Implications for New Physics in $b \rightarrow s \mu \mu$ transitions after recent measurements by Belle and LHCb

Dinesh Kumar

National Centre for Nuclear Research, Warsaw, Poland With Kamila Kowalska, Enrico Maria Sessolo

May 7, 2019

• Rare *B*-decays:
$$R_{\mathcal{K}^{(*)}} = \frac{\mathcal{B}(B \to \mathcal{K}^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to \mathcal{K}^{(*)} e^+ e^-)}$$

 $\sim 2.5\sigma$

 $\sim 2.5\sigma$

 $\exists \rightarrow \neg$

590

New measurement of R_{K^*} by Belle

Consistent with SM with large uncertainties.

-	-			
	nac	h k		mai
			Nu	i i ai

Effective field theory analysis

• The effective Hamiltonian for $b \rightarrow sll$ transitions

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum (C_i^I O_i^I + C_i^{II} O_i^{II}) + h.c.$$

We assume the presence of NP in semileptonic operators:

$$O_9^I = (\bar{s}_L \gamma^\mu b_L)(\bar{l}\gamma_\mu l), \qquad O_9^{II} = (\bar{s}_R \gamma^\mu b_R)(\bar{l}\gamma_\mu l)$$

$$O_{10}^{\prime} = (\bar{s}_L \gamma^{\mu} b_L) (\bar{l} \gamma_{\mu} \gamma_5 l), \qquad O_{10}^{\prime \prime} = (\bar{s}_R \gamma^{\mu} b_R) (\bar{l} \gamma_{\mu} \gamma_5 l)$$

■ NP in scalar and pseudoscalar operators $O_S^{(\prime)}$ and $O_P^{(\prime)}$ are severely contrained by the $B_s \rightarrow \mu^+ \mu^-$ measurements. R. Alonso et al. PRL 113(2014) 241802, W. Altmannshofer et al. JHEP 05 (2017) 076.

■ NP in electromagnetic dipole operator O₇^(') is tightly constrained by radiative decays.A. Paul et al. JHEP 04 (2017) 027

- Several fits after the measurement of R_K and R_{K^*} J. Aebischer et al. arXiv 1903.10434, M. Alguero et al., arXiv:1903.09578, A. K. Alok et al., arXiv:1903.09617, M. Ciuchini et al., arXiv:1903.09632, Alakabha et al. arXiv 1903.10086
- We consider the NP in muon or muon and electron.
- Global fit with all the relevant data in $b \rightarrow s\mu\mu$ and $b \rightarrow see$.
- We performed global fits with 1, 2, 4 and 8 independent input parameters, plus a nuisnace parameter, *V*_{cb}.

- Bayes's theorem: $p(m|d) = \frac{p(d|\xi(m))\pi(m)}{p(d)}$
- Model comparison by computing the Bayes factor, defined as the ratio of evidences for two arbitrary models \mathcal{M}_1 and \mathcal{M}_2 i.e. $p(d)_{\mathcal{M}_1}/p(d)_{\mathcal{M}_2}$.
- We estimate the significance of Bayes factors according to Jeffery's scale.
- The Likelihood function is defined as

$$\mathcal{L}(m) = \exp\left\{-\frac{1}{2}\left[\mathcal{O}_{\mathrm{th}}(m) - \mathcal{O}_{\mathrm{exp}}\right]^{T} (\mathcal{C}^{exp} + \mathcal{C}^{th})^{-1}\left[\mathcal{O}_{\mathrm{th}}(m) - \mathcal{O}_{\mathrm{exp}}\right]\right\}$$

NP in $(C_{9}^{\mu}, C_{10}^{\mu})$ and $(C_{9}^{\mu}, C_{9}^{'\mu})$

- The new measurement of R_K , higher than the previous determination, has the effect of bringing the $(C_9^{\mu}, C_{10}^{\mu}) 2\sigma$ region closer to the axes origin.
- A tension between the measuremnts of *R_K* and *R_{K*}* arises in this case so the posterior pdf becomes narrower.

4 parameter vs. 2 parameter scan

• Comparison of posterior pdf of C_9^{μ}, C_{10}^{μ} and $C_9^{\mu}, C_9^{\prime \mu}$ in $(C_9^{\mu}, C_{10}^{\mu})$ and $(C_9^{\mu}, C_{9}^{\prime \mu}, C_{10}^{\mu}, C_{10}^{\prime \mu})$

 Large negative values of C₉^µ are favored by data with 4 NP parameters.

Ample region of parameter space with C₉^{'µ}, due to introduction of C₁₀^µ.

