime eff.: $\Delta\Gamma_s = 0$ sim.	0.0001	0.0002	-	-	-	-	0.0003	0.0005	-
Dectime eff.: knot pos.	-	-	-	-	-	-	-	-	-
Dectime eff.: p.d.f. weighting	-	-	-	-	-	-	0.0001	0.0001	-
Dectime eff.: kin. weighting	-	-	-	-	-	-	0.0002	-	-
Length scale	-	-	-	-	-	-	=	-	0.004
Quadratic sum of syst.	0.0024	0.0019	0.0061	0.0064	0.10	0.037	0.0015	0.0026	0.018

Strategy II: reducing theoretical uncertainties

$$\Delta_{NP} = (\exp. - SM) \pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$$

- Theoretical development in QCD higher order corrections, Lattice QCD etc allow to reduce the theoretical uncertainties.
- Improved measurements of "theoretical control channels" are very important to reduce the theoretical errors.

Lattice QCD, QCD sum rules, Large Nc QCD, HQET, Perturbative QCD etc...

OR

Data driven

Strategy II: reducing theoretical uncertainties

arXiv:1808.10567 (PTEP 2019) Belle II Physics Book

e.g. Vub measurement from exclusive $B\rightarrow\pi l V$ decay (agreement inclusive/exclusive crucial!)

Lattice forecast

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)		/	1
$ V_{ub} $ exclusive (had. tagged)					
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3

l .					
	$\mathcal{L} [ab^{-1}]$	$\sigma_{\mathcal{B}}$ (stat, sys)	$\sigma_{ m QCD}^{ m forecast}$	$\sigma_{V_{ub}}({ m EM})$	$\sigma_{V_{ub}}$ (no EM)
1	Τ	3.6, 4.4	current	6.2	-
	UT	1.3, 3.6	current	3.6	3.6
5	${ m T}$	1.6, 2.7	in 5 mg	3.2	3.0
	UT	0.6, 2.2	in 5 yrs	2.1	1.9
10	${ m T}$	1.2, 2.4	in 5 mg	2.7	2.6
	UT	0.4, 1.9	in 5 yrs	1.9	1.7
50	${ m T}$	0.5, 2.1	in 10 mg	1.7	1.4
	UT	0.2, 1.7	in 10 yrs	1.3	1.0

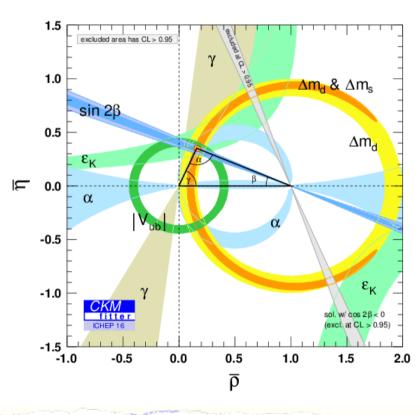
e.g. sin 2Φ₁ from b->sss penguin modes

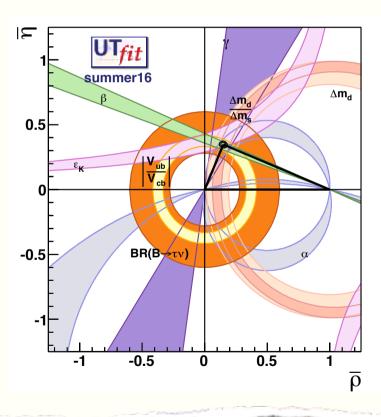
Theory predictions depend on models. Different theoretical methods must be applied to cross check.

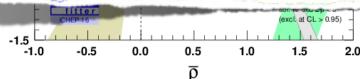
Mode	QCDF [662]	QCDF (scan) [662]	SU(3)
$\pi^0 K_S^0$	$0.07^{+0.05}_{-0.04}$	[0.02, 0.15]	[-0.11, 0.12] [664]
$ ho^0 K_S^0$	$-0.08^{+0.08}_{-0.12}$	[-0.29, 0.02]	
$\eta' K_S^0$	$0.01^{+0.01}_{-0.01}$	[0.00, 0.03]	$(0 \pm 0.36) \times 2\cos(\phi_1)\sin\gamma$ [665]
ηK_S^0	$0.10^{+0.11}_{-0.07}$	[-1.67, 0.27]	
ϕK_S^0	$0.02^{+0.01}_{-0.01}$	[0.01, 0.05]	$(0 \pm 0.25) \times 2\cos(\phi_1)\sin\gamma$ [665]
ωK_S^0	$0.13^{+0.08}_{-0.08}$	[0.01, 0.21]	
	0.00	<u> </u>	

Strategy III: explore new observables!

