

Recent measurements of MultiBody Bdecays and time-integrated CPV

(www.tourismvictoria.com)

Martin Sevior, University of Melbourne On behalf of Belle

5/8/2019

M. Sevior, FPCP 2019 Victoria, Canada

A little aside...

Younger me 5/8/2019

Outline

- Belle: $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$, Branching Fraction,(\mathcal{B}), A_{CP} PRD 96, 031101(R)
- Belle: $B^0 \to K^+ K_s \pi^-$, Branching Fraction, (B), A arXiv:1904.06835
- Belle: $B^{\pm} \rightarrow K_s K_s h^{\pm}$, Branching Fraction,(\mathcal{B}), A_{CP} PRD 99, 031102(R)
- Belle: $B^0 \rightarrow p\bar{p}\pi^0$, Branching Fraction arXiv:1904.05713
- LHCb: $\overline{B^0} \to K_s \pi^+ \pi^-$, Amplitude analysis, A_{CP} PRL 120, 261801
- LHCb: $B_s \rightarrow K_s K^{\pm} \pi^{\mp}$, Amplitude analysis arXiv:1902.07955
- LHCb: $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$, Amplitude analysis, A_{CP}

(http://moriond.in2p3.fr/2019/EW/slides/5_Thursday/1_morning/5_Bertholet_TimeIndepCPV.pdf)

• LHCb: $B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$, Amplitude analysis, A_{CP} (FPCP, Tuesday, May 8, 17:00)

Charmless B-Decays

Kinematic Variables in B-Factory measurements

 M_{bc} peaks at B mass for fully reconstructed signal ΔE peaks at zero for fully reconstructed signal

- Either tight cut to optimise FoM = $\frac{N_S}{\sqrt{N_S + N_B}}$
- Make a loose cut to keep ~90% of signal and fit $\log(\frac{M_{max}-M}{M-M_{cut}})$

5/8/2019

Charm Veto

Charm mesons and resonances are a copious source of $h^+h^- h \in \{p, K, \pi, \mu, e\}$ Cause peaking background directly or via incorrect PID Apply a charm veto around charmed meson masses

All Belle results are from the full dataset of 711 fb⁻¹

M. Sevior, FPCP 2019 Victoria, Canada

5/8/2019

Belle: A_{CP} for $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ C.-L.Hsu et al. Phys. Rev. D96, 031101(R) (2017)

Cabibbo and color suppressed tree And Penguin diagrams

Br($B^{\pm} \rightarrow K^{-}K^{+}\pi^{\pm}$) = (5.0 ± 0.5 ± 0.5) × 10⁻⁶ PRL 99, 221801 (2007) BaBar

A_{CP} = -0.123 ± 0.017 ± 0.012 ± 0.007 PRD 90, 112004 (2014) LHCb

M. Sevior, FPCP 2019 Victoria, Canada

5/8/2019

Unusual dynamics showing a large enhancement and very large direct CP-violation $A_{CP} = -0.9 \pm 0.17 \pm 0.03$ at $M_{KK} < 1.1$ GeV (4.8 σ) Hard to make a model do both.

Need an order of magnitude increase in EW Tree diagram And an order of magnitude increase in Penguin diagram both in 0.99 GeV < M_{KK} < 1.1 GeV

Major role for $K\overline{K} \leftrightarrow \pi\overline{\pi}$ rescattering? LHCb Moriond (<u>http://moriond.in2p3.fr/2019/EW/slides/5_Thursday/1_morning/5_Bertholet_TimeIndepCPV.pdf</u>)

M. Sevior, FPCP 2019 Victoria,

5/8/2019

Canada

Belle: $B^0 \to K^+ K_s \pi^-$, Branching Fraction,(\mathcal{B}), A Y.S. Lai et al. arXiv:1904.06835

- Suppressed in Standard Model.
- The $B^0 \rightarrow K^+ K_s \pi^-$ decay mainly proceeds via $b \rightarrow d$ penguin process and hence sensitive to new physics in the loops
- Previous measurement by BaBar $BR = (6.4 \pm 1.0 \pm 0.6) \times 10^{-6}$ (PRD.82.031101)
- Appears to be some structure at low $M_{K^-\pi^+}$ region and asymmetric helicity angle distribution at low $M_{K^-K_s}$ region but limited statistics (~200) makes a detailed study difficult

The similar process $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ found a large direct CP asymmetry at $M_{KK} < 1.1$ GeV

100

-0.15

-0.1 -0.05

0

0.05

0.1

∆E [GeV]

0.15

Projection plots

Belle: $B^0 \rightarrow K^+ K_s \pi^-$ fitted yields

Make a unbinned maximum likelihood 3-D fit on M_{BC} , ΔE and log-transformed NB

Events/(0.46) 000 002 002 002 002 002 Data Data Fit result NU400 Fit result Signal Signal qq Generic B qq Generic B Rare B 300 Rare B 8.250 0.250 v 200 300 tun 150 100 200 100 50 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29 0 , 10 -10 0 5 M_{bc} [GeV/c²] C_{NN}

