CP Violation in $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell}$

David London

Université de Montréal

FPCP 2019 Wednesday, May 8, , 2019

Talk based on work done in collaboration with A. Datta, B. Bhattacharya and S. Kamal, (arXiv:1903.02567 [hep-ph]).

Discrepancies with SM

 \exists discrepancies with predictions of SM in

$$\begin{split} R_{D^{(*)}} &\equiv \mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})/\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell}) \quad (\ell = e, \mu) \ , \\ R_{J/\psi} &\equiv \mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})/\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu}) \ . \end{split}$$

Image: Image:

- **4 ∃ ≻** 4

Discrepancies with SM

 \exists discrepancies with predictions of SM in

$$\begin{split} R_{D^{(*)}} &\equiv \mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})/\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell}) \quad (\ell = e, \mu) \ , \\ R_{J/\psi} &\equiv \mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})/\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu}) \ . \end{split}$$

Pre-Moriond:

Observable	Measurer	ment/Constraint
$R_{D_{*}^{\star}}^{ au/\ell}/(R_{D_{*}^{\star}}^{ au/\ell})_{\mathrm{SM}}$	1.18 ± 0.06	(BaBar, Belle, LHCb)
$R_D^{ au/\ell}/(R_D^{ au/\ell})_{ m SM}$	1.36 ± 0.15	(BaBar, Belle, LHCb)
$R_{D^*}^{\mu/e}/(R_{D^*}^{\mu/e})_{ m SM}$	1.00 ± 0.05	(Belle)
$R^{ au/\mu}_{J/\psi}/(R^{ au/\mu}_{J/\psi})_{ m SM}$	2.51 ± 0.97	(LHCb)

Deviation from SM is ~ 3.8 σ in R_D and R_{D^*} (combined), 1.7 σ in $R_{J/\psi}$.

David London (UdeM)

At Moriond, Belle announced new results (see 1904.08794):

$$\begin{array}{lll} R_{D^*}^{\tau/\ell}/(R_{D^*}^{\tau/\ell})_{\rm SM} &=& 1.10 \pm 0.09 \ , \\ R_D^{\tau/\ell}/(R_D^{\tau/\ell})_{\rm SM} &=& 1.03 \pm 0.13 \ . \end{array}$$

These are in better agreement with the SM \implies deviation from SM in R_D and R_{D^*} (combined) is reduced from $\sim 3.8\sigma$ to 3.1σ .

At Moriond, Belle announced new results (see 1904.08794):

$$\begin{array}{lll} R_{D^*}^{\tau/\ell}/(R_{D^*}^{\tau/\ell})_{\rm SM} &=& 1.10 \pm 0.09 \ , \\ R_D^{\tau/\ell}/(R_D^{\tau/\ell})_{\rm SM} &=& 1.03 \pm 0.13 \ . \end{array}$$

These are in better agreement with the SM \implies deviation from SM in R_D and R_{D^*} (combined) is reduced from $\sim 3.8\sigma$ to 3.1σ .

 \implies There is still a suggestion of NP in $b \rightarrow c \tau^- \bar{\nu}$ decays.

 $b \to c\tau^- \bar{\nu}$ is charged-current process \implies NP is W'^{\pm} , H^{\pm} or LQ (several different possibilities). H^{\pm} disfavoured by constraints from $B_c^- \to \tau^- \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$.

 $b \to c\tau^- \bar{\nu}$ is charged-current process \implies NP is W'^{\pm} , H^{\pm} or LQ (several different possibilities). H^{\pm} disfavoured by constraints from $B_c^- \to \tau^- \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$.

Direct CPV: $A_{dir} \propto \Gamma(\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_{\tau}) - \Gamma(B^0 \to D^{*-}\tau^+\nu_{\tau})$. $A_{dir} \neq 0$ only if interfering amplitudes have different strong phases. Only hadronic transition is $\bar{B} \to D^*$: SM and NP strong phases ~equal $\Longrightarrow A_{dir}$ is small.

 $b \to c\tau^- \bar{\nu}$ is charged-current process \implies NP is W'^{\pm} , H^{\pm} or LQ (several different possibilities). H^{\pm} disfavoured by constraints from $B_c^- \to \tau^- \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$.

