





# Observation of several sources of CP violation in $B^+ \rightarrow \pi \pi \pi$ decays

Alvaro Gomes, on behalf of LHCb collaboration

Conference on Flavour Physics and CP Violation FPCP 2019 May 6-10, 2019

## Overview



LHCb Collaboration, Phys. Rev. D90, 112004 (2014)



- Rich interference pattern leading to positive and negative CP asymmetries.
- Large CP asymmetry observed in the rescattering region m(ππ) between 1.0 and 1.5 GeV/c<sup>2</sup>. J.R. Pelaez and F. J. Yndurain Phys. Rev. D71,074016 (2005)

### Overview

- large CP asymmetries observed in regions of the phase space :
  - some cancel out, e.g. within the  $\rho(770)$  region.
  - some do not cancel: CPV must be compensated to ensure CPT
- KK $\leftrightarrow \pi\pi$  rescattering is a way to ensure CPT.
  - $B^+ \rightarrow \pi KK$  and  $B^+ \rightarrow \pi \pi \pi$  are connected.
    - $B^+ \rightarrow \pi KK$  CP asymmetries reported at LHCb-PAPER-2018-051 and will be covered by M. Sevior in B hadronic 1 section tomorrow (May 8th) 12pm.
  - This constraint includes all other coupled channels.
- the CP asymmetries in phase space may be a manifestation of:
  - Penguin/tree interference with different strong phases.
  - Resonance dynamic (which also gives a strong phase difference).
  - KK $\leftrightarrow \pi\pi$  rescattering.

The amplitude analysis of the four channels will help elucidate and verify some **hypotheses** 

**B**<sup>+</sup>  $\rightarrow \pi\pi\pi$  sample



| Parameter                                              | Value              |
|--------------------------------------------------------|--------------------|
| Signal yield                                           | $20594\pm 1569$    |
| Combinatorial background yield                         | $4409\pm1634$      |
| $B^+ \rightarrow K^+ \pi^+ \pi^-$ background yield     | $143 \pm 11$       |
| Combinatorial background asymmetry                     | $+0.005 \pm 0.010$ |
| $B^+ \rightarrow K^+ \pi^+ \pi^-$ background asymmetry | $+0.000 \pm 0.008$ |

14

Sample correspond to 3fb<sup>-1</sup> from Run 1.

**B**<sup>+</sup>  $\rightarrow \pi\pi\pi$  sample



| Parameter                                              | Value              |
|--------------------------------------------------------|--------------------|
| Signal yield                                           | $20594\pm 1569$    |
| Combinatorial background yield                         | $4409\pm1634$      |
| $B^+\!\to K^+\pi^+\pi^-$ background yield              | $143 \pm 11$       |
| Combinatorial background asymmetry                     | $+0.005 \pm 0.010$ |
| $B^+ \rightarrow K^+ \pi^+ \pi^-$ background asymmetry | $+0.000 \pm 0.008$ |

- Sample correspond to 3fb<sup>-1</sup> from Run 1.
- Charm veto.

14

 $B^+ \rightarrow \pi \pi \pi$  sample



| Parameter                                          | Value              |
|----------------------------------------------------|--------------------|
| Signal yield                                       | $20594\pm 1569$    |
| Combinatorial background yield                     | $4409\pm1634$      |
| $B^+ \rightarrow K^+ \pi^+ \pi^-$ background yield | $143 \pm 11$       |
| Combinatorial background asymmetry                 | $+0.005 \pm 0.010$ |
| $B^+\!\to K^+\pi^+\pi^-$ background asymmetry      | $+0.000 \pm 0.008$ |



- Sample correspond to 3fb<sup>-1</sup> from Run 1.
- Charm veto.
- $f_2(1270)$  region.

 $\mathbf{B}^+$  $\rightarrow \pi\pi\pi$  sample



 $m_{
m low}^2 \, [{
m GeV}^2/c^4]$ 

10

5

0 L 0

2

4

6

10

5

0 L 0

2

4

6

8

| Parameter                                          | Value              |
|----------------------------------------------------|--------------------|
| Signal yield                                       | $20594\pm 1569$    |
| Combinatorial background yield                     | $4409\pm1634$      |
| $B^+ \rightarrow K^+ \pi^+ \pi^-$ background yield | $143 \pm 11$       |
| Combinatorial background asymmetry                 | $+0.005 \pm 0.010$ |
| $B^+\!\to K^+\pi^+\pi^-$ background asymmetry      | $+0.000 \pm 0.008$ |

- Sample correspond to 3fb<sup>-1</sup> from Run 1.
- Charm veto.