High statistics data or detector upgrade allow us to explore new observables, (w/wo theoretical motivation), which have never been studied before!

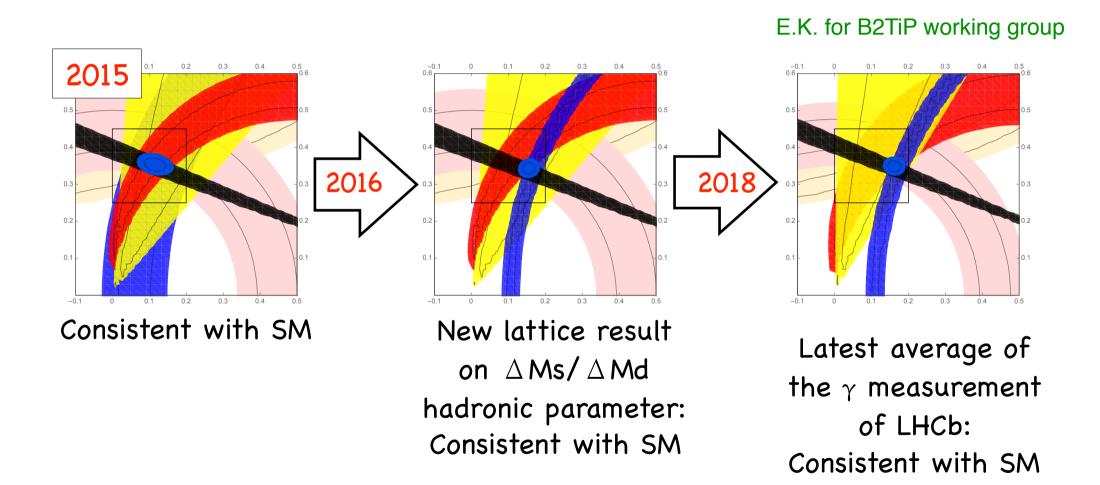

★ Null test

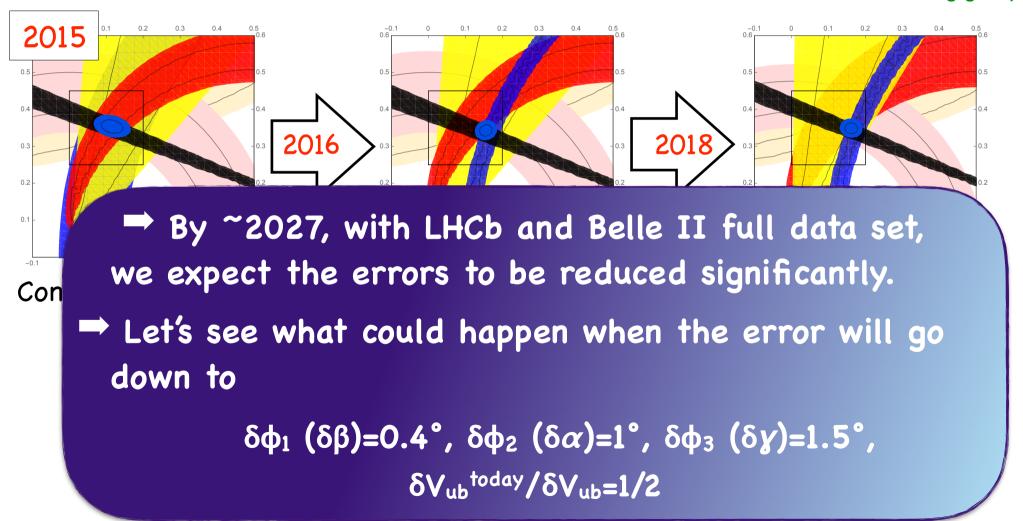

- Unexpected CPV, LFV, LFUV, Dark Photon, Axion etc...
- ★ (Ultra)-rare decays
 - B->xx, K(*)עע (start seeing them in a few yeas at Belle II!), baryon decays (more and more available at LHCb) etc...
- ★ Angular/Dalitz distribution
 - Polarisation, CPV etc...
- * New hadronic resonances
 - More XYZ, more Pentaquarks!

