$C P$ Violation in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

David London

Université de Montréal

FPCP 2019
Wednesday, May 8, , 2019

Talk based on work done in collaboration with A. Datta, B. Bhattacharya and S. Kamal, (arXiv:1903.02567 [hep-ph]).

Discrepancies with SM

\exists discrepancies with predictions of SM in

$$
\begin{gathered}
R_{D^{(*)}} \equiv \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}\right) / \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}\right) \quad(\ell=e, \mu) \\
R_{J / \psi} \equiv \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \tau^{+} \nu_{\tau}\right) / \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}\right)
\end{gathered}
$$

Discrepancies with SM

\exists discrepancies with predictions of SM in

$$
\begin{gathered}
R_{D^{(*)}} \equiv \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}\right) / \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}\right) \quad(\ell=e, \mu), \\
R_{J / \psi} \equiv \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \tau^{+} \nu_{\tau}\right) / \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}\right) .
\end{gathered}
$$

Pre-Moriond:

Observable	Measurement/Constraint	
$R_{D^{*}}^{\tau / \ell} /\left(R_{D^{*}}^{\tau / \ell}\right)_{\mathrm{SM}}$	1.18 ± 0.06	(BaBar, Belle, LHCb)
$R_{D}^{\tau / \ell} /\left(R_{D}^{\tau / \ell}\right)_{\mathrm{SM}}$	1.36 ± 0.15	(BaBar, Belle, LHCb)
$R_{D^{*}}^{\mu / \ell} /\left(R_{D^{*}}^{\mu / e}\right)_{\mathrm{SM}}$	1.00 ± 0.05	(Belle)
$R_{J / \psi}^{\tau / \mu} /\left(R_{J / \psi}^{\tau / \mu}\right)_{\mathrm{SM}}$	2.51 ± 0.97	(LHCb)

Deviation from SM is $\sim 3.8 \sigma$ in R_{D} and $R_{D^{*}}$ (combined), 1.7σ in $R_{J / \psi}$.

At Moriond, Belle announced new results (see 1904.08794):

$$
\begin{aligned}
& R_{D^{*}}^{\tau / \ell} /\left(R_{D^{*}}^{\tau / \ell}\right)_{\mathrm{SM}}=1.10 \pm 0.09 \\
& R_{D}^{\tau / \ell} /\left(R_{D}^{\tau / \ell}\right)_{\mathrm{SM}}=1.03 \pm 0.13 .
\end{aligned}
$$

These are in better agreement with the $\mathrm{SM} \Longrightarrow$ deviation from SM in R_{D} and $R_{D^{*}}$ (combined) is reduced from $\sim 3.8 \sigma$ to 3.1σ.

At Moriond, Belle announced new results (see 1904.08794):

$$
\begin{aligned}
& R_{D^{*}}^{\tau / \ell} /\left(R_{D^{*}}^{\tau / \ell}\right)_{\mathrm{SM}}=1.10 \pm 0.09 \\
& R_{D}^{\tau / \ell} /\left(R_{D}^{\tau / \ell}\right)_{\mathrm{SM}}=1.03 \pm 0.13
\end{aligned}
$$

These are in better agreement with the $\mathrm{SM} \Longrightarrow$ deviation from SM in R_{D} and $R_{D^{*}}$ (combined) is reduced from $\sim 3.8 \sigma$ to 3.1σ.
\Longrightarrow There is still a suggestion of NP in $b \rightarrow c \tau^{-} \bar{\nu}$ decays.

New Physics

$b \rightarrow c \tau^{-} \bar{\nu}$ is charged-current process $\Longrightarrow \mathrm{NP}$ is $W^{ \pm}, H^{ \pm}$or LQ (several different possibilities). $H^{ \pm}$disfavoured by constraints from $B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.

New Physics

$b \rightarrow c \tau^{-} \bar{\nu}$ is charged-current process $\Longrightarrow \mathrm{NP}$ is $W^{ \pm}, H^{ \pm}$or LQ (several different possibilities). $H^{ \pm}$disfavoured by constraints from $B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.

Direct CPV: $A_{\text {dir }} \propto \Gamma\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)-\Gamma\left(B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}\right) . A_{\text {dir }} \neq 0$ only if interfering amplitudes have different strong phases. Only hadronic transition is $\bar{B} \rightarrow D^{*}$: SM and NP strong phases \sim equal $\Longrightarrow A_{\text {dir }}$ is small.