LHCb

10

8

12

 $m_{
m low}^2 ~[{
m GeV}^2/c^4]$ 

14

Preliminary

**B+** 

- f<sub>2</sub>(1270) region.
- $\rho(770)$  region.

 $B^+ \rightarrow \pi \pi \pi$  sample



| Parameter                                          | Value              |
|----------------------------------------------------|--------------------|
| Signal yield                                       | $20594\pm 1569$    |
| Combinatorial background yield                     | $4409\pm1634$      |
| $B^+ \rightarrow K^+ \pi^+ \pi^-$ background yield | $143 \pm 11$       |
| Combinatorial background asymmetry                 | $+0.005 \pm 0.010$ |
| $B^+\!\to K^+\pi^+\pi^-$ background asymmetry      | $+0.000 \pm 0.008$ |



- Sample correspond to 3fb<sup>-1</sup> from Run 1.
- Charm veto.
- $f_2(1270)$  region.
- ρ(770) region.
- low scalar m( $\pi\pi$ ).

 $B^+ \rightarrow \pi \pi \pi$  sample



$$\begin{array}{c} & 0.5 \\ & 0.6 \\ & 0.4 \\ & 0.3 \\ & 0.2 \\ & 0.1 \\ & 0.0 \\ & 0.2 \\ & 0.4 \\ & 0.6 \\ & 0.6 \\ & 0.8 \\ & 1.0 \\ & m' \end{array} \begin{array}{c} 5.0 \\ & 0.5 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.7 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0$$



$$m' \equiv \frac{1}{\pi} \cos^{-1} \left( 2 \frac{m(\pi^+ \pi^+) - m(\pi^+ \pi^+)^{\min}}{m(\pi^+ \pi^+)^{\max} - m(\pi^+ \pi^+)^{\min}} - 1 \right)$$
$$\theta' \equiv \frac{1}{\pi} \theta(\pi^+ \pi^+),$$

- $m(\pi\pi)^{\min}$  and  $m(\pi\pi)^{\max}$  represents the kinematic limits permitted in  $3\pi$  decays
  - $\theta(\pi\pi)$  is the angle between  $\pi^+$  and  $\pi^-$  in the  $\pi^+\pi^+$  rest frame



Signal efficiency.

•

- Combintorial background models.
- $B \rightarrow K\pi\pi$  background model.

## Amplitude analysis of $B^+ \to \pi \pi \pi$

• Isobar model for all non S-wave contributions

$$A^{+}(m_{13}^{2}, m_{23}^{2}) = \sum_{j}^{N} A_{j}^{+}(m_{13}^{2}, m_{23}^{2}) = \sum_{j}^{N} c_{j}^{+} F_{j}(m_{13}^{2}, m_{23}^{2})$$
$$A^{-}(m_{13}^{2}, m_{23}^{2}) = \sum_{j}^{N} A_{j}^{-}(m_{13}^{2}, m_{23}^{2}) = \sum_{j}^{N} c_{j}^{-} F_{j}(m_{13}^{2}, m_{23}^{2})$$

- Coherent sum of intermediate contributions
- $c_i$  complex coefficients extracted from the fit to B+ and B- data
- Quasi-two-body CP asymmetry in j:  $A_{CP}^{j} = \frac{|A_{j}^{-}|^{2} |A_{j}^{+}|^{2}}{|A_{j}^{-}|^{2} + |A_{j}^{+}|^{2}}$
- Fit fraction:

$$F_{j}^{\pm} = \frac{\int_{DP} \left| A_{j}^{\pm}(m_{13}^{2}, m_{23}^{2}) \right|^{2} dm_{13}^{2} dm_{23}^{2}}{\int_{DP} \left| A^{\pm}(m_{13}^{2}, m_{23}^{2}) \right|^{2} dm_{13}^{2} dm_{23}^{2}}$$