Direct CPV: $A_{dir} \propto \Gamma(\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_{\tau}) - \Gamma(B^0 \to D^{*-}\tau^+\nu_{\tau})$. $A_{dir} \neq 0$ only if interfering amplitudes have different strong phases. Only hadronic transition is $\bar{B} \to D^*$: SM and NP strong phases ~equal $\Longrightarrow A_{dir}$ is small.

Main CPV effects: CPV asymmetries in angular distribution of $\bar{B}^0 \rightarrow D^{*+}(\rightarrow D^0 \pi^+) \tau^- \bar{\nu}_{\tau}$. Requires that interfering amplitudes have different Lorentz structures \implies can distinguish different NP explanations.

 $b \to c\tau^- \bar{\nu}$ is charged-current process \implies NP is W'^{\pm} , H^{\pm} or LQ (several different possibilities). H^{\pm} disfavoured by constraints from $B_c^- \to \tau^- \bar{\nu}_{\tau}$. How to distinguish remaining NP models? Suggestion: measure CP violation in $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$.

Direct CPV: $A_{dir} \propto \Gamma(\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_{\tau}) - \Gamma(B^0 \to D^{*-}\tau^+\nu_{\tau})$. $A_{dir} \neq 0$ only if interfering amplitudes have different strong phases. Only hadronic transition is $\bar{B} \to D^*$: SM and NP strong phases ~equal $\Longrightarrow A_{dir}$ is small.

Main CPV effects: CPV asymmetries in angular distribution of $\bar{B}^0 \to D^{*+} (\to D^0 \pi^+) \tau^- \bar{\nu}_{\tau}$. Requires that interfering amplitudes have different Lorentz structures \implies can distinguish different NP explanations.

Practical problem: requires knowledge of \vec{p}_{τ} , which cannot be measured (missing final ν_{τ}) \implies need to include information from decay products of τ . Will do (work in progress), but first step: look at NP contributions to CPV angular asymmetries in $\bar{B}^0 \rightarrow D^{*+}\mu^-\bar{\nu}_{\mu}$ (will be measured by LHCb).

$ar{B}^0 ightarrow D^{*+} \mu^- ar{ u}_{\mu}$: Angular Distribution

1. SM: decay is interpreted as $\bar{B}^0 \to D^{*+}(\to D^0\pi^+)W^{*-}(\to \mu^-\bar{\nu}_{\mu})$. Write

$$\mathcal{M}_{(m;n)}(B \to D^*W^*) = \epsilon_{D^*}^{*\mu}(m) M_{\mu\nu} \epsilon_{W^*}^{*\nu}(n) .$$

Here, D^{*+} (real) has 3 polarizations: m = +, -, 0. W^{*-} (virtual) has 4 polarizations: n = +, -, 0, t.

$ar{B}^0 o D^{*+} \mu^- ar{ u}_\mu$: Angular Distribution

1. SM: decay is interpreted as $\bar{B}^0 \to D^{*+}(\to D^0\pi^+)W^{*-}(\to \mu^-\bar{\nu}_{\mu})$. Write

$$\mathcal{M}_{(m;n)}(B \to D^*W^*) = \epsilon_{D^*}^{*\mu}(m) M_{\mu\nu} \epsilon_{W^*}^{*\nu}(n) .$$

Here, D^{*+} (real) has 3 polarizations: m = +, -, 0. W^{*-} (virtual) has 4 polarizations: n = +, -, 0, t.

Of 12 $D^{*+}-W^{*-}$ polarization combinations, only 4 allowed (conservation of angular momentum): ++, --, 00, 0t $\implies \exists$ 4 helicity amplitudes: A_+ , A_- , A_0 , A_t . Decay amplitude is

$$\mathcal{M}(B o D^*(o D\pi)W^*(o \mu^- ar{
u}_\mu)) \propto \sum_{m=t,\pm,0} g_{mm} \mathcal{H}_{D^*}(m) \mathcal{A}_m \mathcal{L}_{W^*}(m) \;.$$

 \mathcal{H}_{D^*} : hadronic matrix element, \mathcal{L}_{W^*} : leptonic matrix element.