New Physics

$b \rightarrow c \tau^{-} \bar{\nu}$ is charged-current process $\Longrightarrow \mathrm{NP}$ is $W^{ \pm}, H^{ \pm}$or LQ (several different possibilities). $H^{ \pm}$disfavoured by constraints from $B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.

Direct CPV: $A_{\text {dir }} \propto \Gamma\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)-\Gamma\left(B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}\right) . A_{\text {dir }} \neq 0$ only if interfering amplitudes have different strong phases. Only hadronic transition is $\bar{B} \rightarrow D^{*}$: SM and NP strong phases \sim equal $\Longrightarrow A_{d i r}$ is small.

Main CPV effects: CPV asymmetries in angular distribution of $\bar{B}^{0} \rightarrow D^{*+}\left(\rightarrow D^{0} \pi^{+}\right) \tau^{-} \bar{\nu}_{\tau}$. Requires that interfering amplitudes have different Lorentz structures \Longrightarrow can distinguish different NP explanations.

New Physics

$b \rightarrow c \tau^{-} \bar{\nu}$ is charged-current process $\Longrightarrow \mathrm{NP}$ is $W^{ \pm}, H^{ \pm}$or LQ (several different possibilities). $H^{ \pm}$disfavoured by constraints from $B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.

Direct CPV: $A_{\text {dir }} \propto \Gamma\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)-\Gamma\left(B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}\right) . A_{\text {dir }} \neq 0$ only if interfering amplitudes have different strong phases. Only hadronic transition is $\bar{B} \rightarrow D^{*}$: SM and NP strong phases \sim equal $\Longrightarrow A_{d i r}$ is small.

Main CPV effects: CPV asymmetries in angular distribution of $\bar{B}^{0} \rightarrow D^{*+}\left(\rightarrow D^{0} \pi^{+}\right) \tau^{-} \bar{\nu}_{\tau}$. Requires that interfering amplitudes have different Lorentz structures \Longrightarrow can distinguish different NP explanations.

Practical problem: requires knowledge of \vec{p}_{τ}, which cannot be measured (missing final ν_{τ}) \Longrightarrow need to include information from decay products of τ. Will do (work in progress), but first step: look at NP contributions to CPV angular asymmetries in $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}$ (will be measured by LHCb).

$\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}:$ Angular Distribution

1. SM: decay is interpreted as $\bar{B}^{0} \rightarrow D^{*+}\left(\rightarrow D^{0} \pi^{+}\right) W^{*-}\left(\rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$. Write

$$
\mathcal{M}_{(m ; n)}\left(B \rightarrow D^{*} W^{*}\right)=\epsilon_{D^{*}}^{* \mu}(m) M_{\mu \nu} \epsilon_{W^{*}}^{* \nu}(n)
$$

Here, D^{*+} (real) has 3 polarizations: $m=+,-, 0 . W^{*-}$ (virtual) has 4 polarizations: $n=+,-, 0, t$.

$\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}:$ Angular Distribution

1. SM: decay is interpreted as $\bar{B}^{0} \rightarrow D^{*+}\left(\rightarrow D^{0} \pi^{+}\right) W^{*-}\left(\rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$. Write

$$
\mathcal{M}_{(m ; n)}\left(B \rightarrow D^{*} W^{*}\right)=\epsilon_{D^{*}}^{* \mu}(m) M_{\mu \nu} \epsilon_{W^{*}}^{* \nu}(n)
$$

Here, D^{*+} (real) has 3 polarizations: $m=+,-, 0 . W^{*-}$ (virtual) has 4 polarizations: $n=+,-, 0, t$.