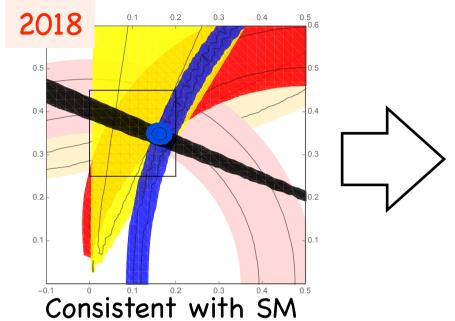

What is the odds for discovery: example of CKM unitarity triangle

The Unitarity triangle: test of Unitarity?

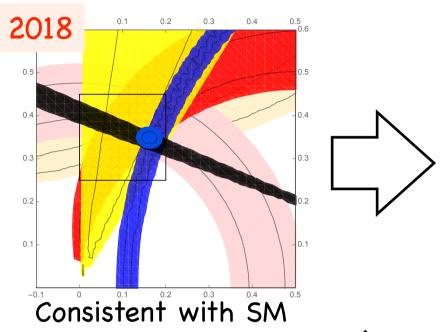
Can we expect a discovery of New Physics with the Unitarity Triangle ?!



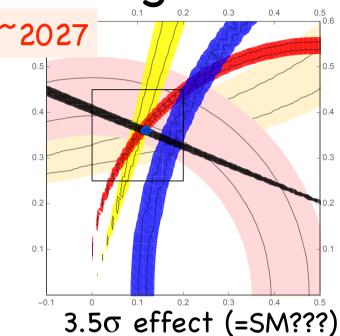

What do we expect to see in the future???

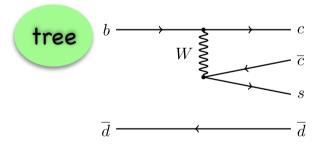


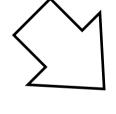
Fermilab-MILK arXiv: 1602.03560 confirmed by RBC arXiv:1812.0879

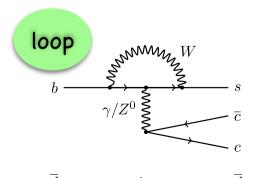

What do we expect to see in the future???

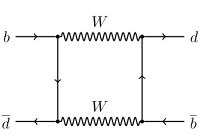
E.K. for B2TiP working group

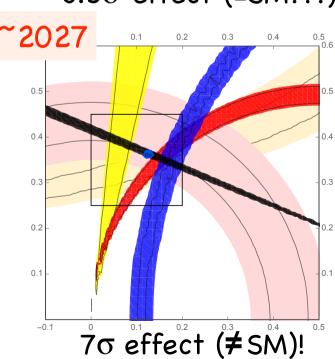


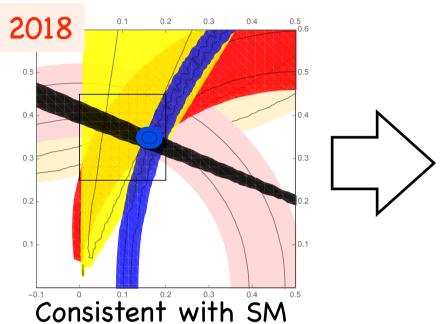




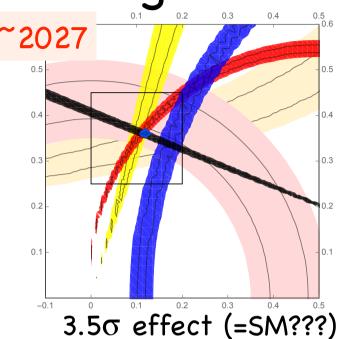

If the central value remains exactly the same (though unlikely)...

