Belle II and SuperKEKB Status and Progress

Hülya Atmacan

1

University of Cincinnati

On Behalf of the Belle II Collaboration

Sucer

Flavor Physics and CP Violation

May 10, 2019

Victoria, Canada

Outline

- Introduction
- KEKB to SuperKEKB
- Belle to Belle II
- *Belle II* and *SuperKEKB* upgrade history (with results of early data and current status)
- Summary
- Some *Belle II* physics prospects will be covered by Emi Kou.

Belle II At SuperKEKB

Successor to Belle at

KEKB (1999-2010)

A New Generation "Super Flavor Factory" @ World's Highest-Luminosity Electron Positron Collider

 \mathcal{B}

~900 researchers 101 institutions 25 countries

1 km

KEK Tsukuba Campus

Belle II At SuperKEKB

- Belle II plans to collect 50 ab⁻¹ of e⁺ e⁻ collisions at (or close to) the Υ(4S) resonance:
- a (Super) B-factory (~ $1.1 \times 10^9 B\overline{B}$ pairs/ab⁻¹)
- a (Super) charm factory (~1.3x10⁹ cc pairs/ab⁻¹)
- a (Super) τ factory (~0.9 x10⁹ τ⁺ τ⁻ pairs/ab⁻¹).

 $\mathscr{B}(\Upsilon(4S) \to B\bar{B}) > 96\,\%$

Belle II At SuperKEKB

- CKM precision metrology.
- Search for New Physics (NP)
 - New CPV phases,
 - Multiple Higgs,
 - New FCNC, RH current etc.
 - Sources of LFV beyond SM
 - Dark photon/sector
- Need significantly more data!
- Ultimate goal of Belle II: 50 ab⁻¹ data sample

Belle II Physics

Observables	Expected the. accu-			Expected Facility (2027)		1 111			
	racy		exp. uncertainty			Uitima	Ullimate precision, 50 ap-		
UT angles & sides							•		
ϕ_1 [°]	***		0.4	Belle II					
ϕ_2 [°]	**		1.0	Belle II					
ϕ_3 [°]	***	СКМ	1.0 LHCb/I		II	OLIARKONILIM			
$ V_{cb} $ incl.	***		1%	Belle II			QUAILIC		
$ V_{cb} $ excl.	***		1.5%	Belle II					
$ V_{ub} $ incl.	**		3%	Belle II		DARK SECTOR			
$ V_{ub} $ excl.	**		2%	Belle II/LHC	СЪ				
CP Violation									
$S(B \to \phi K^0)$	***		0.02	Belle II					
$S(B \to \eta' K^0)$	***	CPV	0.01	01 Belle II		Very Rich Physics			
$A(B \to K^0 \pi^0)[10^{-2}]$	***		4	Belle II		VCI	y i diciri	1 1193103	
$\mathcal{A}(B \to K^+\pi^-)$ [10 ⁻²]	***		0.20	LHCb/Belle	II	Pro	araml		
(Semi-)leptonic				, , , , , , , , , , , , , , , , , , , ,		110	gram:		
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	(Semi)	3%	Belle II					
$\mathcal{B}(B \to \mu \nu)$ $[10^{-6}]$	**	EPTONIC	7%	Belle II					
$R(B \rightarrow D\tau\nu)$	***		3%	Belle II					
$R(B \rightarrow D^* \tau \nu)$	***		2%	Belle II/LHCb					
				Radiative & EW Penguins					
				$\mathcal{B}(B \to X_s \gamma)$	**		4%	Belle II	
				$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***		0.005	Belle II	
		iio et al		$S(B \to K^0_S \pi^0 \gamma)$	***	EWP	0.03	Belle II	
			7	$S(B \to \rho \gamma)$	**		0.07	Belle II	
F Kou D I	Iraui			$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**		0.3	Belle II	
L. NOU, F. (Jiqu	ijo et al.		$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***		15%	Belle II	
Belle II Ph	vsice	s hook		$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***		20%	Belle II	
Benefitti	y 010($R(B \to K^*\ell\ell)$	***		0.03	Belle II/LHCb	
arXiv: 18	308.1	0567		Charm			0.00		
				$\mathcal{B}(D_s \to \mu\nu)$	***		0.9%	Belle II	
(Accepted	d to I	PTEP)		$\mathcal{B}(D_s \to \tau \nu)$	***	CHARM	2%	Belle II	
				$A_{CP}(D^0 \to K_{\rm S}^0 \pi^0) \ [10^{-2}]$	**		0.03	Belle II	
				$ a/p (D^0 \rightarrow K_0^0 \pi^+ \pi^-)$	***		0.03	Belle II	
				$\phi(D^0 \rightarrow K_c^0 \pi^+ \pi^-)$ [°]	***		4	Belle II	
				Tau			-	2010 11	
				$\tau \rightarrow \mu \gamma [10^{-10}]$	***		< 50	Belle H	
				$\tau \rightarrow e \gamma [10^{-10}]$	***	TAU	< 100	Belle II	
				$\tau \rightarrow \mu \mu \mu [10^{-10}]$	***	_	< 3	Belle II/LHCb	

