Higgs boson couplings to quarks at the ATLAS experiment

Claire David, on behalf of the ATLAS Collaboration

FPCP 2019, Victoria, Canada

Outline

• Probing Higgs boson couplings with **quarks** at LHC proton-proton collider

Outline

- With the **ATLAS** experiment, first results on Higgs boson couplings:
 - = heaviest quarks top, bottom, charm

Higgs boson	b			
couplings to:	С 🔵	t	this talk	

Outline

- With the **ATLAS** experiment, first results on Higgs boson couplings:
 - = heaviest quarks top, bottom, charm

• Yukawa couplings proportional to fermion masses: $\mathbf{y}_{ij} \sim \sqrt{2} \frac{\mathbf{m}_{f}}{\mathbf{v}}$ $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}D\psi + |D_{\mu}\phi|^{2} - V(\phi) + \bar{\psi}_{i}y_{ij}\psi_{j}\phi + h.c.$ H
---f

Fermion couplings unconstrained (added ad-hoc)

DESY. Claire David

FPCP, Higgs boson couplings to quarks at the ATLAS experiment

Higgs boson coupling with the top quark

Top Yukawa coupling

• Direct access at tree-level (test of physics beyond Standard Model) through:

"ttH production mode"

DESY. Claire David

ttH observation, 80 fb⁻¹

Simultaneous fit to signal & control regions of individual analyses

ttH observation, 80 fb⁻¹, results

Combined event yields in all analysis categories. Background extracted from fit, with freely floating signal

- Main uncertainties: tt + bb (cc) & ttH modelling
- Observed ttH significance of 6.3 σ (5.1 σ expected)
- consistent with SM expectations

ttH measurement: $H \rightarrow \gamma \gamma$, 140 fb⁻¹

- ATLAS-CONF-2019-004
- First full Run 2 data Higgs result, enough luminosity in $H \rightarrow yy$ channel alone for a ttH measurement

ttH measurement: $H \rightarrow \gamma \gamma$, 140 fb^-1

ATLAS-CONF-2019-004

Post-fit data yields in each BDT bin (= category)

- Observed ttH significance: 4.9 σ (4.2 σ expected)
- Before with 80 fb⁻¹: 4.1 σ (3.7σ)
- Consistent with SM expectations:

$$\mu_{ttH} = 1.38 \stackrel{+0.33}{_{-0.31}} \text{(stat.)} \stackrel{+0.13}{_{-0.11}} \text{(exp.)} \stackrel{+0.22}{_{-0.14}} \text{(th.)}$$

Higgs boson coupling with the bottom quark

VH, $H \rightarrow bb$, 80 fb⁻¹

Large multijet background! Reduced:

- Events split by W/Z boson leptonic decays
- Large **boost** of the Higgs boson

- **b-jet tagger** + correction methods to improve m_{bb} resolution
- Main backgrounds: W+jets, tt, single top
- Boosted Decision Trees (BDT) to reduce background

trained separately in each region

example

0 lepton

Simultaneous profile likelihood fit performed in 8 SR + 6 CR to extract signal strength µ

FPCP, Higgs boson couplings to quarks at the ATLAS experiment

$VH,\,H\rightarrow bb\,,\ 80~fb^{\text{-1}}$

• Run 2 results at \sqrt{s} = 13 TeV:

$$\mu_{VH}^{bb} = 1.16^{+0.27}_{-0.25} = 1.16 \pm 0.16(\text{stat.})^{+0.21}_{-0.19}(\text{syst.})$$

Main uncertainties: Experimental: b-tagging Theory modeling: W/Z + jets

details in backups

- Combined fit with separate floating signal strengths μ_{WH} and μ_{ZH}

Di-jet mass distribution in all regions (all backgrounds except WZ and ZZ)

FPCP, Higgs boson couplings to quarks at the ATLAS experiment

Observation of $\textbf{H} \rightarrow \textbf{bb}$ decays

arXiv 1808.08238 Phys. Lett. B 786 (2018) 59

• Combination of analyses targeting $H \rightarrow bb$ from different Higgs production modes:

Run 1 & 2, Phys. Rev. D 98 (2018) 052003

- Simultaneous fit:
 all signal strength µ
 floating independently
- Results compatible with
 Standard Model

ttH H→ bb

0000000

0000000

Phys. Rev. D 97 (2018) 072016

H

Significances

Observed	Expected
1.5 σ	0.9 σ
1.9 σ	1.9 σ
4.9 σ	5.1 o
5.4 σ	5.5 σ
-	- •

May 9, 2019

DESY. Claire David

80 fb⁻¹ Measurement VH, $H \rightarrow bb$

- using **simplified template cross-sections (STXS)** framework to measure cross-section:
 - Split in Higgs production modes & further splitting in fiducial regions based on Higgs kinematics
 - Split-stages: increasing granularity with the increased integrated luminosity (enough stat)