M²_{π⁺K_s⁰ [GeV²/c⁴] 50 57 57} 40 35 30 25 20 15 10 10 5 5 -0 Գ $M_{K'K_{0}^{0}}^{15}$ [GeV²/c⁴] 10 5

Data

Fit result

qq Generic B

Signal

Rare B

Use *sPlot* technique NIM A 555, 356 (2005) to extract background subtracted Dalitz distribution

$B^0 \rightarrow K^+ K_s \pi^-$ Differential decay rates and Asymmetry

Differential decay rates and Asymmetry plots

M. Sevior, FPCP 2019 Victoria, Canada

Belle: $B^0 \to K^+ K_s \pi^-$, Branching Fraction,(\mathcal{B}), A

$$A = \frac{N(K^{+}K_{s}\pi^{-}) - N(K^{-}K_{s}\pi^{+})}{N(K^{+}K_{s}\pi^{-}) + N(K^{-}K_{s}\pi^{+})}$$

Total Yield = 490 ± 46 events BR = $(3.60 \pm 0.33 \pm 0.15) \times 10^{-6}$ (Most precise measurement)

$$A = (-8.5 \pm 8.9 \pm 0.2)\%$$

Threshold enhancement seen near 1.2 $GeVc^{-2}$ in $M_{K^-K_s}$ and a hint of a peak at 4.2 $GeVc^{-2}$ in $M_{\pi^-K_s}$

Full tables of differential BR are given in Y.S. Lai et al. arXiv:1904.06835

5/8/2019

M. Sevior, FPCP 2019 Victoria, Canada

Belle: $B^{\pm} \rightarrow K_s K_s h^{\pm}$, Branching Fraction, (B), A_{CP}

B. Kaliyar et al. PRD 99, 031102(R) (2019) arXiv:1812.10221

$$B^{\pm} \rightarrow K_s K_s K^{\pm}$$
 and $B^{\pm} \rightarrow K_s K_s \pi^{\pm}$

No contribution from V_{ub}

Proceeds only through penguin loops and hence sensitive to New Physics

Slide 18

Belle: $B^{\pm} \rightarrow K_s K_s h^{\pm}$ Fits

2-D fit to ΔE and log-transformed NB to $B^{\pm} \to K_s K_s K^{\pm}$ and $B^{\pm} \to K_s K_s \pi^{\pm}$ with cross feeds

90% Confidence $Br(B^{\pm} \to K_s K_s \pi^{\pm}) < 8.7 \times 10^{-7}$

Substantial threshold enhancement over phase-space in $M_{K_sK_s}$ (again)

B. Kaliyar et al. PRD 99, 031102(R) (2019) arXiv:1812.10221

5/8/2019

M. Sevior, FPCP 2019 Victoria, Canada

Belle: $B^0 \rightarrow p\bar{p}\pi^0$, Branching Fraction

B. Pal et al. arXiv:1904.05713, To be published in PRD

- Charmless baryonic B-decays also proceed via V_{ub} and FCNC Penguin processes
- May exhibit DCPV and potentially sensitive to NP
- Hierarchy observed:
- 2 Body < 3 Body < 4 Body
- Observed threshold enhancement of baryonic particles

• The process $B^0 \rightarrow p\bar{p}\pi^0$ has not yet been observed ^{5/8/2019} M. Sevior, FPCP 2019 Victoria, Canada

Belle: $B^0 \rightarrow p\bar{p}\pi^0$, Branching Fraction

Correct for π^0 energy loss in ECL using: $\vec{P}_B = \vec{P}_p + \vec{P}_p + \frac{\vec{P}_{\pi^0}}{|\vec{P}_{\pi^0}|} \sqrt{(E_{Beam} - E_p - E_p)^2 - m_{\pi^0}^2}$ Projection plots of 3D fit to data

sPlot NIM A 555, 356 (2005) used to extract distributions as function of $m_{par{p}}$

B. Pal et al. arXiv:1904.05713, To be published in PRD

M. Sevior, FPCP 2019 Victoria, Canada BELLE

New results from run 1, (2011 and 2012, 3 fb⁻¹)

Μ.	Sevior,	FPCP 2019	Victoria
		Canada	

LHCb: Dalitz Plot (DP) Amplitude analyses

Emilie Bertholet

http://moriond.in2p3.fr/2019/EW/slides/5 Thursday/1 morning/5 Bertholet TimeIndepCPV.pdf

- Information about the resonant structure. 0
- Direct access to phases. 0

P. M---

Branching ratios, direct and indirect (local) CP asymmetries. 0

$$-\underbrace{\begin{array}{c} \mathbf{p}_{1}, m_{1} \\ \mathbf{p}_{2}, m_{2} \\ \mathbf{p}_{3}, m_{3} \end{array}}_{\mathbf{p}_{3}, m_{3}} \mathrm{d}\Gamma = \frac{1}{(2\pi^{3})} \frac{1}{32M^{2}} |\overline{A}|^{2} \mathrm{d}m_{12}^{2} \mathrm{d}m_{23}^{2}$$

perimental parametrisation of the DP: Isobar Model

Quasi-two body approach.