Of $12 D^{*+}-W^{*-}$ polarization combinations, only 4 allowed (conservation of angular momentum): $++,--, 00,0 t$
$\Longrightarrow \exists 4$ helicity amplitudes: $\mathcal{A}_{+}, \mathcal{A}_{-}, \mathcal{A}_{0}, \mathcal{A}_{t}$. Decay amplitude is

$$
\mathcal{M}\left(B \rightarrow D^{*}(\rightarrow D \pi) W^{*}\left(\rightarrow \mu^{-} \bar{\nu}_{\mu}\right)\right) \propto \sum_{m=t, \pm, 0} g_{m m} \mathcal{H}_{D^{*}}(m) \mathcal{A}_{m} \mathcal{L}_{W^{*}}(m)
$$

$\mathcal{H}_{D^{*}}$: hadronic matrix element, $\mathcal{L}_{W^{*}}$: leptonic matrix element.
2. NP: change $W^{*} \rightarrow N^{*}$, where $N=S-P(\equiv S P), V-A(\equiv V A), T$ represent new interactions involving LH neutrino ($V A$ includes $S M$). Hadronic piece:

$$
\begin{aligned}
\mathcal{H}_{\text {eff }} & =\frac{G_{F} V_{c b}}{\sqrt{2}}\left\{\left[g_{S} \bar{c} b+g_{P} \bar{c} \gamma_{5} b\right] \bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell}\right. \\
+ & {\left[\left(1+g_{L}\right) \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b+g_{R} \bar{c} \gamma_{\mu}\left(1+\gamma_{5}\right) b\right] \bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell} } \\
& \left.+g_{T} \bar{c} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{\ell}+\text { h.c. }\right\}
\end{aligned}
$$

2. NP: change $W^{*} \rightarrow N^{*}$, where $N=S-P(\equiv S P), V-A(\equiv V A), T$ represent new interactions involving LH neutrino ($V A$ includes $S M$). Hadronic piece:

$$
\begin{aligned}
\mathcal{H}_{e f f} & =\frac{G_{F} V_{c b}}{\sqrt{2}}\left\{\left[g_{S} \bar{c} b+g_{P} \bar{c} \gamma_{5} b\right] \bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell}\right. \\
+ & {\left[\left(1+g_{L}\right) \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b+g_{R} \bar{c} \gamma_{\mu}\left(1+\gamma_{5}\right) b\right] \bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell} } \\
& \left.+g_{T} \bar{c} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{\ell}+\text { h.c. }\right\}
\end{aligned}
$$

Effect: \exists more helicities. Previously, VA only: $\mathcal{A}_{+}, \mathcal{A}_{-}, \mathcal{A}_{0}, \mathcal{A}_{t}$. Now, add 4 more: $S P \rightarrow \mathcal{A}_{S P}, T \rightarrow \mathcal{A}_{+, T}, \mathcal{A}_{0, T}, \mathcal{A}_{-, T}$.
2. NP: change $W^{*} \rightarrow N^{*}$, where $N=S-P(\equiv S P), V-A(\equiv V A), T$ represent new interactions involving LH neutrino ($V A$ includes $S M$). Hadronic piece:

$$
\begin{aligned}
\mathcal{H}_{\text {eff }} & =\frac{G_{F} V_{c b}}{\sqrt{2}}\left\{\left[g_{S} \bar{c} b+g_{P} \bar{c} \gamma_{5} b\right] \bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell}\right. \\
+ & {\left[\left(1+g_{L}\right) \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b+g_{R} \bar{c} \gamma_{\mu}\left(1+\gamma_{5}\right) b\right] \bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell} } \\
& \left.+g_{T} \bar{c} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{\ell}+\text { h.c. }\right\}
\end{aligned}
$$

Effect: \exists more helicities. Previously, VA only: $\mathcal{A}_{+}, \mathcal{A}_{-}, \mathcal{A}_{0}, \mathcal{A}_{t}$. Now, add 4 more: $S P \rightarrow \mathcal{A}_{S P}, T \rightarrow \mathcal{A}_{+, T}, \mathcal{A}_{0, T}, \mathcal{A}_{-, T}$.

With both SM + NP contributions, write

$$
\mathcal{M}\left(B \rightarrow D^{*}(\rightarrow D \pi) W^{*}\left(\rightarrow \mu^{-} \bar{\nu}_{\mu}\right)\right)=\mathcal{M}^{S M}+\mathcal{M}^{V A}+\mathcal{M}^{T}
$$

Each term includes sum over relevant D^{*} and N^{*} helicities. [Before had only $\mathcal{M}^{V A} \sim \sum_{m=t, \pm, 0} g_{m m} \mathcal{H}_{D^{*}}(m) \mathcal{A}_{m} \mathcal{L}_{W^{*}}(m)$.]

