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Discrepancies with SM

∃ discrepancies with predictions of SM in

RD(∗) ≡ B(B̄ → D(∗)τ−ν̄τ )/B(B̄ → D(∗)ℓ−ν̄ℓ) (ℓ = e, µ) ,

RJ/ψ ≡ B(B+
c → J/ψτ+ντ )/B(B+

c → J/ψµ+νµ) .

Pre-Moriond:

Observable Measurement/Constraint

R
τ/ℓ
D∗ /(R

τ/ℓ
D∗ )SM 1.18± 0.06 (BaBar, Belle, LHCb)

R
τ/ℓ
D /(R

τ/ℓ
D )SM 1.36± 0.15 (BaBar, Belle, LHCb)

R
µ/e
D∗ /(R

µ/e
D∗ )SM 1.00± 0.05 (Belle)

R
τ/µ
J/ψ/(R

τ/µ
J/ψ)SM 2.51± 0.97 (LHCb)

Deviation from SM is ∼ 3.8σ in RD and RD∗ (combined), 1.7σ in RJ/ψ.
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At Moriond, Belle announced new results (see 1904.08794):

R
τ/ℓ
D∗ /(R

τ/ℓ
D∗ )SM = 1.10± 0.09 ,

R
τ/ℓ
D /(R

τ/ℓ
D )SM = 1.03± 0.13 .

These are in better agreement with the SM =⇒ deviation from SM in RD

and RD∗ (combined) is reduced from ∼ 3.8σ to 3.1σ.

=⇒ There is still a suggestion of NP in b → cτ−ν̄ decays.
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New Physics

b → cτ−ν̄ is charged-current process =⇒ NP is W ′±, H± or LQ (several
different possibilities). H± disfavoured by constraints from B−

c → τ−ν̄τ .
How to distinguish remaining NP models? Suggestion: measure CP
violation in B̄0 → D∗+τ−ν̄τ .

Direct CPV: Adir ∝ Γ(B̄0 → D∗+τ−ν̄τ )− Γ(B0 → D∗−τ+ντ ). Adir ̸= 0
only if interfering amplitudes have different strong phases. Only hadronic
transition is B̄ → D∗: SM and NP strong phases ∼equal =⇒ Adir is small.

Main CPV effects: CPV asymmetries in angular distribution of
B̄0 → D∗+(→ D0π+)τ−ν̄τ . Requires that interfering amplitudes have
different Lorentz structures =⇒ can distinguish different NP explanations.

Practical problem: requires knowledge of p⃗τ , which cannot be measured
(missing final ντ ) =⇒ need to include information from decay products of
τ . Will do (work in progress), but first step: look at NP contributions to
CPV angular asymmetries in B̄0 → D∗+µ−ν̄µ (will be measured by LHCb).
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B̄
0 → D

∗+µ−ν̄µ: Angular Distribution

1. SM: decay is interpreted as B̄0 → D∗+(→ D0π+)W ∗−(→ µ−ν̄µ).
Write

M(m;n)(B → D∗W ∗) = ϵ∗µD∗(m)Mµν ϵ
∗ν
W ∗(n) .

Here, D∗+ (real) has 3 polarizations: m = +,−, 0. W ∗− (virtual) has 4
polarizations: n = +,−, 0, t.

Of 12 D∗+-W ∗− polarization combinations, only 4 allowed (conservation
of angular momentum): ++, −−, 00, 0t
=⇒ ∃ 4 helicity amplitudes: A+, A−, A0, At . Decay amplitude is

M(B → D∗(→ Dπ)W ∗(→ µ−ν̄µ)) ∝
∑

m=t,±,0
gmm HD∗(m)Am LW ∗(m) .

HD∗ : hadronic matrix element, LW ∗ : leptonic matrix element.
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2. NP: change W ∗ → N∗, where N = S − P (≡ SP),V − A (≡ VA),T
represent new interactions involving LH neutrino (VA includes SM).
Hadronic piece:

Heff =
GFVcb√

2

{
[gS c̄b + gP c̄γ5b] ℓ̄(1− γ5)νℓ

+ [(1 + gL) c̄γµ(1− γ5)b + gR c̄γµ(1 + γ5)b] ℓ̄γ
µ(1− γ5)νℓ

+ gT c̄σµν(1− γ5)bℓ̄σµν(1− γ5)νℓ + h.c.
}
.

Effect: ∃ more helicities. Previously, VA only: A+, A−, A0, At . Now, add
4 more: SP → ASP , T → A+,T , A0,T , A−,T .

With both SM + NP contributions, write

M(B → D∗(→ Dπ)W ∗(→ µ−ν̄µ)) = MSM +MVA +MT .

