Backup

Production rates and branching fractions of heavy hadrons & quarkonia at LHC experiments

P. Ronchese - CMS + ATLAS & LHCb collaborations

University and INFN Padova

Conference on Flavor Physics and CP Violation (FPCP 2019)

Victoria BC, Canada May 5-10, 2019

Introduction	Production

Conclusions

Backup

Outline

Introduction

- Production cross-sections:
 - inclusive b-hadrons
 - bottom mesons and baryons
 - quarkonia
- Branching fractions:
 - bottom baryon decay
 - baryon production in meson decays
 - look for intermediate states
- Conclusions

Introduction	Production
•00	

Backup

Motivations

- Cross-sections measurements:
 - probe the underlying QCD processes,
 - reference or ingredient for searches and measurements of rarer or new processes,
 - baseline for associated production of HF and other objects.
- Decay properties studies and branching fractions measurements:
 - test form-factor models,
 - look for new and exotic states.
- Look for effects of new physics beyond the Standard Model:
 - look for new physics effects in rare decays.

Introduction	Production
000	

Branching fractions

Conclusions o Backup

Motivations

Cross-sections neasurements:

- probe the underlying QCD processes,
- reference or ingredient for searches and measurements of rarer or new processes,
- baseline for associated production of HF and other objects.
- Decay properties studies and branching fractions measurements:
 - test form
 - Iook for r
- Look for effe
 - Iook for r
- Branching fractions often measured as ratios
 - Cross-section / fragmentation-fractions ratio possibly needed

Introduction	Production
000	

Backup

Motivations

- Cross-sections measurements:
 - probe the underlying QCD processes,
 - reference or ingredient for searches and measurements of rarer or new processes,
 - baseline for associated production of HF and other objects.
- Decay properties studies and branching fractions measurements:
 - test form-factor models,
 - look for new and exotic states.
- Look for effects of new physics beyond the Standard Model:
 - look for new physics effects in rare decays.

Not covered here

Introduction

Backup

Outline

• Introduction

• Production cross-sections:

- inclusive b-hadrons
- bottom mesons and baryons
- quarkonia
- Branching fractions:
 - bottom baryon decay
 - baryon production in meson decays
 - look for intermediate states

Conclusions

Introduction

Production ••••• Branching fractions

Conclusions

Backup

b-hadron pair production (ATLAS, $\sqrt{s} =$ 8 TeV)

- First *b*-hadron decay channel containing $J/\psi \rightarrow \mu^+\mu^-$
- Second *b*-hadron decay channel containing a muon $p_{T,\mu} > 6 \text{ GeV}$, $\left|\eta_{\mu,J/\psi}\right| < 2.3$, $\left|\eta_{\mu}\right| < 2.5$

Signal extraction ($\mathcal{L} = 11.4 \text{ fb}^{-1}$)

- J/ψ : 2D fit to dimuon mass and proper decay time \blacktriangleleft
- muon: 2D fit to BDT(sig/bkg) and impact parameter

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 5/30

Introduction

Branching fractions

Conclusions

Backup

b-hadron pair production (ATLAS, $\sqrt{s} =$ 8 TeV)

- First *b*-hadron decay channel containing $J/\psi
 ightarrow \mu^+\mu^-$
- Second *b*-hadron decay channel containing a muon $p_{T,\mu} > 6 \text{ GeV}$, $\left|\eta_{\mu,J/\psi}\right| < 2.3$, $\left|\eta_{\mu}\right| < 2.5$

Signal extraction ($\mathcal{L} = 11.4 \text{ fb}^{-1}$)

• J/ψ : 2D fit to dimuon mass and proper decay time

ymuon: 2D fit to BDT(sig/bkg) and impact parameter

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 5/30

Introduction

 Branching fractions

Conclusions

Backup

b-hadron pair production (ATLAS, $\sqrt{s} = 8$ TeV)

- First *b*-hadron decay channel containing $J/\psi
 ightarrow \mu^+\mu^-$
- Second *b*-hadron decay channel containing a muon $p_{T,\mu} > 6 \text{ GeV}$, $\left| \eta_{\mu,J/\psi} \right| < 2.3$, $\left| \eta_{\mu} \right| < 2.5$

Signal extraction ($\mathcal{L} = 11.4 \text{ fb}^{-1}$)

- J/ψ : 2D fit to dimuon mass and proper decay time
- muon: 2D fit to BDT(sig/bkg) and impact parameter

Total cross section in fiducial region:

JHEP 11 (2017) 062

$$\sigma(B(\rightarrow J/\psi[\rightarrow \mu^+\mu^-] + X)B(\rightarrow \mu + X))) = (17.7 \pm 0.1(\text{stat}) \pm 2.0(\text{syst})) \text{ nb}$$

Differential cross section vs. several variables compared with various predictions/simulation

Backup

Outline

• Introduction

• Production cross-sections:

- inclusive *b*-hadrons
- bottom mesons and baryons
- quarkonia
- Branching fractions:
 - bottom baryon decay
 - baryon production in meson decays
 - look for intermediate states