## Amplitude analysis of $B^+ \rightarrow \pi \pi \pi$

- S-wave with three different approaches:
  - Isobar: pole with floating mass and width J.A. Oller Phys. Rev. D71, 054030 (2005) + KK  $\leftrightarrow \pi\pi$  rescattering contribution I. Bediaga et al. Phys. Rev. D89, 094013 (2014).
  - K-matrix: includes rescattering couplings to 5 intermediate states ( $\pi\pi$ , KK,  $\eta\eta$ ,  $\eta\eta'$ ,  $4\pi$ ) resulting in a single two body unitary amplitude. V. V. Anisovich et al. Eur. Phys. J. A16, 229 (2003)



 Quasi Model Independent(QMI): fit magnitude and phase in bins of the Dalitz plot for B+ and B-. E791 Collaboration Phys. Rev. D73, 032004 (2006)



• All three approaches obtain similar non S-wave results.

12/24

# CP asymmetry in the $\rho(770)$ region

• No CP asymmetry in the  $\rho(770)$  region as can be seen in the m<sub>low</sub> projections:



• Large CP asymmetry in the scalar -  $\rho(770)$  interference observed in projections of the helicity angle around the  $\rho(770)$  mass:



# CP asymmetry in the $f_2(1270)$ region

• We observed a large positive quasi-two-body CP asymmetry in the  $f_2(1270)$  region ( $A_{cp}$  in %):



# CP asymmetry in the $f_2(1270)$ region

• We observed a large positive quasi-two-body CP asymmetry in the  $f_2(1270)$  region ( $A_{cp}$  in %):



miow [GeV/c

miow [GeV/c

## **CP** asymmetry in the S-wave

• CP asymmetry in the S-wave:



## **CP** asymmetry in the S-wave

• CP asymmetry in the S-wave:



• Remarkably good agreement between all three approaches.

## **CP** asymmetry in the S-wave

• CP asymmetry in the S-wave:



- Remarkably good agreement between all three approaches.
- Positive CP asymmetry at low  $m(\pi\pi)$  that flips sign around the opening of the KK threshold (1GeV/c<sup>2</sup>).

 $10\sigma$  significance

LHCb-PAPER-2019-017 and LHCb-PAPER-2019-018 in preparation.