6

Belle II Talks in FPCP 2019

B Physics

"First look at time dependent CP violation using early Belle II data" Stefano Lacaprara
"Measurement of the CKM angle gamma with Belle II" Niharika Rout
"B lifetime and B0bar B0 mixing results from early Belle II data" Jakub Kandra
"Semileptonic and leptonic B decay results from early Belle II data" Markus Prim
"Early physics prospects for radiative and electroweak penguin decays at Belle II" Justin Tan
Quarkonium Physics
"Sensitivity to the X(3872) total width at the Belle II experiment" Hikari Hirata

Tau Physics

"Prospects for tau lepton physics at Belle II" David Rodriguez Perez

"Exotic quarkonium physics prospects at Belle II" Jake Bennett

Dark Sector

"Dark sector physics with Belle II" Chris Hearty

"What we will, what we might, learn from Belle II and the LHCb upgrade" Emi Kou

KEKB to SuperKEKB

- New e⁺ damping ring (commissioned 2018).
- New 3 km e⁺ ring vacuum
 chamber (commissioned in 2016).
- New superconducting final focus (commissioned in 2018)

*gray - reused, color - new

SuperKEKB Luminosity Target

SuperKEKB Luminosity Projection

Accumulate 50 ab⁻¹, x50 of BELLE / KEKB

Strategies to Increase Luminosity

"nano beam" scheme is employed

[proposed by P. Raimondi]

Belle to Belle II (Detector Layout)

Strengths of SuperKEKB and Belle II

- Very clean sample of quantum correlated $B^0 \overline{B^0}$ pairs.
- High effective flavor-tagging efficiency (~37%).
- Belle 2 can also measure K_S and K_L .
- Efficient reconstruction of neutrals (π^0 , K_s, K_L, η , η' , ρ^+ etc.)
- Dalitz plot analyses, missing mass analyses straightforward.
- Systematics quite different than those of LHCb
 - If NP is seen by one experiment, it should be confirmed by the other.

Belle II covering $\gtrsim 90\%$ of 4π

Global Schedule

Phase 1: SuperKEKB commissioning without final focusing and without Belle II detector. (January - June 2016)

Phase 2: Collision data taking with final focusing. Belle II with no final vertex detector. (April - July 2018. Recorded ~500 pb⁻¹)

Phase 3: Collision data taking with full Belle II detector. STARTED MARCH 2019!

2010, Belle and KEKB operation completed
 Started upgrade to Belle II and SuperKEKB
 Sub-detector installation

- 2016, January June Commissioning: <u>"Phase I" :</u>
- Only for single beam background studies.
- no final focusing, no collisions, and without Belle II.
- Beam Exorcism for A STable Experiment II Detector:
 - Background commissioning detector (diodes, TPCs, crystals).
- Tune accelerator optics, vacuum scrubbing, beam studies, validation of Belle II beam background simulations.