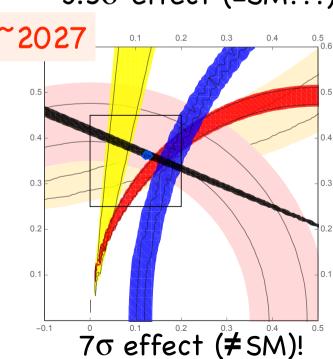


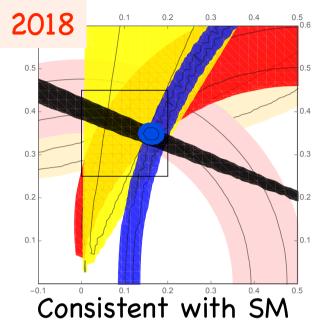




If 3 angles measurements move a little higher (within 1σ)...






If the central value remains exactly the same (though unlikely)...

Is this 7σ an "odd case" ??? (the answer is NO!)

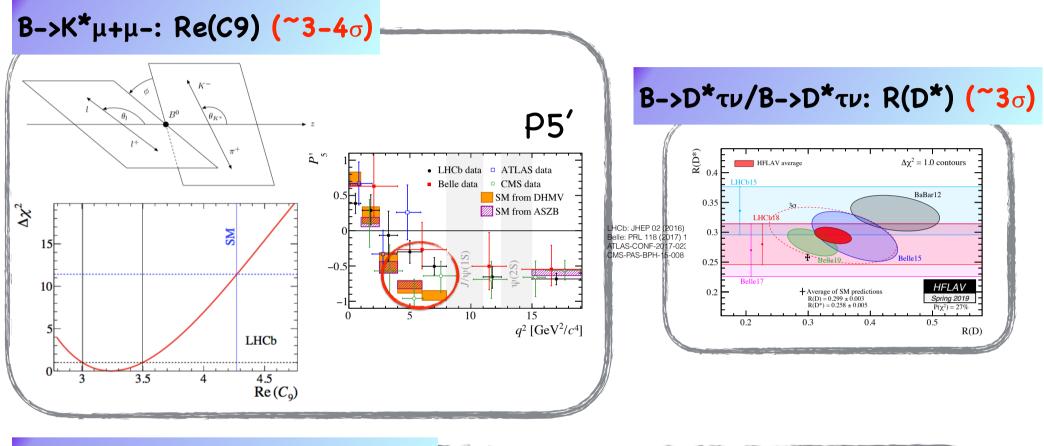
If 3 angles
asurements
a little
ithin

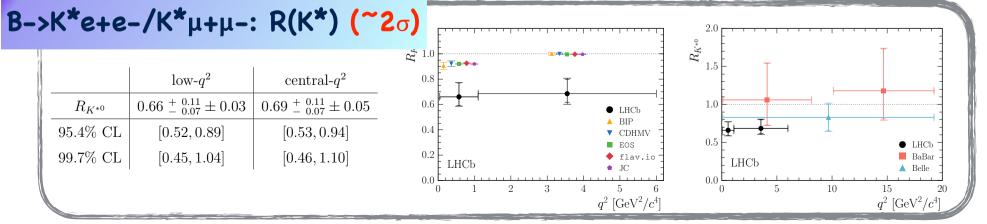
Is this 7σ

an "odd case"