Conclusions

Introduction

Branching fractions

Conclusions Backup

B^+ production cross-section (CMS, $\sqrt{s} = 13$ TeV)

$$\mathcal{L} = 48.1 \; \text{pb}^{-1} \;, \, |y_{\mathcal{B}}| < 2.1 \;, \, 10 \; ext{GeV} <
ho_{\mathcal{T}, \mathcal{B}} < 100 \; ext{GeV}$$
 PLB 771 (2017) 435

Differential cross-section, vs. transverse momentum and rapidity

$$\frac{d\sigma(pp \to B^+X)}{dz} = \frac{n_{\text{sig}}(z)}{2 \cdot \mathcal{B} \cdot A \cdot \epsilon(z) \cdot \mathcal{L} \cdot \Delta z}$$

 B^{\pm} reconstructed in the channel $B^{\pm} \rightarrow J/\psi K^{\pm}$, $J/\psi \rightarrow \mu^{+}\mu^{-}$

Event selection • $\left| M(\mu^+\mu^-) - m_{J/\psi} \right| < 150 \text{ MeV}$

•
$$L_{xy}/\sigma_{xy}>$$
 3.5 , $\cos(heta)_{xy}>$ 0.99

Introduction Production Branching fractions Conclusions Backup B^+ production cross-section (CMS, $\sqrt{s} = 13$ TeV) $|\mathcal{L} = 48.1 \text{ pb}^{-1}, |y_B| < 2.1$ 10 GeV $< p_{T,B} < 100$ GeV PLB 771 (2017) 435 Differential cross-section, vs. transverse momentum and rapidity $d\sigma(pp \rightarrow B^+X)$ $n_{\rm sig}(z)$ $\mathbf{z} \cdot \mathcal{B} \cdot \mathcal{A} \cdot \epsilon(\mathbf{z}) \cdot \mathcal{L} \cdot \Delta \mathbf{z}$ dz B^{\pm} reconstructed in the channel $B^{\pm} \rightarrow J/\psi K^{\pm}$, $J/\psi \rightarrow \mu^{+}\mu^{-}$ $p_{T,B}$, $|\mathbf{y}_B|$ $n_{\rm sig}(z)$ signal yield 48.1 pb⁻¹ (13 TeV B^{\pm} Invariant mass distributions CMS ≥ ₩1600 $10 \le p_{-} < 17 \text{ GeV}, |y| < 1.45; 17 \le p_{-} < 100 \text{ GeV}, |y| < 2.1$ • $p_{T,B}$ and $|y_B|$ bins ລິ1400 to all entries g1200 $\rightarrow J/\psi K^*$ signal Unbinned max likelihood fit: Combinatorial background 1000 $\rightarrow J/\psi \pi^*$ background 800 Sum of 2 gaussians (signal) → J/w + hadrons backgroun 600 exponential (background) 400 error function 200 (mis-reconstructed $B^{\pm} \rightarrow J/\psi KX$) 51 52 53 54 55 56 57 58 59 M_{I/w K*} [GeV

Introduction Production Branching fractions Conclusions Backup B^+ production cross-section (CMS, $\sqrt{s} = 13$ TeV) $\mathcal{L} = 48.1 \ {
m pb}^{-1}$, $|y_B| < 2.1$, 10 GeV $< p_T_{.B} <$ 100 GeV PLB 771 (2017) 435 Differential cross-section, vs. transverse momentum and rapidity $d\sigma(pp
ightarrow B^+X)$ $n_{sig}(z)$ $= \frac{1}{2 \cdot \beta \cdot A \cdot \epsilon(z) \cdot \mathcal{L} \cdot \Delta z}$ dz B^{\pm} reconstructed in the channel $B^{\pm} \rightarrow J/\psi K^{\pm}$, $J/\psi \rightarrow \mu^{+}\mu^{-}$ $= p_{T,B}, |y_B|$ $n_{\rm sig}(z)$ signal yield = 2 = account for acceptance B charge symmetry $\epsilon(z)$ = efficiency $\mathcal{B} = \mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$ integrated luminosity Acceptance and efficiency • Overall $A \cdot \epsilon$ estimated from simulation Efficiency measured also in data (tag and probe) to estimate systematic error

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 7/30

Introduction

Branching fractions

Conclusions

Backup

B^+ production: results (CMS, $\sqrt{s} = 13$ TeV)

Differential cross-section vs. $p_{T,B}$, $|y_B|$

- Left: $d\sigma/dp_{T,B}$ (integrated over [$|y_B| < 1.45$] or [$|y_B| < 2.1$])
- Right: $d\sigma/d|y_B|$ (integrated over [10 GeV < $p_{T,B}$ < 100 GeV] or [17 GeV < $p_{T,B}$ < 100 GeV])
- Comparison with FONLL

and PYTHIA

M.Cacciari *et al.*, JHEP 05 (1998) 007 , JHEP 03 (2001) 006 , JHEP 10 (2012) 137 T. Sjöstrand *et al.*, CPC 178 (2008) 852