イロト イヨト イヨト イヨト

 $(C_9^\mu,C_{10}^\mu)\,\&\,(C_9^\mu,C_{10}^\mu,C_9^e,C_{10}^e)$

 $(C_{9}^{\mu},C_{9}^{\prime\,\mu})\,\&\,(C_{9}^{\mu},C_{9}^{\prime\,\mu},C_{9}^{e},C_{9}^{\prime\,e})$

イロト イ団ト イモト イモト

NP in electron sector

- pdf of the Wilson coefficients of the electron sector remain consistent with zero at 2σ.
- The global data set can be easily explained by the presence of NP in the muon sector only.

- 一司

Favoured model

Bayes factor $\frac{p(d)_{M_1}}{p(d)_{M_2}}$

$$\begin{aligned} \frac{\mathcal{Z}_{C_{9}^{\mu},C_{9}^{\prime\mu}}}{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\prime\mu}}} &= 6.0 \quad \text{(Positive)} \\ \frac{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\mu},C_{9}^{\prime\mu},C_{10}^{\prime\mu}}}{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\prime\mu}},C_{9}^{\prime\mu},C_{10}^{\prime\mu}} &= 5.0 \quad \text{(Positive)} \\ \frac{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\mu},C_{9}^{\prime\mu},C_{10}^{\prime\mu}}}{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\mu},C_{9}^{\prime\mu},C_{10}^{\prime\mu}}} &= 1.2 \quad \text{(Barely worth mentioning)} \\ \frac{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\mu},C_{9}^{\prime\mu},C_{10}^{\prime\mu}}}{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\mu},C_{9}^{\prime\mu},C_{10}^{\prime\mu}}} &= 7.4 \quad \text{(Positive)} \\ \frac{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\mu},C_{9}^{\prime\mu},C_{10}^{\prime\mu}}}{\mathcal{Z}_{C_{9}^{\mu},C_{10}^{\mu},C_{9}^{\prime\mu},C_{10}^{\prime\mu}}} &= 5.6 \,, \quad \text{(Positive)} \end{aligned}$$

 $(\mathit{C}_9^\mu,\mathit{C}_9^{'\mu})$ and $(\mathit{C}_9^\mu,\mathit{C}_{10}^\mu,\mathit{C}_9^{'\mu},\mathit{C}_{10}^{'\mu})$ are slightly favored by the data.

Dinesh Kumar

May 7, 2019 11/22

limited impact the Wilson coefficients of the electron sector bring to the fit.

Heavy Z'

The most generic Lagrangian, parametrizing LFUV couplings of Z' to the b-s current and the muons

$$\mathcal{L} \supset Z'_{\alpha} \left(\Delta_{L}^{sb} \, \bar{s}_{L} \gamma^{\alpha} \, b_{L} + \Delta_{R}^{sb} \, \bar{s}_{R} \gamma^{\alpha} \, b_{R} + \text{H.c.} \right) + Z'_{\alpha} \left(\Delta_{L}^{\mu\mu} \, \bar{\mu}_{L} \gamma^{\alpha} \mu_{L} + \Delta_{R}^{\mu\mu} \, \bar{\mu}_{R} \gamma^{\alpha} \mu_{R} \right)$$

The relevant Wilson coefficients are then given by

$$\begin{split} C^{\mu}_{9,\mathrm{NP}} &= -2 \frac{\Delta_L^{sb} \Delta_9^{\mu\mu}}{V_{tb} V_{ts}^*} \left(\frac{\Lambda_v}{m_{Z'}} \right)^2, \qquad C'^{\mu}_{9,\mathrm{NP}} = -2 \frac{\Delta_R^{sb} \Delta_9^{\mu\mu}}{V_{tb} V_{ts}^*} \left(\frac{\Lambda_v}{m_{Z'}} \right)^2, \\ C^{\mu}_{10,\mathrm{NP}} &= -2 \frac{\Delta_L^{sb} \Delta_{10}^{\mu\mu}}{V_{tb} V_{ts}^*} \left(\frac{\Lambda_v}{m_{Z'}} \right)^2, \qquad C'^{\mu}_{10,\mathrm{NP}} = -2 \frac{\Delta_R^{sb} \Delta_{10}^{\mu\mu}}{V_{tb} V_{ts}^*} \left(\frac{\Lambda_v}{m_{Z'}} \right)^2, \end{split}$$

- If the heavy Z' is the gauge boson of a new U(1)_X gauge group, its couplings to the gauge eigenstates must be flavor-conserving, and an additional structure is required to generate Δ^{sb}_L and Δ^{sb}_R.
- we also consider the impact of the new LHCb and Belle data on the masses and couplings of a few simplified but UV complete models.