Now, compute $|\mathcal{M}|^{2}$, obtain terms $\left|\mathcal{A}_{i}\right|^{2} f_{i}$ (momenta) and $\operatorname{Re}\left[\mathcal{A}_{i} \mathcal{A}_{j}^{*} f_{i j}\right.$ (momenta) $]$. Momenta defined using angles shown on the right

Now, compute $|\mathcal{M}|^{2}$, obtain terms $\left|\mathcal{A}_{i}\right|^{2} f_{i}$ (momenta) and $\operatorname{Re}\left[\mathcal{A}_{i} \mathcal{A}_{j}^{*} f_{i j}\right.$ (momenta) $]$. Momenta defined using angles shown on the right \Longrightarrow generate angular distribution.

Now, compute $|\mathcal{M}|^{2}$, obtain terms $\left|\mathcal{A}_{i}\right|^{2} f_{i}$ (momenta) and $\operatorname{Re}\left[\mathcal{A}_{i} \mathcal{A}_{j}^{*} f_{i j}\right.$ (momenta) $]$. Momenta defined using angles shown on the right \Longrightarrow generate angular distribution.

Key point: in interference terms, sometimes \exists an additional factor of i in $f_{i j}$ (momenta) (e.g., from $\left.\operatorname{Tr}\left[\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5}\right]=4 i \epsilon_{\mu \nu \rho \sigma}\right) \Longrightarrow$ coefficient is $\operatorname{Im}\left[\mathcal{A}_{i} \mathcal{A}_{j}^{*}\right]$, sensitive to phase differences

Now, compute $|\mathcal{M}|^{2}$, obtain terms $\left|\mathcal{A}_{i}\right|^{2} f_{i}$ (momenta) and $\operatorname{Re}\left[\mathcal{A}_{i} \mathcal{A}_{j}^{*} f_{i j}\right.$ (momenta) $]$. Momenta defined using angles shown on the right \Longrightarrow generate angular distribution.

Key point: in interference terms, sometimes \exists an additional factor of i in $f_{i j}$ (momenta) (e.g., from $\operatorname{Tr}\left[\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5}\right]=4 i \epsilon_{\mu \nu \rho \sigma}$) \Longrightarrow coefficient is $\operatorname{Im}\left[\mathcal{A}_{i} \mathcal{A}_{j}^{*}\right]$, sensitive to phase differences

Recall: in this decay, SM and NP strong phases \sim equal $\Longrightarrow \operatorname{Im}\left[\mathcal{A}_{i} \mathcal{A}_{j}^{*}\right]$ involves only the weak-phase difference. Such terms are signals of CP violation!

CP-Violating Observables

Complete angular distribution contains many CPV observables, some suppressed by m_{μ}^{2} / q^{2}, some suppressed by $m_{\mu} / \sqrt{q^{2}}$, and some unsuppressed. q^{2} typically $O\left(m_{b}^{2}\right) \Longrightarrow$ suppression significant. (But if measurements can be made in region of phase space where $q^{2}=O\left(m_{\mu}^{2}\right)$, can get more information.)

CP-Violating Observables

Complete angular distribution contains many CPV observables, some suppressed by m_{μ}^{2} / q^{2}, some suppressed by $m_{\mu} / \sqrt{q^{2}}$, and some unsuppressed. q^{2} typically $O\left(m_{b}^{2}\right) \Longrightarrow$ suppression significant. (But if measurements can be made in region of phase space where $q^{2}=O\left(m_{\mu}^{2}\right)$, can get more information.)
The unsuppressed observables are

Coefficient	Angular Function	
$\operatorname{Im}\left(\mathcal{A}_{\perp} \mathcal{A}_{0}^{*}\right)$	$-\sqrt{2} \sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi$	
$\operatorname{Im}\left(\mathcal{A}_{\\|} \mathcal{A}_{\perp}^{*}\right)$	$2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$	
$\operatorname{Im}\left(\mathcal{A}_{0} \mathcal{A}_{\\|}^{*}\right)$	$-2 \sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$	
$\operatorname{Im}\left(\mathcal{A}_{S P} \mathcal{A}_{\perp, T}^{*}\right)$	$-8 \sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$	

CP-Violating Observables

Complete angular distribution contains many CPV observables, some suppressed by m_{μ}^{2} / q^{2}, some suppressed by $m_{\mu} / \sqrt{q^{2}}$, and some unsuppressed. q^{2} typically $O\left(m_{b}^{2}\right) \Longrightarrow$ suppression significant. (But if measurements can be made in region of phase space where $q^{2}=O\left(m_{\mu}^{2}\right)$, can get more information.)
The unsuppressed observables are