Event selected using BDTs

trained in each category

 \Rightarrow exploiting correlations

Pros of STXS framework enhanced sensitivity smaller theor. uncertainties ✓ less model dependance easier to interpret (EFT) \checkmark access BSM (high p_T bin) ✓ allows BDT, ML techniques

arXiv 1903.04618

Systematic uncertainties assessed in ATL-PHYS-PUB-2018-035

Measurement VH, $H \rightarrow bb$, 80 fb⁻¹

- 5 measurements of **WH and ZH cross-section** in p_T^V regions \rightarrow optimized sensitivity for each BDT
- Largest uncertainties: statistical
- good agreement with SM
- Limits used to constrain Effective Lagrangian:

 $\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} c_{i} \mathcal{O}_{6i} / \Lambda_{NP}^{2}$ focus on coefficients of operators of

"Strongly Interacting Higgs" formulation (paper)

⇒ constrain down-type quark ~ unity

more details in <u>talk</u> at Higgs coupling <u>conference</u>

⇒ measurements can be combined with other decay channels of STXS framework

<u>arXiv</u> 1903.04618

DESY. Claire David

Combining Higgs boson production and decay

Best precision to date

Combined Higgs measurements 80 fb⁻¹

Production cross-sections in each decay channel

- Now **all production modes** assessed (ttH observed)
- Good **compatibility** among decay channels
- Consistent with SM

			1
ATLAS Preliminary Total	Stat.	Syst.	I SM
√s = 13 TeV, 24.5 - 79.8 fb ⁻¹ m. = 125 09 GeV /v / < 2.5			
$p_{SM} = 71\%$	To	tal Stat.	Syst.
ggF γγ 💼	0.96 ±0	0.14 (±0.11,	+0.09
ggF ZZ	1.04 +0	0.16 (±0.14 ,	± 0.06)
ggF WW	1.08 ±0	0.19 (±0.11,	±0.15)
ggF ττ μ	0.96 +0	$^{0.59}_{0.52}$ ($^{+0.37}_{-0.36}$,	+0.46 -0.38)
ggF comb.	1.04 ±0	$0.09(\pm 0.07)$	+0.07 -0.06)
VBF γγ	1.39 +0	$ \begin{array}{c} 0.40 \\ 0.35 \end{array} $	+0.26 -0.19)
VBF ZZ	2.68 +0	$\frac{+0.98}{0.83} \left(\begin{array}{c} +0.94 \\ -0.81 \end{array} \right),$	+0.27 -0.20)
VBF WW	0.59 +0	$\frac{0.36}{0.35} \left(\begin{array}{c} +0.29\\ -0.27 \end{array} \right),$	±0.21)
VBF tt H	1.16 +0	$\frac{0.58}{0.53} \left(\begin{array}{c} +0.42\\ -0.40 \end{array} \right),$	+0.40)
VBF bb	3.01 + 1	$^{+1.67}_{-1.57}$, $^{+1.63}_{-1.57}$,	+0.39 -0.36)
VBF comb.	1.21 +0	$\frac{0.24}{0.22} \left(\begin{array}{c} +0.18\\ -0.17 \end{array} \right),$	+0.16 -0.13)
VH γγ 📫	1.09 +0	$^{0.58}_{0.54} \left(\begin{array}{c} +0.53\\ -0.49 \end{array} \right),$	+0.25)
VH ZZ	0.68 +1	$\frac{1.20}{0.78} \left(\begin{array}{c} +1.18\\ -0.77 \end{array} \right),$	+0.18)
VH bb H	1.19 +0	$\frac{0.27}{0.25} \left(\begin{array}{c} +0.18\\ -0.17 \end{array} \right),$	+0.20 -0.18)
VH comb.	1.15 +0	0.24 (±0.16 ,	+0.17 -0.16)
ttH+tH γγ	1.10 +0	$\binom{+0.36}{-0.35}$,	+0.19 -0.14)
ttH+tH VV	1.50 +0	$^{0.59}_{0.57} \left(\begin{array}{c} +0.43\\ -0.42 \end{array} \right),$	+0.41 -0.38)
	1.38 +1	$\frac{1.13}{0.96} \left(\begin{array}{c} +0.84 \\ -0.76 \end{array} \right),$	+0.75 -0.59)
ttH+tH bb ⊨	0.79 +0	$\frac{0.60}{0.59}(\pm 0.29,$	±0.52)
ttH+tH comb.	1.21 +0	$\frac{0.26}{0.24}$ (± 0.17 ,	+0.20 -0.18)
2 0 2 4	6	;	8
Parameter norm:	alized	to SM	value

ATLAS-CONF-2019-005

Couplings vs quark masses

ATLAS-CONF-2019-005

And with more data?