Each term includes sum over relevant D∗ and N∗ helicities. [Before had
only MVA ∼

∑
m=t,±,0

gmm HD∗(m)Am LW ∗(m).]
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Now, compute |M|2, obtain
terms |Ai |2fi (momenta) and
Re[AiA∗

j fij(momenta)].
Momenta defined using
angles shown on the right

=⇒ generate angular
distribution.

θ

θℓ

χ

B

ν

ℓ

D

π

x

y

z

Key point: in interference terms, sometimes ∃ an additional factor of i in
fij(momenta) (e.g., from Tr[γµγνγργσγ5] = 4iϵµνρσ) =⇒ coefficient is
Im[AiA∗

j ], sensitive to phase differences

Recall: in this decay, SM and NP strong phases ∼equal =⇒ Im[AiA∗
j ]

involves only the weak-phase difference. Such terms are signals of CP
violation!
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CP-Violating Observables

Complete angular distribution contains many CPV observables, some
suppressed by m2

µ/q
2, some suppressed by mµ/

√
q2, and some

unsuppressed. q2 typically O(m2
b) =⇒ suppression significant. (But if

measurements can be made in region of phase space where q2 = O(m2
µ),

can get more information.)

The unsuppressed observables are

Coefficient Angular Function

Im(A⊥A∗
0) −

√
2 sin 2θℓ sin 2θ

∗ sinχ

Im(A∥A∗
⊥) 2 sin2 θℓ sin

2 θ∗ sin 2χ

Im(A0A∗
∥) −2

√
2 sin θℓ sin 2θ

∗ sinχ

Im(ASPA∗
⊥,T ) −8

√
2 sin θℓ sin 2θ

∗ sinχ

Which NP couplings are involved? Im(A⊥A∗
0), Im(A∥A∗

⊥) and Im(A0A∗
∥)

are generated by Im[(1 + gL + gR)(1 + gL − gR)
∗], while Im(ASPA∗

⊥,T ) is
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Comments:

Most proposed models contribute to gL only (like SM) =⇒ if CPV
observed, these models ruled out.

If angular distribution contains (e.g.) sin 2θℓ sin 2θ
∗ sinχ =⇒ gR ̸= 0.

Expect to also see CPV in sin2 θℓ sin
2 θ∗ sin 2χ and

√
2 sin θℓ sin 2θ

∗ sinχ.

OTOH, if sin 2θℓ sin 2θ
∗ sinχ term found to vanish =⇒ gR = 0. Mea-

surement of nonzero
√
2 sin θℓ sin 2θ

∗ sinχ term =⇒ Im(gPg
∗
T ) ̸= 0.

What NP models can generate gR , gP , gT ?

1 R2 and S1 LQ models generate gT . U1, R2, S1 and V2 LQ models
generate gP =⇒ if Im(gPg

∗
T ) ̸= 0 is found, points to model with two

(different) LQs.

2 LQ models do not produce gR . Can arise, for example, in a model
that includes both a W ′

L and a W ′
R that mix.

∃ other possibilities if suppressed CPV observables can be measured, and
there is also information from CP-conserving observables.
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B̄
0 → D

∗+τ−ν̄τ

Finally, work in progress: look at angular distribution of B̄0 → D∗+τ−ν̄τ ,
including products of τ decay.

(i) τ− → π−ντ . Here, p⃗π is measured, providing information beyond that
found in the angular distribution of B̄0 → D∗+µ−ν̄µ. E.g., in
B̄0 → D∗+µ−ν̄µ, CPV terms proportional to Im(gP(1 + gL)

∗) are

suppressed by mµ/
√

q2. But in B̄0 → D∗+τ−(→ π−ντ )ν̄τ , they are
unsuppressed.

(ii) We will also examine the angular distributions of
B̄0 → D(∗)+τ−(→ ρ−ντ )ν̄τ , with ρ

− → π−π0 and π−π+π−.
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Conclusions

∃ anomalies in RD(∗) and RJ/ψ =⇒ suggestion of NP in b → cτ−ν̄. A
variety of NP models have been proposed. Suggestion: distinguish models
through measurement of CP violation in B̄0 → D∗+τ−ν̄τ .

First step: look at NP contributions to CPV angular asymmetries in
B̄0 → D∗+µ−ν̄µ (will be measured by LHCb).

1 Model-independent: we (i) allow for NP with new Lorentz structures,
(ii) identify the CP-violating angular asymmetries, and (iii) show how
all CP-violating observables depend on the NP parameters.

2 Model-dependent: ∃ two classes of models, involving a W ′ or a LQ.
Most popular: couplings only to LH particles. If CPV observed, these
models ruled out. Depending on which CPV asymmetries found to be
nonzero, can distinguish other models.
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