#### **Results for** $B^+ \rightarrow \pi \pi \pi$

| =                                       | Contribution           | Fit fraction (%)         | $A_{CP}$ (10 <sup>-2</sup> ) | $B^+$ phase (°)      | $B^-$ phase (°)      |  |
|-----------------------------------------|------------------------|--------------------------|------------------------------|----------------------|----------------------|--|
| -                                       | Isobar Model           |                          |                              |                      |                      |  |
|                                         | $\rho(770)^{0}$        | $55.5 \pm 0.6 \pm 1.7$   | $+0.7 \pm 1.1 \pm 2.2$       |                      |                      |  |
|                                         | $\omega(782)$          | $0.50 \pm 0.03 \pm 0.05$ | $-4.8 \pm 6.4 \pm 9.4$       | $-19\pm 6\pm 1$      | $+8\pm16\pm$ 1       |  |
|                                         | $f_2(1270)$            | $9.0\ \pm 0.3\ \pm 1.4$  | $+46.8\pm~5.5\pm~5.8$        | $+5\pm$ $3\pm$ $12$  | $+53\pm2\pm12$       |  |
|                                         | $\rho(1450)^{0}$       | $5.2 \pm 0.3 \pm 1.5$    | $-12.9 \pm \ 6.4 \pm 29.7$   | $+127 \pm 4 \pm 21$  | $+154 \pm 4 \pm 6$   |  |
|                                         | $\rho_3(1690)^0$       | $0.5 \pm 0.1 \pm 0.2$    | $-80.1 \pm 11.7 \pm 22.9$    | $-26 \pm 7 \pm 14$   | $-47 \pm 18 \pm 25$  |  |
|                                         | S-wave                 | $25.4 \pm 0.5 \pm 1.3$   | $+14.4 \pm 1.8 \pm 3.3$      |                      | —                    |  |
| /                                       | rescatt                | $1.4\ \pm 0.1\ \pm 0.4$  | $+44.7\pm \ 9.0\pm 16.6$     | $-35\pm~6\pm~10$     | $-4\pm$ $4\pm$ $25$  |  |
| Quasi-two-                              | $\sigma$               | $25.2 \pm 0.6 \pm 1.1$   | $+16.0 \pm 2.0 \pm 3.2$      | $+115\pm\ 2\pm\ 14$  | $+179\pm 1\pm 95$    |  |
| body CP                                 | K-Matrix               |                          |                              |                      |                      |  |
| asymmetry $\longrightarrow \rho(770)^0$ | $56.5 \pm 0.7 \pm 3.4$ | $+4.2 \pm 1.5 \pm 6.4$   |                              |                      |                      |  |
| consistent                              | $\omega(782)$          | $0.47 \pm 0.04 \pm 0.03$ | $-6.2 \pm 8.4 \pm 9.8$       | $-15 \pm 6 \pm 4$    | $+8 \pm 7 \pm 4$     |  |
| with zero                               | $f_2(1270)$            | $9.3 \pm 0.4 \pm 2.5$    | $+42.8 \pm 4.1 \pm 9.1$      | $+19\pm 4\pm 18$     | $+80\pm 3\pm 17$     |  |
|                                         | $\rho(1450)^{0}$       | $10.5 \pm 0.7 \pm 4.6$   | $+9.0 \pm 6.0 \pm 47.0$      | $+155 \pm 5 \pm 29$  | $-166 \pm 4 \pm 51$  |  |
|                                         | $\rho_3(1690)^0$       | $1.5 \pm 0.1 \pm 0.4$    | $-35.7 \pm 10.8 \pm 36.9$    | $+19 \pm 8 \pm 34$   | $+5 \pm 8 \pm 46$    |  |
|                                         | S-wave                 | $25.7 \pm 0.6 \pm 3.0$   | $+15.8 \pm 2.6 \pm 7.2$      |                      | —                    |  |
|                                         | QMI                    |                          |                              |                      |                      |  |
|                                         | $\rho(770)^0$          | $54.8 \pm 1.0 \pm 2.2$   | $+4.4 \pm \ 1.7 \pm \ 2.8$   |                      |                      |  |
|                                         | $\omega(782)$          | $0.57 \pm 0.10 \pm 0.17$ | $-7.9 \pm 16.5 \pm 15.8$     | $-25 \pm 6 \pm 27$   | $-2\pm$ $7\pm$ 11    |  |
|                                         | $f_2(1270)$            | $9.6 \pm 0.4 \pm 4.0$    | $+37.6 \pm 4.4 \pm 8.0$      | $+13\pm5\pm21$       | $+68\pm3\pm66$       |  |
|                                         | $\rho(1450)^{0}$       | $7.4 \pm 0.5 \pm 4.0$    | $-15.5 \pm 7.3 \pm 35.2$     | $+147 \pm 7 \pm 152$ | $-175 \pm 5 \pm 171$ |  |
|                                         | $\rho_3(1690)^0$       | $1.0 \pm 0.1 \pm 0.5$    | $-93.2 \pm 6.8 \pm 38.9$     | $+8 \pm 10 \pm 24$   | $+36 \pm 26 \pm 46$  |  |
|                                         | S-wave                 | $26.8 \pm 0.7 \pm 2.2$   | $+15.0 \pm 2.7 \pm 8.1$      |                      |                      |  |

18/24

#### Conclusions

- First LHCb amplitude analysis of the  $B^+ \rightarrow \pi \pi \pi$  decays.
- Large CPV due to the S and P-wave interference.
  - Quasi-two-body CP asymmetry in  $\rho(770)$  is consistent with zero.
- All three approaches observe CPV in the S-wave.
- Large quasi-two-body CP asymmetry in the  $f_2(1270)$  component.
- Evidence of CP asymmetry related to the rescattering component.
  - KK  $\leftrightarrow$  pipi rescattering plays an important role.
  - Further improvements needed to better describe the rescattering term.
     J. R. Pelaez, A. Rodas, arXiv:1807.04543 (2018). To appear on Eur. Phys. J. C.
- All results presented here will be published in two imminent papers.