David London (UdeM)

CPV in $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell}$

2. NP: change $W^* \to N^*$, where N = S - P ($\equiv SP$), V - A ($\equiv VA$), T represent new interactions involving LH neutrino (VA includes SM). Hadronic piece:

$$\begin{split} \mathcal{H}_{eff} &= \frac{G_F V_{cb}}{\sqrt{2}} \Big\{ [g_S \, \bar{c} b + g_P \, \bar{c} \gamma_5 b] \, \bar{\ell} (1 - \gamma_5) \nu_\ell \\ &+ \left[(1 + g_L) \, \bar{c} \gamma_\mu (1 - \gamma_5) b + g_R \, \bar{c} \gamma_\mu (1 + \gamma_5) b \right] \bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell \\ &+ g_T \, \bar{c} \sigma^{\mu\nu} (1 - \gamma_5) b \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell + h.c. \Big\} \; . \end{split}$$

- **4 ∃ ≻** 4

2. NP: change $W^* \to N^*$, where N = S - P ($\equiv SP$), V - A ($\equiv VA$), T represent new interactions involving LH neutrino (VA includes SM). Hadronic piece:

$$\begin{aligned} \mathcal{H}_{eff} &= \frac{G_F V_{cb}}{\sqrt{2}} \Big\{ [g_S \, \bar{c} b + g_P \, \bar{c} \gamma_5 b] \, \bar{\ell} (1 - \gamma_5) \nu_\ell \\ &+ \left[(1 + g_L) \, \bar{c} \gamma_\mu (1 - \gamma_5) b + g_R \, \bar{c} \gamma_\mu (1 + \gamma_5) b \right] \bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell \\ &+ g_T \, \bar{c} \sigma^{\mu\nu} (1 - \gamma_5) b \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell + h.c. \Big\} \; . \end{aligned}$$

Effect: \exists more helicities. Previously, VA only: \mathcal{A}_+ , \mathcal{A}_- , \mathcal{A}_0 , \mathcal{A}_t . Now, add 4 more: $SP \rightarrow \mathcal{A}_{SP}$, $T \rightarrow \mathcal{A}_{+,T}$, $\mathcal{A}_{0,T}$, $\mathcal{A}_{-,T}$.

2. NP: change $W^* \rightarrow N^*$, where N = S - P ($\equiv SP$), V - A ($\equiv VA$), T represent new interactions involving LH neutrino (VA includes SM). Hadronic piece:

$$\begin{aligned} \mathcal{H}_{eff} &= \frac{G_F V_{cb}}{\sqrt{2}} \Big\{ [g_S \, \bar{c} b + g_P \, \bar{c} \gamma_5 b] \, \bar{\ell} (1 - \gamma_5) \nu_\ell \\ &+ \left[(1 + g_L) \, \bar{c} \gamma_\mu (1 - \gamma_5) b + g_R \, \bar{c} \gamma_\mu (1 + \gamma_5) b \right] \bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell \\ &+ g_T \, \bar{c} \sigma^{\mu\nu} (1 - \gamma_5) b \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell + h.c. \Big\} \; . \end{aligned}$$

Effect: \exists more helicities. Previously, *VA* only: A_+ , A_- , A_0 , A_t . Now, add 4 more: $SP \rightarrow A_{SP}$, $T \rightarrow A_{+,T}$, $A_{0,T}$, $A_{-,T}$.

With both SM + NP contributions, write

$$\mathcal{M}(B o D^*(o D\pi)W^*(o \mu^- ar{
u}_\mu)) = \mathcal{M}^{SM} + \mathcal{M}^{V\!A} + \mathcal{M}^T \; .$$

Each term includes sum over relevant D^* and N^* helicities. [Before had only $\mathcal{M}^{VA} \sim \sum_{m=t,\pm,0} g_{mm} \mathcal{H}_{D^*}(m) \mathcal{A}_m \mathcal{L}_{W^*}(m)$.]