The total amplitude of the decay is described as a coherent sum of partial amplitudes:

5/8/2019

Canada

LHCb: $\overline{B^0} \to K_s \pi^+ \pi^- \text{and } \overline{B^0} \to K^{*-} \pi^+$, Amplitude Phys. Rev. Lett. 120, 261801 (2018) analysis and A_{CP}

- The origin of the difference between neutral and charged modes for $B \rightarrow K\pi$ for A_{CP} remains: ("K- π puzzle")
- New, more precise measurements of $\Phi_3(\gamma)$ increase the SM tension for $B \to K^0 \pi^0 A_{CP}$ and S_{CP} to 2.2 σ (PLB 785 (2018) 525)
- Recent theoretical work (Eur. Phys. J., C75(7), 340 (2015), J. Phys., G43(10), 105004 (2016)) shows that the $\overline{B^0} \rightarrow K^{*-}\pi^+$ modes can help understand the K- π puzzle
- An amplitude analysis of the 3-body $\overline{B^0} \to K_s \pi^+ \pi^-$ decay can fully isolate the $\overline{B^0} \to K^{*-} \pi^+$ process.

LHCb: $\overline{B^0} \to K_s \pi^+ \pi^-$ and $\overline{B^0} \to K^{*-} \pi^+$, Amplitude analysis and A_{CP}

Build an Amplitude Analysis Including the resonances shown

Resonance	Parameters	Parameters Lineshape		Value references	
$K^{*}(892)^{-}$	$m_0 = 891.66 \pm 0.26$ $\Gamma_0 = 50.8 \pm 0.9$	RBW		[27]	
$(K\pi)_0^-$	$\mathcal{R}e(\lambda_0) = 0.204 \pm 0.103$ $\mathcal{I}m(\lambda_0) = 0$ $\mathcal{R}e(\lambda_1) = 1$ $\mathcal{I}m(\lambda_1) = 0$	EFKLL	M [28]	[28]	
$K_2^*(1430)^-$	$m_0 = 1425.6 \pm 1.5$ $\Gamma_0 = 98.5 \pm 2.7$	RB	W	[27]	
$K^{*}(1680)^{-}$	$m_0 = 1717 \pm 27$ $\Gamma_0 = 332 \pm 110$	Flatté	[29]	[27]	
$f_0(500)$	$m_0 = 513 \pm 32$ $\Gamma_0 = 335 \pm 67$	RBW		[30]	
$ ho(770)^{0}$	$m_0 = 775.26 \pm 0.25$ $\Gamma_0 = 149.8 \pm 0.8$	\mathbf{GS}	[31]	27	
$f_0(980)$	$m_0 = 965 \pm 10$ $g_{\pi} = 0.165 \pm 0.025 \text{ GeV}$ $g_K = 0.695 \pm 0.119 \text{ GeV}$	Fla	tté	[32]	
$f_0(1500)$	$m_0 = 1505 \pm 6$ $\Gamma_0 = 109 \pm 7$	RBW		[27]	
χ_{c0}	$m_0 = 3414.75 \pm 0.31$ $\Gamma_0 = 10.5 \pm 0.6$	RB	W	[27]	
Nonresonant (NR)		Phase	space	Concerned and	

LHCb: $\overline{B^0} \to K_s \pi^+ \pi^-$ and $\overline{B^0} \to K^{*-} \pi^+$, Amplitude analysis and A_{CP}

$\mathcal{A}_{CP}(K^*(892)^-\pi^+)$	= -	0.308	$\pm ($	0.060 ± 0	0.011 ± 0	0.012
$\mathcal{A}_{CP}((K\pi)_0^-\pi^+)$	= -	0.032	± (0.047 ± 0	0.016 ± 0	0.027
$\mathcal{A}_{CP}(K_2^*(1430)^-\pi^+)$	= -	0.29	\pm	$0.22 \pm$	$0.09 \pm$	0.03
$\mathcal{A}_{CP}(K^*(1680)^-\pi^+)$	= -	0.07	\pm	$0.13 \pm$	$0.02 \pm$	0.03
$\mathcal{A}_{CP}(f_0(980)K_{ m s}^0)$	=	0.28	\pm	$0.27\pm$	$0.05 \pm$	0.14