Variations of the $L_{\mu}-L_{ au}$ model

- quite popular model $U(1)_X$ with $X = L_\mu L_\tau$ W. Altmannshofer et al. PRD 89 (2014) 095033.
- SM leptons carry an additional charge in $L_{\mu} L_{\tau}$ model $(SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_X)$

$l_1: (1, 2, -1/2, 0)$	e_R : (1, 1, 1, 0)
$l_2: (1, 2, -1/2, 1)$	μ_R : $(1, 1, 1, -1)$
$l_3: (1, 2, -1/2, -1)$	$ au_{R}:(1,1,1,1)$.

Model 1: Z' + a scalar singlet S + VL quark pairs Buras et al. JHEP 04 (2017) S: (1, 1, 0, -1).

$$\begin{split} & Q: \left(\mathbf{3},\mathbf{2},1/6,-1\right) \quad Q': \left(\mathbf{\bar{3}},\mathbf{2},-1/6,1\right), \\ & D: \left(\mathbf{\bar{3}},\mathbf{1},1/3,-1\right) \quad D': \left(\mathbf{3},\mathbf{1},-1/3,1\right). \end{split}$$

 $\mathcal{L} \supset \left(-\lambda_{Q,i} SQ' q_i - \lambda_{D,i} SD' d_{R,i} + \text{H.c.}\right) - M_Q Q' Q - M_D D' D ,$

 Model 2: Z' + a scalar singlet S + one pair of VL quarks + one pair of VL leptons W. Altmannshofer et al. PRD 94 (2016) 9 095026, L. Darme et al. JHEP 10 (2018) 052.

$$S: (\mathbf{1},\mathbf{1},0,-1), Q: (\mathbf{3},\mathbf{2},1/6,-1) \quad Q': (\mathbf{\bar{3}},\mathbf{2},-1/6,1), E: (\mathbf{1},\mathbf{1},1,0) \quad E': (\mathbf{1},\mathbf{1},-1,0).$$

$$\mathcal{L} \supset \left(-\lambda_{E,2} S^* E' \mu_R - \lambda_{E,3} S E' \tau_R - \widetilde{Y}_E \phi^{\dagger} l_1 E + \text{H.c.}\right) - M_E E' E ,$$

Results of Z' model

VL mass range is determined by the 2σ range in $C_9^{\mu,NP}$.

- The second VL mass is unbounded from the above at the 2σ level. This is a consequnece of the fact that $C_{9,NP}^{\prime\mu}$ in Model 1 and especially $C_{10,NP}^{\mu}$ in Model 2 are consistent with the zero at the 2σ level.
- $m_{Z'}/g_X$ is limited to values below 5 TeV, as a result of the B_s mixing constraint.

A model with $U(1)_X$ charged leptons

■ We consider the VL leptons charged under the U(1)_X symmetry and leaves the SM leptons uncharged D. Aristizabal Sierra et al. PRD 92 (2015) 1 015001

$$S: (\mathbf{1}, \mathbf{1}, 0, -1), Q: (\mathbf{3}, \mathbf{2}, 1/6, -1) \quad Q': (\mathbf{\overline{3}}, \mathbf{2}, -1/6, 1), L: (\mathbf{1}, \mathbf{2}, -1/2, 1), \quad L': (\mathbf{1}, \mathbf{2}, 1/2, -1).$$

$$C_{9}^{\mu} = -C_{10}^{\mu} = \frac{2\Lambda_{\nu}^{2}}{V_{tb}V_{ts}^{*}} \left(\frac{\lambda_{Q,2}\lambda_{Q,3}}{2M_{Q}^{2} + \left(\lambda_{Q,2}^{2} + \lambda_{Q,3}^{2}\right)v_{5}^{2}} \right) \left(\frac{\lambda_{L,2}^{2}v_{5}^{2}}{2M_{L}^{2} + \lambda_{L,2}^{2}v_{5}^{2}} \right)$$

- 3 parameters: $m_{Z'}/g_X$, M_Q/λ_Q , where $M_L/\lambda_{L,2} = \epsilon M_Q/\lambda_Q$.
- Apply $C_9^{\mu} = -C_{10}^{\mu} \in$ (-0.68, -0.29) together with bound from B_s mixing.
- The severe bound on mixing limits this model to strong hierarchies between VL quark and lepton masses.

- Global Bayesian analysis of NP effects with new measurements of R_K and R_{K^(*)} in Morionod 2019.
- R_{κ} shifts closer to SM predicitons hence $(C_9^{\mu}, C_{10}^{\mu})$ shifts slightly towards zero.
- Confirmed previous observations that the impact of the Wilson coefficients of the electron sector on the data is negligible w.r.t. to muon sector.
- $(C_9^{\mu}, C_9'^{\mu})$ and $(C_9^{\mu}, C_{10}^{\mu}, C_9'^{\mu}, C_{10}'^{\mu})$ are favored by the data.
- The masses for second VL is unbounded from the below for variations of Z' model.