David London (UdeM)

FPCP 2019

Now, compute $|\mathcal{M}|^2$, obtain terms $|\mathcal{A}_i|^2 f_i$ (momenta) and $\operatorname{Re}[\mathcal{A}_i \mathcal{A}_j^* f_{ij}$ (momenta)]. Momenta defined using angles shown on the right

CPV in $\bar{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell}$

FPCP 2019 7 / 1

Now, compute $|\mathcal{M}|^2$, obtain terms $|\mathcal{A}_i|^2 f_i$ (momenta) and $\operatorname{Re}[\mathcal{A}_i \mathcal{A}_j^* f_{ij}$ (momenta)]. Momenta defined using angles shown on the right

 \implies generate angular distribution.

Now, compute $|\mathcal{M}|^2$, obtain terms $|\mathcal{A}_i|^2 f_i$ (momenta) and $\operatorname{Re}[\mathcal{A}_i \mathcal{A}_j^* f_{ij}$ (momenta)]. Momenta defined using angles shown on the right

 \implies generate angular distribution.

Key point: in interference terms, sometimes \exists an additional factor of *i* in f_{ij} (momenta) (e.g., from $\text{Tr}[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5}] = 4i\epsilon_{\mu\nu\rho\sigma}) \implies$ coefficient is $\text{Im}[\mathcal{A}_{i}\mathcal{A}_{i}^{*}]$, sensitive to phase differences

Now, compute $|\mathcal{M}|^2$, obtain terms $|\mathcal{A}_i|^2 f_i$ (momenta) and $\operatorname{Re}[\mathcal{A}_i \mathcal{A}_j^* f_{ij}$ (momenta)]. Momenta defined using angles shown on the right

 \implies generate angular distribution.

Key point: in interference terms, sometimes \exists an additional factor of *i* in f_{ij} (momenta) (e.g., from $\text{Tr}[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5}] = 4i\epsilon_{\mu\nu\rho\sigma}) \implies$ coefficient is $\text{Im}[\mathcal{A}_{i}\mathcal{A}_{i}^{*}]$, sensitive to phase differences

Recall: in this decay, SM and NP strong phases \sim equal \implies Im $[A_iA_j^*]$ involves only the weak-phase difference. Such terms are signals of CP violation!

CP-Violating Observables

Complete angular distribution contains many CPV observables, some suppressed by m_{μ}^2/q^2 , some suppressed by $m_{\mu}/\sqrt{q^2}$, and some unsuppressed. q^2 typically $O(m_b^2) \Longrightarrow$ suppression significant. (But if measurements can be made in region of phase space where $q^2 = O(m_{\mu}^2)$, can get more information.)

CP-Violating Observables

Complete angular distribution contains many CPV observables, some suppressed by m_{μ}^2/q^2 , some suppressed by $m_{\mu}/\sqrt{q^2}$, and some unsuppressed. q^2 typically $O(m_b^2) \Longrightarrow$ suppression significant. (But if measurements can be made in region of phase space where $q^2 = O(m_{\mu}^2)$, can get more information.)

The unsuppressed observables are

Coefficient	Angular Function
$\operatorname{Im}(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})$	$-\sqrt{2}\sin2 heta_\ell\sin2 heta^*\sin\chi$
$\operatorname{Im}(\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*})$	$2\sin^2 heta_\ell\sin^2 heta^*\sin 2\chi$
$\operatorname{Im}(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{*})$	$-2\sqrt{2}\sin heta_\ell\sin2 heta^*\sin\chi$
$\operatorname{Im}(\mathcal{A}_{SP}\mathcal{A}^*_{\perp,T})$	$-8\sqrt{2}\sin heta_\ell\sin2 heta^*\sin\chi$

CP-Violating Observables

Complete angular distribution contains many CPV observables, some suppressed by m_{μ}^2/q^2 , some suppressed by $m_{\mu}/\sqrt{q^2}$, and some unsuppressed. q^2 typically $O(m_b^2) \Longrightarrow$ suppression significant. (But if measurements can be made in region of phase space where $q^2 = O(m_{\mu}^2)$, can get more information.)