 $A_{CP}(\overline{B^0} \to K^{*-}\pi^+) = -0.308 \pm 0.060 \pm 0.011 \pm 0.012 > 6\sigma$ significance Phys. Rev. Lett. 120, 261801 (2018)

M. Sevior, FPCP 2019 Victoria,

5/8/2019

Canada

LHCb: $B_s \to K_s K^{\pm} \pi^{\mp}$, Amplitude analysis

Interesting admixture of Tree and FCNC Penguin Amplitude Sensitive to NP arXiv:1902.07955

LHCb: $B_s \to K_s K^{\pm} \pi^{\mp}$, Amplitude analysis

Build an Amplitude Analysis Including the resonances shown

$K^0_{ m s}K^+\pi^-$		$K^0_{ m s}K^-\pi^+$			
Resonance	Fit fraction $(\%)$	Resonance	Fit fraction $(\%)$		
$K^{*}(892)^{-}$	15.6 ± 1.5	$K^{*}(892)^{+}$	13.4 ± 2.0		
$K_0^*(1430)^-$	30.2 ± 2.6	$K_0^*(1430)^+$	28.5 ± 3.6		
$K_2^*(1430)^-$	2.9 ± 1.3	$K_2^*(1430)^+$	5.8 ± 1.9		
$K^{*}(892)^{0}$	13.2 ± 2.4	$\overline{K}^{*}(892)^{0}$	19.2 ± 2.3		
$K_0^*(1430)^0$	33.9 ± 2.9	$\overline{K}_{0}^{*}(1430)^{0}$	27.0 ± 4.1		
$K_2^*(1430)^0$	5.9 ± 4.0	$\overline{K}_{2}^{*}(1430)^{0}$	7.7 ± 2.8		

LHCb: $B_s \to K_s K^{\pm} \pi^{\mp}$, Amplitude analysis

M. Sevior, FPCP 2019 Victoria,

Canada

LHCb: $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$, Amplitude analysis, A_{CP}

Slide 31

Interesting reaction dynamics leading to very large Direct CPV New analysis with full Dalitz analysis

MELBOURNE

LHCb: $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$, Amplitude analysis, A_{CP}

Emilie Bertholet

http://moriond.in2p3.fr/2019/EW/slides/5_Thursday/1_morning/5_Bertholet_TimeIndepCPV.pdf

LHCb-PAPER-2018-051

	Contribution	Fit Fraction(%)	$A_{CP}(\%)$
($K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$12.3\pm8.7\pm4.5$
	$K_0^{*0}(1430)$	$4.5\pm0.7\pm1.2$	$10.4 \pm 14.9 \pm 8.8$
P	olar Form Factor	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$
7	$ \rho(1450) $	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$
	$f_2(1270)$	$7.5\pm0.8\pm0.7$	$26.7 \pm 10.2 \pm 4.8$
) jL	rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$
	$\phi(1020)$	$0.3\pm0.1\pm0.09$	$9.8 \pm 43.6 \pm 26.6$

Phenomenological description of the partonic interaction that produces the final state. Phys. Rev. D 92, 054010 (2015)

Accounts for the $\pi\pi \leftrightarrow KK$ rescattering (1.0 GeV $< m_{KK} <$ 1.5 GeV)

Phys.Rev. D71 (2005) 074016

- Dominant contribution from the non-resonant component.
- Small contribution from $\Phi(1020)$.
- Strong destructive interferences.
- Large ACP in the re-scattering region.

Observables

$$A_{CP,i} = \frac{|\bar{c}_i|^2 - |c_i|^2}{|\bar{c}_i|^2 + |c_i|^2}$$

$$FF_i = \frac{\iint (|c_iF_i|^2 + |\bar{c}_i\bar{F}_i|^2) dm_{\pi^{\pm}K^{\mp}}^2 dm_{K^{\pm}K^{-}}^2}{\iint (|A|^2 + |\bar{A}|^2) dm_{\pi^{\pm}K^{\mp}}^2 dm_{K^{\pm}K^{-}}^2}$$

Conclusions

Summary

- Many interesting results from MultiBody Charmless decays and Direct CP violation
- $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ shows a large enhancement in $M_{K^{+}K^{-}}$ and very large Direct CP violation
- New LHCb results show $B^{\pm} \to K^+ K^- \pi^{\pm}$ results could be the effects of $K\overline{K} \leftrightarrow \pi\overline{\pi}$ rescattering
- Threshold enhancements observed in all M_{KK} final states
- Amplitude Dalitz Plot analyses from LHCb show qualitative more information including quasi two-body measurements

Outlook

- New results expected from ongoing LHCb and Belle analyses
- New data from LHCb and Belle II
- Competitive and complimentary interplay between LHCb and Belle II

Thank you!

M. Sevior, FPCP 2019 Victoria, Canada