Coefficient	Angular Function	
$\operatorname{Im}\left(\mathcal{A}_{\perp} \mathcal{A}_{0}^{*}\right)$	$-\sqrt{2} \sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi$	
$\operatorname{Im}\left(\mathcal{A}_{\\|} \mathcal{A}_{\perp}^{*}\right)$	$2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$	
$\operatorname{Im}\left(\mathcal{A}_{0} \mathcal{A}_{\\|}^{*}\right)$	$-2 \sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$	
$\operatorname{Im}\left(\mathcal{A}_{S P} \mathcal{A}_{\perp, T}^{*}\right)$	$-8 \sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$	

Which NP couplings are involved? $\operatorname{Im}\left(\mathcal{A}_{\perp} \mathcal{A}_{0}^{*}\right), \operatorname{Im}\left(\mathcal{A}_{\|} \mathcal{A}_{\perp}^{*}\right)$ and $\operatorname{Im}\left(\mathcal{A}_{0} \mathcal{A}_{\|}^{*}\right)$ are generated by $\operatorname{Im}\left[\left(1+g_{L}+g_{R}\right)\left(1+g_{L}-g_{R}\right)^{*}\right]$, while $\operatorname{Im}\left(\mathcal{A}_{S P} \mathcal{A}_{\perp, T}^{*}\right)$ is related to $\operatorname{Im}\left(g_{P} g_{T}^{*}\right)$.

Comments:

- Most proposed models contribute to g_{L} only (like $S M$) \Longrightarrow if CPV observed, these models ruled out.

Comments:

- Most proposed models contribute to g_{L} only (like SM) \Longrightarrow if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi \Longrightarrow g_{R} \neq 0$. Expect to also see CPV in $\sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$.

Comments:

- Most proposed models contribute to g_{L} only (like $S M$) \Longrightarrow if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi \Longrightarrow g_{R} \neq 0$. Expect to also see CPV in $\sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$.
- OTOH, if $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term found to vanish $\Longrightarrow g_{R}=0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term $\Longrightarrow \operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$.

Comments:

- Most proposed models contribute to g_{L} only (like $S M$) \Longrightarrow if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi \Longrightarrow g_{R} \neq 0$. Expect to also see CPV in $\sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$.
- OTOH, if $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term found to vanish $\Longrightarrow g_{R}=0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term $\Longrightarrow \operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$.

What NP models can generate g_{R}, g_{P}, g_{T} ?

Comments:

- Most proposed models contribute to g_{L} only (like $S M$) \Longrightarrow if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi \Longrightarrow g_{R} \neq 0$. Expect to also see CPV in $\sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$.
- OTOH, if $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term found to vanish $\Longrightarrow g_{R}=0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term $\Longrightarrow \operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$.
What NP models can generate g_{R}, g_{P}, g_{T} ?
(1) R_{2} and $S_{1} \mathrm{LQ}$ models generate g_{T}. U_{1}, R_{2}, S_{1} and $V_{2} \mathrm{LQ}$ models generate $g_{P} \Longrightarrow$ if $\operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$ is found, points to model with two (different) LQs.

Comments:

- Most proposed models contribute to g_{L} only (like $S M$) \Longrightarrow if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi \Longrightarrow g_{R} \neq 0$. Expect to also see CPV in $\sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$.
- OTOH, if $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term found to vanish $\Longrightarrow g_{R}=0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term $\Longrightarrow \operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$.

What NP models can generate g_{R}, g_{P}, g_{T} ?
(1) R_{2} and $S_{1} \mathrm{LQ}$ models generate $g_{T} . U_{1}, R_{2}, S_{1}$ and $V_{2} \mathrm{LQ}$ models generate $g_{P} \Longrightarrow$ if $\operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$ is found, points to model with two (different) LQs.
(2) LQ models do not produce g_{R}. Can arise, for example, in a model that includes both a W_{L}^{\prime} and a W_{R}^{\prime} that mix.