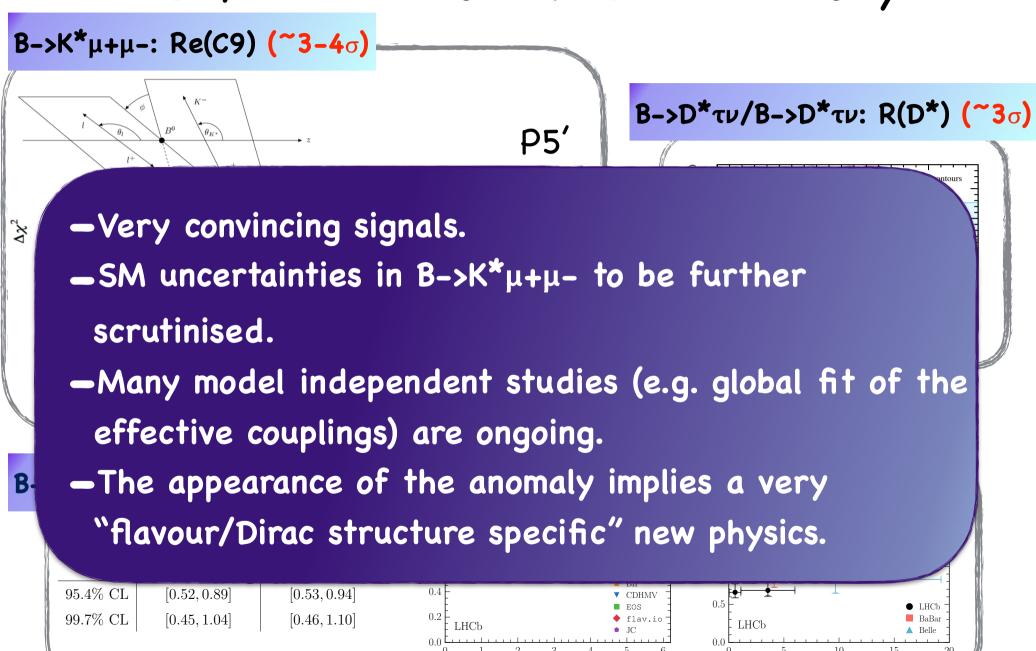
(the answer is N

If the central

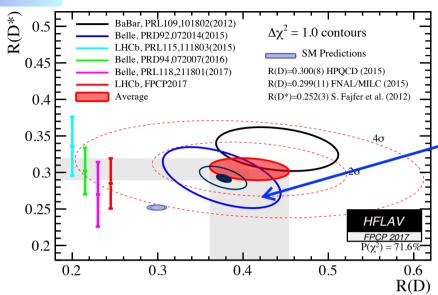



- To understand this " $7\sigma''$ effect better, we have run a Monte Carlo simulation.
- We randomly sample the central values (1000 trials) assuming Gaussian measurements and compute the significance.
- The result shows that the chance to observe deviation more than 7σ significance is currently 20%!

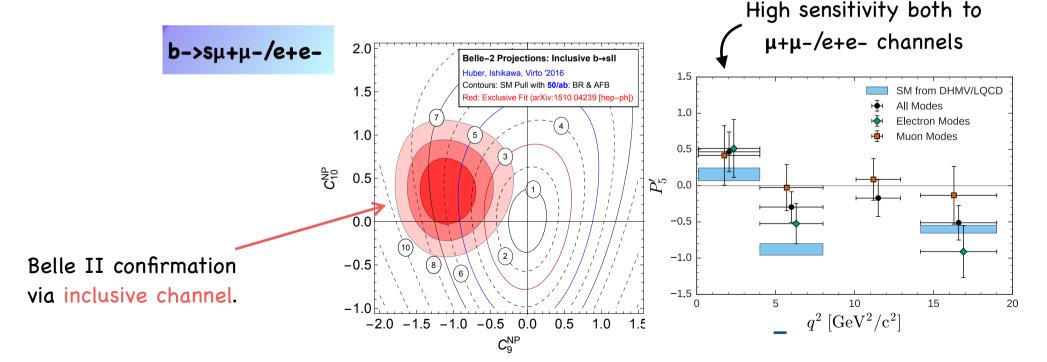
E.K. & F. Le Diberder for B2TiP working group

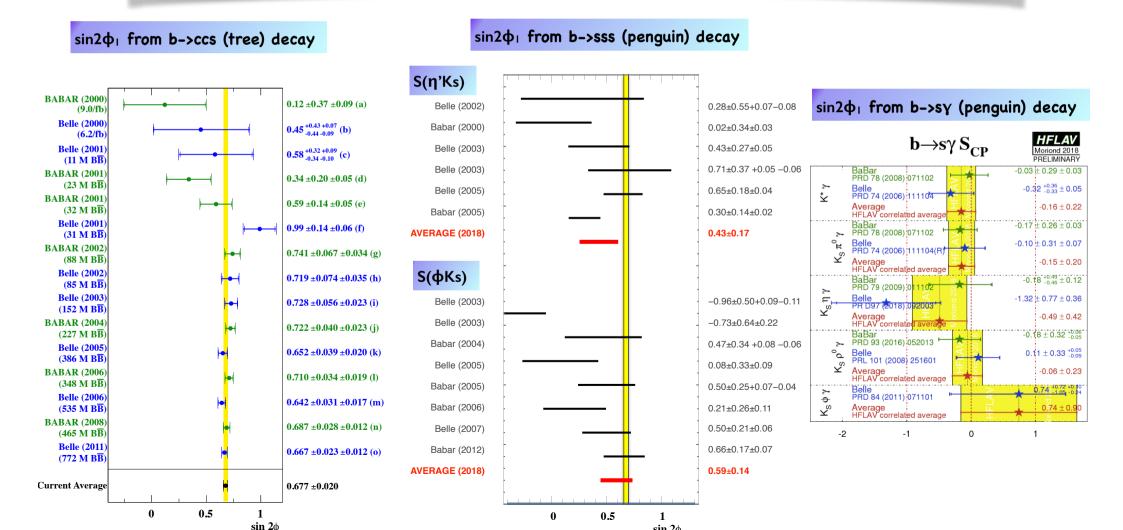

Near future of flavour physics...