Thank You

900

イロト イヨト イヨト イヨト

Parameter	Range	Prior
C_9^{μ}	(-3,3)	Flat
$C_9^\mu = -C_{10}^\mu$	(-3,3)	Flat
$C_{9}^{\mu}, \ C_{10}^{\mu}$	(-3,3)	Flat
$C_{9}^{\mu}, C_{9}^{\prime\mu}$	(-3,3)	Flat
C_9^μ , C_{10}^μ , $C_{9}^{\prime\mu}$, $C_{10}^{\prime\mu}$	(-3,3)	Flat
C_9^{μ} , C_{10}^{μ} , C_9^e , C_{10}^e	(-3,3)	Flat
$C_9^{\mu}, \ C_9^{\prime \mu}, \ C_9^{e}, \ C_9^{\prime e}$	(-3,3)	Flat
$C_9^{\mu}, \ C_9^{\prime \mu}, \ C_{10}^{\mu}, \ C_{10}^{\prime \mu}$	(-3,3)	Flat
C_9^e , $C_9'^e$, C_{10}^e , $C_{10}'^e$		
$m_{Z'}/g_X$	500–5000GeV	Log
$M_Q/\lambda_Q, M_D/\lambda_D$	0.1–500TeV	Log
$m_{Z'}/g_X$	$500-5000~{ m GeV}$	Log
$M_Q/\lambda_Q, M_E/\lambda_{E,2}$	0.1–500TeV	Log
Nuisance parameter	Central value, error ($ imes 10^{-2}$)	
CKM matrix element V_{cb}	(4.22, 0.08)	Gaussian

Table: Input parameters, their ranges, and prior distributions.

Dinesh Kumar

<ロト < 回ト < 回ト < 回ト < 回ト -

Input Parameters	$-\ln Z$	Best fit	
SM	88.5	-	-
	88.3	-	-
C_{q}^{μ}	75.8	-1.02	5.0σ
	77.3	-0.90	4.7σ
$C_{9}^{\mu} = -C_{10}^{\mu}$	74.4	-0.64	5.3σ
	77.5	-0.48	4.8σ
$C_{9}^{\mu}, C_{10}^{\mu}$	74.5	-0.91	5.3σ
5 10	77.6	-0.78	4.7σ
$C_{0}^{\mu}, C_{0}^{\prime \mu}$	75.1	(-1.08,0.49)	5.2σ
	75.8	(-1.03,0.53)	5.0σ
$C_{0}^{\mu}, C_{10}^{\mu}, C_{0}^{\prime \mu}, C_{10}^{\prime \mu}$	74.0	(-1.14,0.28,0.21,-0.31)	5.4σ
5 10 5 10	76.0	(-1.06,0.18,0.18,-0.34)	5.2σ
$C_{9}^{\mu}, C_{10}^{\mu}, C_{9}^{e}, C_{10}^{e}$	75.6	(-0.92,0.40,-1.50,-0.90)	4.9σ
, , , , , , , , , , , , , , , , , , , ,	78.0	(-0.88,0.34,-1.69,-0.71)	4.5σ
$C_{0}^{\mu}, C_{0}^{\prime \mu}, C_{0}^{e}, C_{0}^{\prime e}$	75.8	(-1.02,0.54,0.58,-0.17)	4.9σ
	77.7	(-0.97,0.55,0.34,-0.17)	4.6σ
$C_0^{\mu}, C_0^{\prime \mu}, C_{10}^{\mu}, C_{10}^{\prime \mu}$	76.2	(-1.10,0.21,0.21,-0.30,-0.80,-0.63,-0.73,-0.57)	4.7σ
$\int_{0}^{e} \int_{0}^{e} \int_{0$	78.3	(-1.05,0.13.0.100.38,-2.18,-0.07,-2.73,-1.34)	4.4σ

Table: Evidence, best fit and pull from the SM of the considered scenarios.

The approximate formulae for R_K and R_{K*} with real Wilson coefficients and the polarization fraction of the K* meson set at p = 0.86

$$\begin{array}{ll} R_{\mathcal{K}} &\approx & 1+0.24 \left(C_{9}^{\mu}-C_{10}^{\mu}+C_{9}^{\prime\mu}-C_{10}^{\prime\mu}\right) -(\mu \rightarrow e), \\ R_{\mathcal{K}^{*}} &\approx & 1+0.24 \left(C_{9}^{\mu}-C_{10}^{\mu}\right) -0.17 \left(C_{9}^{\prime\mu}-C_{10}^{\prime\mu}\right) -(\mu \rightarrow e). \end{array}$$