Comments:

- Most proposed models contribute to g_{L} only (like $S M$) \Longrightarrow if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi \Longrightarrow g_{R} \neq 0$. Expect to also see CPV in $\sin ^{2} \theta_{\ell} \sin ^{2} \theta^{*} \sin 2 \chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$.
- OTOH, if $\sin 2 \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term found to vanish $\Longrightarrow g_{R}=0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2 \theta^{*} \sin \chi$ term $\Longrightarrow \operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$.
What NP models can generate g_{R}, g_{P}, g_{T} ?
(1) R_{2} and $S_{1} \mathrm{LQ}$ models generate g_{T}. U_{1}, R_{2}, S_{1} and $V_{2} \mathrm{LQ}$ models generate $g_{P} \Longrightarrow$ if $\operatorname{Im}\left(g_{P} g_{T}^{*}\right) \neq 0$ is found, points to model with two (different) LQs.
(2) LQ models do not produce g_{R}. Can arise, for example, in a model that includes both a W_{L}^{\prime} and a W_{R}^{\prime} that mix.
\exists other possibilities if suppressed CPV observables can be measured, and there is also information from CP-conserving observables.
$\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \overline{\boldsymbol{\nu}}_{\tau}$

Finally, work in progress: look at angular distribution of $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$, including products of τ decay.
$\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$

Finally, work in progress: look at angular distribution of $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$, including products of τ decay.
(i) $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$. Here, \vec{p}_{π} is measured, providing information beyond that found in the angular distribution of $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}$. E.g., in $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}, \mathrm{CPV}$ terms proportional to $\operatorname{Im}\left(g_{P}\left(1+g_{L}\right)^{*}\right)$ are suppressed by $m_{\mu} / \sqrt{q^{2}}$. But in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-}\left(\rightarrow \pi^{-} \nu_{\tau}\right) \bar{\nu}_{\tau}$, they are unsuppressed.
$\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$

Finally, work in progress: look at angular distribution of $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$, including products of τ decay.
(i) $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$. Here, \vec{p}_{π} is measured, providing information beyond that found in the angular distribution of $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}$. E.g., in $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}, \mathrm{CPV}$ terms proportional to $\operatorname{Im}\left(g_{P}\left(1+g_{L}\right)^{*}\right)$ are suppressed by $m_{\mu} / \sqrt{q^{2}}$. But in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-}\left(\rightarrow \pi^{-} \nu_{\tau}\right) \bar{\nu}_{\tau}$, they are unsuppressed.
(ii) We will also examine the angular distributions of $\bar{B}^{0} \rightarrow D^{(*)+} \tau^{-}\left(\rightarrow \rho^{-} \nu_{\tau}\right) \bar{\nu}_{\tau}$, with $\rho^{-} \rightarrow \pi^{-} \pi^{0}$ and $\pi^{-} \pi^{+} \pi^{-}$.

Conclusions

\exists anomalies in $R_{D^{(*)}}$ and $R_{J / \psi} \Longrightarrow$ suggestion of NP in $b \rightarrow c \tau^{-} \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.

Conclusions

\exists anomalies in $R_{D^{(*)}}$ and $R_{J / \psi} \Longrightarrow$ suggestion of NP in $b \rightarrow c \tau^{-} \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.
First step: look at NP contributions to CPV angular asymmetries in $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}$ (will be measured by LHCb).

Conclusions

\exists anomalies in $R_{D^{(*)}}$ and $R_{J / \psi} \Longrightarrow$ suggestion of NP in $b \rightarrow c \tau^{-} \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.
First step: look at NP contributions to CPV angular asymmetries in $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}$ (will be measured by LHCb).
(1) Model-independent: we (i) allow for NP with new Lorentz structures, (ii) identify the CP-violating angular asymmetries, and (iii) show how all CP-violating observables depend on the NP parameters.

Conclusions

\exists anomalies in $R_{D^{(*)}}$ and $R_{J / \psi} \Longrightarrow$ suggestion of NP in $b \rightarrow c \tau^{-} \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$.
First step: look at NP contributions to CPV angular asymmetries in $\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}$ (will be measured by LHCb).
(1) Model-independent: we (i) allow for NP with new Lorentz structures, (ii) identify the CP-violating angular asymmetries, and (iii) show how all CP-violating observables depend on the NP parameters.
(2) Model-dependent: \exists two classes of models, involving a W^{\prime} or a LQ. Most popular: couplings only to LH particles. If CPV observed, these models ruled out. Depending on which CPV asymmetries found to be nonzero, can distinguish other models.