 $80 \text{ fb}^{-1} \longrightarrow 3000 \text{ fb}^{-1}$

DESY. Claire David

Projections with 3000 fb⁻¹, end of High-Luminosity LHC

DESY. Claire David

FPCP, Higgs boson couplings to quarks at the ATLAS experiment

Summary

ATLAS Run 2 at 13 TeV: fruitful past two years, 2 observations papers and 2 measurements follow-up

Measurements on couplings with top, bottom and quark compatible with SM.

Extra

Higgs boson coupling with the charm quark

Using a charm tagger

VH, $H \rightarrow cc$, 36.1 $fb^{\text{-1}}$

 W/Z^*

W/Z

Phys. Rev. Lett. 120 (2018) 211802

- Process: $ZH \rightarrow cc ll$
- Dedicated **charm tagger** identifying jets from c quark

Working point: 41% efficiency from ttbar simulated events

- categories defined with **reco Z p_T**
- 4 regions of different signal purities
- Final discriminant = **m**_{cc}

DESY. Claire David

q

 \bar{q}

FPCP, Higgs boson couplings to quarks at the ATLAS experiment

VH, H \rightarrow cc , 36.1 fb⁻¹

• Dominant uncertainties:

Source	$\sigma/\sigma_{ m tot}$
Statistical	49%
Floating Z + jets normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

Procedure validated m	neasuring dib	oson production
Fraction ZW, $W \rightarrow cs$, s	sd = 65%	in a c-tags region
Fraction ZZ, Z \rightarrow cc	= 55%	
Diboson µ _{zv} = 0.6 ^{+0.5} _{-0.4}	significance	1.4 σ ^{observed} 2.2 σ ^{expected}

- First limit on Higgs coupling to 2nd generation quarks
- Upper limit σ (pp \rightarrow ZH) × BR(H \rightarrow cc) = **2.7 pb** ^{observed} at 95% CL

Challenging to measure even at High-Lumi LHC

[Numbers] VH, $H \rightarrow cc$, 36.1 fb⁻¹

• Dedicated **charm tagger** identifying jets from c quark

rtainties

Working point	c	b	L
Efficiency c	41%	-	-
Rejection b/l	-	4	20
Uncertainty	25%	5%	20%

Sample	Yield, 50 $GeV < m_{c\bar{c}} < 200 \ GeV$			
Sample	1 <i>c</i> -tag		2 c-tags	
	$75 \le p_{\rm T}^Z < 150 GeV$	$p_{\rm T}^Z \geq 150 GeV$	$75 \le p_{\rm T}^Z < 150 GeV$	$p_{\rm T}^Z \ge 150 GeV$
Z + jets	69400 ± 500	15650 ± 180	5320 ± 100	1280 ± 40
ZW	750 ± 130	290 ± 50	53 ± 13	20 ± 5
ZZ	490 ± 70	180 ± 28	55 ± 18	26 ± 8
$tar{t}$	2020 ± 280	130 ± 50	240 ± 40	13 ± 6
$ZH(bar{b})$	32 ± 2	19.5 ± 1.5	4.1 ± 0.4	2.7 ± 0.2
$ZH(c\bar{c})$ (SM)	$-143 \pm 170 \ (2.4)$	$-84 \pm 100 \ (1.4)$	$-30 \pm 40 \ (0.7)$	$-20 \pm 29 (0.5)$
Total	72500 ± 320	16180 ± 140	5650 ± 80	1320 ± 40
Data	72504	16181	5648	1320

Higgs boson production modes at the LHC

● Top quark = heaviest fermion → most strongly-coupled to Higgs boson → window to physics beyond SM

DESY. Claire David

VH, $H \rightarrow bb$, 80 $fb^{\mbox{-1}}$

• Boosted Decision Trees (BDT) to further discriminate the background (trained separately for each region)