#### • List of systematics: Isobar

| Category                  | $\rho(770)^0$ | $\omega(782)$ | $f_2(1270)$ | $\rho(1450)^0$ | $\rho_3(1690)^0$ | S-wave | Rescattering | $\sigma$ |
|---------------------------|---------------|---------------|-------------|----------------|------------------|--------|--------------|----------|
| B mass fit                | 0.12          | 0.10          | 0.89        | 0.40           | 4.19             | 0.58   | 4.20         | 0.54     |
| Efficiency                |               |               |             |                |                  |        |              |          |
| Simulation sample size    | 0.34          | 0.71          | 0.61        | 0.92           | 1.24             | 0.36   | 1.00         | 0.35     |
| Binning                   | 0.27          | 0.87          | 0.23        | 1.19           | 0.52             | 0.28   | 1.43         | 0.22     |
| L0 Trigger                | 0.02          | 0.37          | 0.17        | 0.31           | 0.28             | 0.14   | 0.32         | 0.19     |
| Combinatorial             | 0.40          | 0.50          | 1.02        | 3.06           | 5.75             | 0.75   | 3.16         | 0.75     |
| $B^+ \to K^+ \pi^+ \pi^-$ | < 0.01        | 0.01          | 0.02        | 0.03           | 0.05             | 0.01   | 0.04         | 0.01     |
| Fit bias                  | 1.07          | 6.51          | 3.25        | 6.10           | 11.36            | 1.79   | 8.59         | 1.73     |
| Total experimental        | 1.23          | 6.64          | 3.58        | 7.01           | 13.47            | 2.08   | 10.23        | 2.01     |
| Amplitude model           |               |               |             |                |                  |        |              |          |
| Resonance properties      | 0.20          | 0.53          | 0.55        | 2.66           | 5.58             | 0.41   | 1.58         | 0.29     |
| Barrier factors           | 0.18          | 0.95          | 0.80        | 3.84           | 1.56             | 1.27   | 0.34         | 1.25     |
| Alternative lineshapes    |               |               |             |                |                  |        |              |          |
| $f_2(1270)$               | 0.11          | 0.10          | 0.82        | 0.30           | 4.05             | 0.49   | 4.07         | 0.45     |
| $f_2(1430)$               | 0.02          | 0.04          | 2.84        | 1.76           | 12.05            | 0.98   | 6.39         | 1.05     |
| $\rho(1700)^{0}$          | 1.49          | 0.81          | 0.75        | 27.78          | 4.57             | 0.73   | 6.32         | 0.66     |
| Isobar specifics          |               |               |             |                |                  |        |              |          |
| $\sigma$ from PDG         | 0.01          | 3.26          | 2.97        | 21.83          | 19.04            | 0.11   | 12.9         | 0.53     |
| Rescattering              | 0.02          | 0.14          | 0.81        | 0.19           | 1.97             | 0.29   | 1.24         | 0.17     |
| Total model               | 1.52          | 3.54          | 4.44        | 35.68          | 24.13            | 1.90   | 16.37        | 1.92     |
| Statistical uncertainty   | 1.07          | 6.51          | 6.10        | 3.25           | 11.36            | 1.79   | 8.59         | 1.73     |