LHCb/Babar anomalies and theory?



LHCb/Babar anomalies and theory?

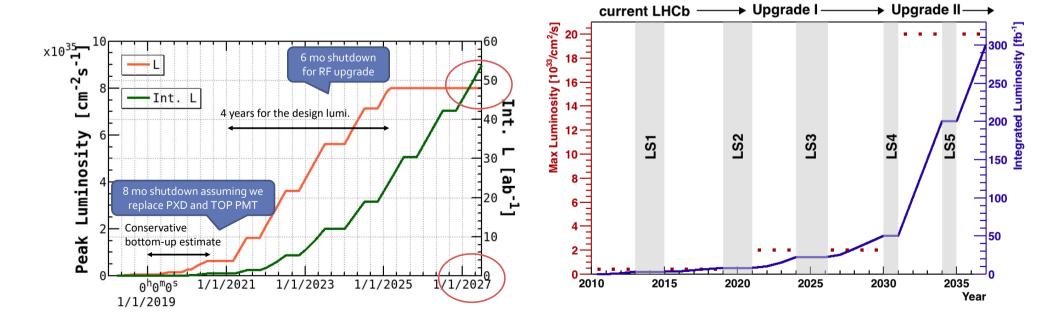

What Belle II could tell us?


arXiv:1808.10567 (PTEP 2019) Belle II Physics Book

Belle II prospect (with the current Belle '15 central value) $14(6)\sigma$ deviation with $50(10)ab^{-1}$ of data!

Yet, we(I) want more CPV...

▶ Those observables which are "consistent to SM" as of today are potential discovery channels!



Conclusions

- The coming years are very exciting for flavour physics: the startup of Belle II and the upgrades of LHCb will improve the sensitivity to new physics drastically.
- Even for the processes, which were claimed in the previous generation experiment as "consistent to SM", may show some deviations. Many breakthrough towards "going beyond the SM" is possible!
- The LHCb anomalies are very intriguing. It was unexpected but many interpretations have been made. A confirmation by Belle II experiment can be done in a few years time (at ~10 ab-1).
- Theoretically, what we are looking for seems to be "Flavour/Dirac structure specific", which may need be postulated to further construct new physics models.

Backup

Many contributions from theorists!!

Belle II physics book

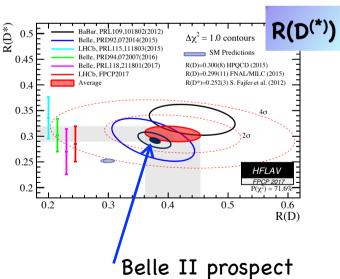
arXiv:1808.10567 (PTEP 2019)
B2TiP theory community + Belle II collaboration (edited by E.K. & Ph. Urquijo)

- **B physics**: CKM UT measurement, rare decays, CP violation, QCD-based computation
- D physics: CP violation, rare decays, multi-body decays

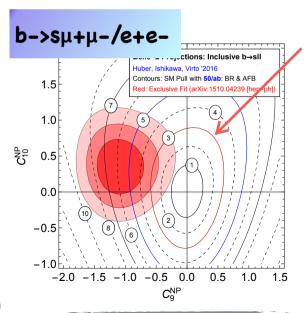
Belle II(/LHCb) precision vs theory uncertainties

- » UT angle measurements (very clean): Belle II+LHCb will reduce the errors significantly $\delta \phi_1(\delta \beta)=0.2^\circ$, $\delta \phi_2(\delta \alpha)=1^\circ$, $\delta \phi_3(\delta \gamma)=1.5^\circ$, \rightleftharpoons theory can achieve about the same precision.
- » Rare decays, hadronic B decays... \Rightarrow more difficult but data driven, more measurements could give us a guide.