• Simultaneous profile likelihood fit performed in 8 SR + 6 CR \Rightarrow extracting signal strength μ

arXiv 1808.08238 Phys. Lett. B 786 (2018) 59

$VH, H \rightarrow bb \qquad 80 \text{ fb}^{-1}$

• Run 2 results at \sqrt{s} = 13 TeV

Source of uncertainty	σ_{μ}
Total	0.259
Statistical	0.161
Systematic	0.203

Theoretical and modelling uncertainties

Signal	0.094
~-8	
Floating normalisations	0.035
Z + jets	0.055
W + jets	0.060
tī	0.050
Single top quark	0.028
Diboson	0.054
Multi-jet	0.005
MC statistical	0.070

Experimental uncertainties

Jets		0.035
$E_{\rm T}^{\rm miss}$		0.014
Leptons		0.009
	<i>b</i> -jets	0.061
b-tagging	<i>c</i> -jets	0.042
	light-flavour jets	0.009
	extrapolation	0.008
Pile-up		0.007
Luminosity		0.023

DESY. Claire David

Fermions and gauge boson couplings

ATLAS-CONF-2019-005

Production	Loope	Interference	Effective	Resolved modifier
Troduction	Loops	Interference	modifier	Resolved modifier
$\sigma(ggF)$	\checkmark	t-b	κ_g^2	$1.04 \kappa_t^2 + 0.002 \kappa_b^2 - 0.04 \kappa_t \kappa_b$
$\sigma(\text{VBF})$	70	7	1.77	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$
$\sigma(qq/qg \to ZH)$	÷	-	-	κ_Z^2
$\sigma(gg \rightarrow ZH)$	\checkmark	t - Z	$K_{(ggZH)}$	$2.46 \kappa_Z^2 + 0.46 \kappa_t^2 - 1.90 \kappa_Z \kappa_t$
$\sigma(WH)$	-	÷	-	κ_W^2
$\sigma(t\bar{t}H)$	-	~	-	κ_t^2
$\sigma(tHW)$	ē.	t - W	-	$2.91 \kappa_t^2 + 2.31 \kappa_W^2 - 4.22 \kappa_t \kappa_W$
$\sigma(tHq)$		t - W		$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$
$\sigma(b\bar{b}H)$	<u>e</u>	4		κ_b^2
Partial decay width	1			
Γ^{bb}	≂ . I			κ_{h}^{2}
Γ^{WW}	÷	-	-	κ_W^2
Γ^{gg}	\checkmark	t-b	κ_g^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$
Γττ	-	-	-	κ_{τ}^2
Γ^{ZZ}	-		-	κ_Z^2
Γ^{cc}	≅.		-	$\kappa_c^2 (= \kappa_t^2)$
Γγγ	\checkmark	t - W	κ_{ν}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W^2$
$\Gamma^{Z\gamma}$	\checkmark	t - W	$\kappa^2_{(Z,\gamma)}$	$1.12 \kappa_W^2 - 0.12 \kappa_W \kappa_t$
Γ^{ss}	<u>12</u>	2	-	$\kappa_s^2 (= \kappa_b^2)$
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2
Total width (B _{inv} =	B _{undet} =	0)		
				$0.58 \kappa_b^2 + 0.22 \kappa_W^2$
				$+0.08 \kappa_g^2 + 0.06 \kappa_\tau^2$
Γ _H	\checkmark	-	κ_{H}^{2}	$+0.03 \kappa_Z^2 + 0.03 \kappa_c^2$
				$+0.0023 \kappa_{\gamma}^2 + 0.0015 \kappa_{(7\gamma)}^2$
				$+0.0004 \kappa_{s}^{2} + 0.00022 \kappa_{u}^{2}$

Parametrization of Higgs boson production cross sections & decay widths as function of coupling strength modifiers κ

() ∇ ()

$$\sigma_{i} \times B_{f} = \frac{\sigma_{i}(\kappa) \times \Gamma_{f}(\kappa)}{\Gamma_{H}},$$

$$\kappa_{j}^{2} = \frac{\sigma_{j}}{\sigma_{j}^{SM}} \quad \text{or} \quad \kappa_{j}^{2} = \frac{\Gamma_{j}}{\Gamma_{j}^{SM}}.$$

$$\Gamma_{H}(\kappa, B_{\text{inv}}, B_{\text{undet}}) = \frac{\kappa_{H}^{2}(\kappa)}{(1 - B_{\text{inv}} - B_{\text{undet}})}\Gamma_{H}^{SM}.$$