The unsuppressed observables are

Coefficient	Angular Function
$\operatorname{Im}(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})$	$-\sqrt{2}\sin 2 heta_\ell\sin 2 heta^*\sin\chi$
$\operatorname{Im}(\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*})$	$2\sin^2 heta_\ell\sin^2 heta^*\sin2\chi$
$\operatorname{Im}(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{*})$	$-2\sqrt{2}\sin heta_\ell\sin2 heta^*\sin\chi$
$\operatorname{Im}(\mathcal{A}_{SP}\mathcal{A}^*_{\perp,T})$	$-8\sqrt{2}\sin heta_\ell\sin2 heta^*\sin\chi$

Which NP couplings are involved? $\operatorname{Im}(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})$, $\operatorname{Im}(\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*})$ and $\operatorname{Im}(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{*})$ are generated by $\operatorname{Im}[(1 + g_{L} + g_{R})(1 + g_{L} - g_{R})^{*}]$, while $\operatorname{Im}(\mathcal{A}_{SP}\mathcal{A}_{\perp,T}^{*})$ is related to $\operatorname{Im}(g_{P}g_{T}^{*})$.

David London (UdeM)

• Most proposed models contribute to g_L only (like SM) \implies if CPV observed, these models ruled out.

→ ∃ →

- Most proposed models contribute to g_L only (like SM) \implies if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi \Longrightarrow g_R \neq 0$. Expect to also see CPV in $\sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$.

- Most proposed models contribute to g_L only (like SM) \implies if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi \Longrightarrow g_R \neq 0$. Expect to also see CPV in $\sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$.
- OTOH, if $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi$ term found to vanish $\Longrightarrow g_R = 0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$ term $\Longrightarrow \operatorname{Im}(g_P g_T^*) \neq 0$.

- Most proposed models contribute to g_L only (like SM) \implies if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi \Longrightarrow g_R \neq 0$. Expect to also see CPV in $\sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$.
- OTOH, if $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi$ term found to vanish $\Longrightarrow g_R = 0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$ term $\Longrightarrow \operatorname{Im}(g_P g_T^*) \neq 0$.

What NP models can generate g_R , g_P , g_T ?

- Most proposed models contribute to g_L only (like SM) \implies if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi \Longrightarrow g_R \neq 0$. Expect to also see CPV in $\sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$.
- OTOH, if $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi$ term found to vanish $\Longrightarrow g_R = 0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$ term $\Longrightarrow \operatorname{Im}(g_P g_T^*) \neq 0$.

What NP models can generate g_R , g_P , g_T ?

a R_2 and S_1 LQ models generate g_T . U_1 , R_2 , S_1 and V_2 LQ models generate $g_P \implies$ if $\text{Im}(g_P g_T^*) \neq 0$ is found, points to model with two (different) LQs.

- Most proposed models contribute to g_L only (like SM) \implies if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi \Longrightarrow g_R \neq 0$. Expect to also see CPV in $\sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$.
- OTOH, if $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi$ term found to vanish $\Longrightarrow g_R = 0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$ term $\Longrightarrow \operatorname{Im}(g_P g_T^*) \neq 0$.

What NP models can generate g_R , g_P , g_T ?

- **1** R_2 and S_1 LQ models generate g_T . U_1 , R_2 , S_1 and V_2 LQ models generate $g_P \implies$ if $\text{Im}(g_P g_T^*) \neq 0$ is found, points to model with two (different) LQs.
- 2 LQ models do not produce g_R . Can arise, for example, in a model that includes both a W'_L and a W'_R that mix.

- Most proposed models contribute to g_L only (like SM) \implies if CPV observed, these models ruled out.
- If angular distribution contains (e.g.) $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi \Longrightarrow g_R \neq 0$. Expect to also see CPV in $\sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$ and $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$.
- OTOH, if $\sin 2\theta_{\ell} \sin 2\theta^* \sin \chi$ term found to vanish $\Longrightarrow g_R = 0$. Measurement of nonzero $\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$ term $\Longrightarrow \operatorname{Im}(g_P g_T^*) \neq 0$.

What NP models can generate g_R , g_P , g_T ?

- **1** R_2 and S_1 LQ models generate g_T . U_1 , R_2 , S_1 and V_2 LQ models generate $g_P \implies$ if $\text{Im}(g_P g_T^*) \neq 0$ is found, points to model with two (different) LQs.
- 2 LQ models do not produce g_R . Can arise, for example, in a model that includes both a W'_L and a W'_R that mix.