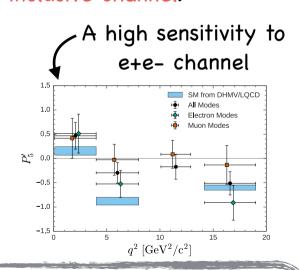
Many contributions from theorists!!


Belle II physics book

arXiv:1808.10567 (PTEP 2019) B2TiP theory community + Belle II collaboration (edited by E.K. & Ph. Urquijo)

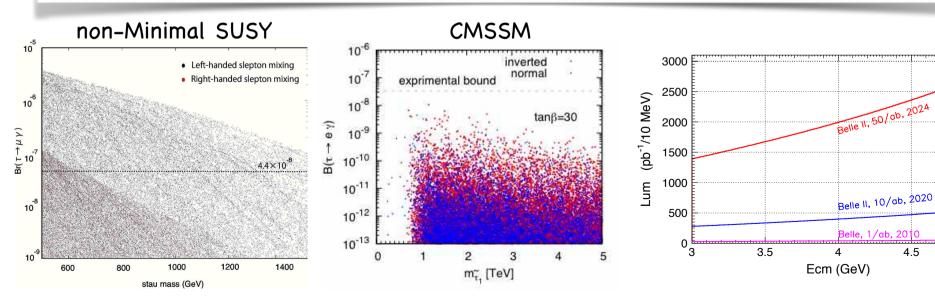

B physics: CKM UT measurement, rare decays, CP violation, QCD-based computation

D physics: CP violation, rare decays, multi-body decays


Will Belle II tell us something about LHCb anomalies?

(with the current Belle central value) $14(6)\sigma$ deviation with $50(10)ab^{-1}$ of data!

Belle II confirmation via inclusive channel.


» Also observation of B-> $\chi\chi$, K(*) in a few years!

Many contributions from theorists!!

Belle II physics book

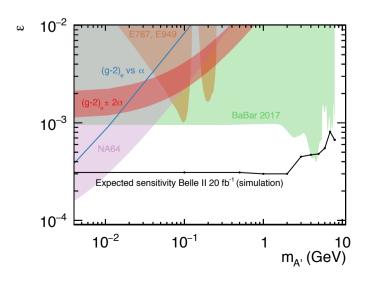
arXiv:1808.10567 (PTEP 2019) B2TiP theory community + Belle II collaboration (edited by E.K. & Ph. Urquijo)

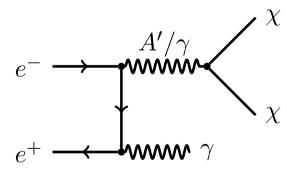
- tau physics: LFV, CP violation, a "wish list"...
- g-2 related measurement: hadronic cross section, two photon processes
- quarkonium and exotics: missing quarkonium (below threshold), pros and cons of the exotic interpretations

LFV τ -> $\mu\gamma$ sensitivity to SUSY-GUT

ISR luminosity at Belle II

4.5


Many contributions from theorists!!


Belle II physics book

arXiv:1808.10567 (PTEP 2019) B2TiP theory community + Belle II collaboration (edited by E.K. & Ph. Urquijo)

- Dark matter and Higgs: dark photon search in phase II (2018), light Higgs search from quarkonium decays
- Theory: lattice "forecast", flavour benchmark models (and their "DNA test"), global fit packages

Dark Photon search at Belle II

Lattice forecast for Vub

\mathcal{L} [ab ⁻¹]	$\sigma_{\mathcal{B}}$ (stat±sys)	σ^{forecast}	$\sigma_{V_{ub}}$
<u>~ [ub]</u>	- ,	$^{\circ}$ LQCD	
1	3.6 ± 4.4	current	6.2, 6.2
	1.3 ± 3.6	Current	3.6, 3.6
5	1.6 ± 2.7	in 5 yrs	3.2, 3.0
Э	0.6 ± 2.2	III 9 yrs	2.1, 1.9
10	1.2 ± 2.4	in 5 yrs	2.7, 2.6
10	0.4 ± 1.9	m 5 yrs	1.9, 1.7
50	0.5 ± 2.1	in 10 yrs	1.7, 1.4
	0.2 ± 1.7	111 10 yrs	1.3, 1.0

upper/down number: wo/w EM correction