• 2017, Belle II Detector rolled-in to the beam line

Belle II after roll-in

January 2018: The superconducting magnets for final focusing of the beams were moved to the core of the Belle II detector

• 2018, April - July Commissioning.

• "Phase 2" : Collision data taking with final focusing. Belle II with no final VXD.

First e+ e- collisions at SuperKEKB.

Hadronic event

Phase 2: Beam Profile

Phase 2: Partial VXD (1)

 Belle II with partial VXD: 1 sector of PXD and SVD with background sensors.

cross section view

on the beam axis

SuperKEKB ring outside direction

Phase 2: Partial VXD (2)

ш

Phase 2: Track Reconstruction

- Tracks have been reconstructed with CDC and partially installed VXD.
- Detector alignment and B field are well understood.

Phase 2: Particle Identification

Central Drift Chamber dE/dx

Cherenkov photons observed by TOP detector

 $D^{*+} \rightarrow D^0 \pi^+ [D^0 \rightarrow (K^- \pi^+)] x \text{ vs } t \text{ pattern (mapping of Cherenkov ring)}$

Phase 2: Particle Identification

Central Drift Chamber dE/dx

PCP2019

ш

Phase 2 : Photon Reconstruction

- Good reconstruction single photons and pairs.
- Ready for the "dark sector" :

single photons –

$$e^+ e^- \rightarrow \gamma X$$

 $e^+ e^- \rightarrow \gamma ALP \rightarrow \gamma(\gamma\gamma)$

See Christopher Hearty's talk 25

Phase 2: Hadronic D and B Reconstruction

Phase 2: Hadronic D and B Reconstruction

Cosmic track is passing through the full vertex detector. 28

"Phase 3"

- Phase 3: Collision data taking with full Belle II
- STARTED in MARCH 2019!

Beam background remediation is the current focus.

 Operation had to stop between April 3rd and 22nd due to a fire accident in one of the test facilities at KEK. Not related to SuperKEKB or Belle II!

Early Phase 3

- Belle II aims to collect
 - July 2019 : ~10 fb⁻¹
 - Performance Studies:

<u>Semileptonic</u> $B \rightarrow \pi / v$ and ρ / v untagged (CLEO saw a signal with 2.66 fb⁻¹)

<u>Hadronic B Decays</u> $B \rightarrow K \pi$ (10 fb⁻¹) $B \rightarrow \phi K$ (10 fb⁻¹)

 $B \rightarrow J/\psi K$ (2-10 fb⁻¹) Time dependent *B* mixing (10 fb⁻¹) B lifetimes (2-10 fb⁻¹) Radiative Electroweak Penguins

 $B \rightarrow K^* \gamma$ (2 fb⁻¹) rediscovery penguins $B \rightarrow X_s \gamma$ (10 fb⁻¹)

<u>Charm</u> *D* lifetimes (2 fb⁻¹) $D^0 \rightarrow K^+ \pi^-, D^0 \rightarrow K^+ \pi^- \pi^0$ (10 fb⁻¹)

• Publication prospects for dark sector searches.

Early Phase 3

- Belle II aims to collect
 - July 2019 : ~10 fb⁻¹

- December 2019 : ~100 fb-1
- <u>2020 : > 500 fb⁻¹ (BaBar)</u>
- <u>2021 : > 1 ab⁻¹ (Belle)</u>

Summary

- Initial data taking, "Phase 2", has been completed in July 2018.
- Belle II is now constructed and installed.
- The full physics data taking, "Phase 3", started in March 2019!
- Belle II aims to explore New Physics in flavor sector with 50 ab⁻¹ data collected at SuperKEKB.

THANK YOU!

KEKB to SuperKEKB

Strategies to Increase Luminosity