 \exists other possibilities if suppressed CPV observables can be measured, and there is also information from CP-conserving observables.

 $ar{B}^0 o D^{*+} au^- ar{
u}_ au$

Finally, work in progress: look at angular distribution of $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$, including products of τ decay.

Finally, work in progress: look at angular distribution of $\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}$, including products of τ decay.

(i) $\tau^- \to \pi^- \nu_{\tau}$. Here, \vec{p}_{π} is measured, providing information beyond that found in the angular distribution of $\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu}$. E.g., in $\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu}$, CPV terms proportional to $\text{Im}(g_P(1+g_L)^*)$ are suppressed by $m_{\mu}/\sqrt{q^2}$. But in $\bar{B}^0 \to D^{*+}\tau^-(\to \pi^-\nu_{\tau})\bar{\nu}_{\tau}$, they are unsuppressed.

Finally, work in progress: look at angular distribution of $\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}$, including products of τ decay.

(i) $\tau^- \to \pi^- \nu_{\tau}$. Here, \vec{p}_{π} is measured, providing information beyond that found in the angular distribution of $\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu}$. E.g., in $\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu}$, CPV terms proportional to $\text{Im}(g_P(1+g_L)^*)$ are suppressed by $m_{\mu}/\sqrt{q^2}$. But in $\bar{B}^0 \to D^{*+}\tau^-(\to \pi^-\nu_{\tau})\bar{\nu}_{\tau}$, they are unsuppressed.

(ii) We will also examine the angular distributions of $\bar{B}^0 \to D^{(*)+}\tau^-(\to \rho^-\nu_\tau)\bar{\nu}_\tau$, with $\rho^- \to \pi^-\pi^0$ and $\pi^-\pi^+\pi^-$.

 \exists anomalies in $R_{D^{(*)}}$ and $R_{J/\psi} \Longrightarrow$ suggestion of NP in $b \to c\tau^- \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^0 \to D^{*+}\tau^- \bar{\nu}_{\tau}$.

 \exists anomalies in $R_{D^{(*)}}$ and $R_{J/\psi} \Longrightarrow$ suggestion of NP in $b \to c\tau^- \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^0 \to D^{*+}\tau^- \bar{\nu}_{\tau}$.

First step: look at NP contributions to CPV angular asymmetries in $\bar{B}^0 \rightarrow D^{*+} \mu^- \bar{\nu}_{\mu}$ (will be measured by LHCb).

 \exists anomalies in $R_{D^{(*)}}$ and $R_{J/\psi} \Longrightarrow$ suggestion of NP in $b \to c\tau^- \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^0 \to D^{*+}\tau^- \bar{\nu}_{\tau}$.

First step: look at NP contributions to CPV angular asymmetries in $\bar{B}^0 \rightarrow D^{*+} \mu^- \bar{\nu}_{\mu}$ (will be measured by LHCb).

Model-independent: we (i) allow for NP with new Lorentz structures, (ii) identify the CP-violating angular asymmetries, and (iii) show how all CP-violating observables depend on the NP parameters.

 \exists anomalies in $R_{D^{(*)}}$ and $R_{J/\psi} \Longrightarrow$ suggestion of NP in $b \to c\tau^- \bar{\nu}$. A variety of NP models have been proposed. Suggestion: distinguish models through measurement of CP violation in $\bar{B}^0 \to D^{*+}\tau^- \bar{\nu}_{\tau}$.

First step: look at NP contributions to CPV angular asymmetries in $\bar{B}^0 \rightarrow D^{*+} \mu^- \bar{\nu}_{\mu}$ (will be measured by LHCb).

- Model-independent: we (i) allow for NP with new Lorentz structures, (ii) identify the CP-violating angular asymmetries, and (iii) show how all CP-violating observables depend on the NP parameters.
- Model-dependent: ∃ two classes of models, involving a W' or a LQ. Most popular: couplings only to LH particles. If CPV observed, these models ruled out. Depending on which CPV asymmetries found to be nonzero, can distinguish other models.