20 / 24

#### • List of systematics: K-matrix

| Category                  | $\rho(770)^0$ | $\omega(782)$ | $f_2(1270)$ | $\rho(1450)^0$ | $ ho_3(1690)^0$ | S-wave |
|---------------------------|---------------|---------------|-------------|----------------|-----------------|--------|
| B mass fit                | 1.97          | 0.12          | 1.42        | 9.74           | 5.77            | 1.03   |
| Efficiency                |               |               |             |                |                 |        |
| Simulation sample size    | 0.22          | 0.88          | 0.73        | 0.97           | 1.34            | 0.42   |
| Binning                   | 1.53          | 5.48          | 0.15        | 2.89           | 1.72            | 1.54   |
| L0 trigger                | 0.15          | 0.59          | 0.19        | 0.32           | 0.30            | 0.02   |
| Combinatorial             | 0.61          | 0.60          | 1.31        | 3.45           | 5.82            | 0.93   |
| $B^+ \to K^+ \pi^+ \pi^-$ | 0.01          | 0.03          | 0.03        | 0.04           | 0.12            | 0.03   |
| Fit bias                  | 0.02          | 0.04          | 0.24        | 0.85           | 0.40            | 0.36   |
| Total experimental        | 2.60          | 5.60          | 2.09        | 10.81          | 8.49            | 2.13   |
| Amplitude model           |               |               |             |                |                 |        |
| Resonance properties      | 0.62          | 0.91          | 1.08        | 4.35           | 5.34            | 1.27   |
| Barrier factors           | 1.97          | 3.54          | 0.04        | 12.53          | 2.79            | 3.50   |
| Alternative lineshapes    |               |               |             |                |                 |        |
| $f_2(1270)$               | 0.58          | 0.56          | 0.48        | 2.96           | 4.41            | 1.13   |
| $f_2(1430)$               | 3.04          | 1.69          | 8.78        | 41.78          | 33.96           | 4.77   |
| $ ho(1700)^{0}$           | 3.38          | 1.17          | 0.39        | 8.82           | 8.80            | 1.60   |
| K-matrix specifics        |               |               |             |                |                 |        |
| $s^0_{ m prod}$           | 2.08          | 4.42          | 0.20        | 3.42           | 0.98            | 2.41   |
| K-matrix components       | 2.11          | 5.31          | 0.01        | 8.11           | 0.21            | 1.03   |
| Total model               | 5.84          | 8.10          | 8.87        | 45.67          | 35.88           | 6.88   |
| Statistical uncertainty   | 1.5           | 8.4           | 4.3         | 8.4            | 11.8            | 2.6    |

21 / 24

#### • List of systematics: QMI

| Category                  | $\rho(770)^0$ | $\omega(782)$ | $f_2(1270)$ | $\rho(1450)^0$ | $\rho_3(1690)^0$ | S-wave |
|---------------------------|---------------|---------------|-------------|----------------|------------------|--------|
| B mass fit                | 0.40          | 1.02          | 0.23        | 0.92           | 0.31             | 0.04   |
| Efficiency                |               |               |             |                |                  |        |
| Simulation sample size    | 0.54          | 1.59          | 2.29        | 1.19           | 0.67             | 0.46   |
| Binning                   | 0.26          | 1.46          | 0.25        | 1.31           | 0.87             | 0.24   |
| L0 trigger                | 0.15          | 0.75          | 0.14        | 0.07           | 0.12             | 0.04   |
| Combinatorial             | 0.91          | 3.05          | 1.96        | 10.99          | 2.88             | 2.72   |
| $B^+ \to K^+ \pi^+ \pi^-$ | 0.01          | 0.04          | 0.11        | 0.33           | 0.30             | 0.07   |
| Fit bias                  | 1.92          | 13.45         | 5.14        | 8.24           | 7.07             | 2.86   |
| Total experimental        | 2.29          | 14.20         | 6.04        | 14.25          | 8.00             | 4.17   |
| Amplitude model           |               |               |             |                |                  |        |
| Resonance properties      | 0.47          | 2.31          | 0.88        | 3.23           | 2.06             | 1.26   |
| Barrier factors           | 0.17          | 3.39          | 1.99        | 12.01          | 3.03             | 5.12   |
| Alternative lineshapes    |               |               |             |                |                  |        |
| $f_2(1270)$               | 0.02          | 0.68          | 0.70        | 0.98           | 0.32             | 0.67   |
| $f_2(1430)$               | 0.51          | 0.72          | 0.08        | 2.96           | 1.52             | 0.67   |
| $ ho(1700)^{0}$           | 0.63          | 2.37          | 0.97        | 4.09           | 0.29             | 1.39   |
| QMI specifics             |               |               |             |                |                  |        |
| QMI bias                  | 1.35          | 5.56          | 4.70        | 29.40          | 37.89            | 4.40   |
| Total model               | 1.58          | 7.00          | 5.24        | 32.17          | 38.05            | 6.96   |
| Statistical uncertainty   | 1.27          | 15.44         | 3.63        | 5.55           | 17.01            | 1.52   |

• S-wave magnitude and phases



• Argand for  $f_2(1270)$  asymmetry



24 / 24