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 8/30

Introduction

Branching fractions

Conclusions

Backup

B^+ production: results (CMS, $\sqrt{s} = 13$ TeV)

Differential cross-section ratios (13 TeV/7 TeV) vs. $p_{T,B}$, $|y_B|$

- Left: $R(d\sigma/dp_{T,B})$ (integrated over [| y_B | < 1.45] or [| y_B | < 2.1])
- Right: $R(d\sigma/d|y_B|)$ (integrated over [10 GeV < $p_{T,B}$ < 100 GeV] or [17 GeV < $p_{T,B}$ < 100 GeV])
- Reduced sensitivity to scale uncertainty, constraint to gluon PDF

M.Cacciari et al., EPJC 75 (2015) 610

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 9/30

Introduction

Branching fractions

Conclusions

Backup

B^{\pm} production cross-section (LHCb)

Analogous measurement from LHCb

- Double differential cross-section, vs. transverse momentum and rapidity (all plots and numbers not shown here...)
- Collision energy $\sqrt{s} = (7, 13)$ TeV
- Complementary rapidity range

Introduction

Branching fractions

Conclusions

Backup

B^{\pm} production cross-section (LHCb)

Analogous measurement from LHCb

- Double differential cross-section, vs. transverse momentum and rapidity (all plots and numbers not shown here...)
- Collision energy $\sqrt{s} = (7, 13)$ TeV
- Complementary rapidity range

Differential cross-section ratios vs. $p_{T,B}$, $|y_B|$

JHEP 12 (2017) 026

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 10/30

Introduction

Conclusions

Backup

Ξ_{b}^{-} baryon production cross-section (LHCb)

Ξ_b^- decay modes

- New decay modes of bottom-strange baryons observed and studied
- Branching ratio measured:

$$(f_{\Xi_b^-}/f_{\Lambda_b^0})\mathcal{B}(\Xi_b^- o\Lambda_b^0\pi^-)=(5.7\pm1.8^{+0.8}_{-0.9}) imes10^{-4}$$
 prl 115 (2015) 241801

Absolute branching fraction determination requires fragmentation ratio knowledge

$$R = \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \cdot \frac{\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda^0)} = \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \cdot \frac{\Gamma(\Xi_b^- \to J/\psi \Xi^-)}{\Gamma(\Lambda_b^0 \to J/\psi \Lambda^0)} \cdot \frac{\tau_{\Xi_b^-}}{\tau_{\Lambda_b^0}}$$

Ratio measurement

PRD 99 (2019) 052006

$$R = \frac{N(\Xi_b^- \to J/\psi \Xi^-)}{N(\Lambda_b^0 \to J/\psi \Lambda^0)} \frac{\epsilon_{\Lambda_b^0}}{\epsilon_{\Xi_b^-}}$$

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 11/30

Introduction

Branching fractions

Conclusions

Backup

Ξ_{b}^{-} baryon production cross-section (LHCb)

Ξ_b^- decay modes

- New decay modes of bottom-strange baryons observed and studied
- Branching ratio measured:

$$(f_{\Xi_b^-}/f_{\Lambda_b^0})\mathcal{B}(\Xi_b^- o\Lambda_b^0\pi^-)=(5.7\pm1.8^{+0.8}_{-0.9}) imes10^{-4}$$
 prl 115 (2015) 241801

Absolute branching fraction determination requires fragmentation ratio knowledge

$$\begin{array}{c} \boxed{\textbf{\textit{R}}} = \frac{f_{\Xi_{b}^{-}}}{f_{\Lambda_{b}^{0}}} \cdot \frac{\mathcal{B}(\Xi_{b}^{-} \to J/\psi\Xi^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi\Lambda^{0})} = \frac{f_{\Xi_{b}^{-}}}{f_{\Lambda_{b}^{0}}} \cdot \frac{\Gamma(\Xi_{b}^{-} \to J/\psi\Xi^{-})}{\Gamma(\Lambda_{b}^{0} \to J/\psi\Lambda^{0})} \cdot \frac{\tau_{\Xi_{b}^{-}}}{\tau_{\Lambda_{b}^{0}}} \end{array}$$

Ratio measurement

PRD 99 (2019) 052006

$$R = \frac{N(\Xi_b^- \to J/\psi \Xi^-)}{N(\Lambda_b^0 \to J/\psi \Lambda^0)} \frac{\epsilon_{\Lambda_b^0}}{\epsilon_{\Xi_b^-}}$$

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 11/30

Introduction

Branching fractions

 $.8^{+0.8}_{-0.9}) imes 10^{-4}$

ination requires fragmentation

Conclusions

Backup

Ξ_{b}^{-} baryon production cross-section (LHCb)

$\overline{\Xi_b^-}$ decay modes

 New decay modes of bottom-strange baryons observed and studied
 From PDG

 $\begin{array}{c|c} \mathbf{E} \\ \mathbf{C} \\$

ratio knowledge

$$\boxed{\textit{\textit{R}}} = \frac{\textit{f}_{\Xi_b^-}}{\textit{f}_{\Lambda_b^0}} \cdot \frac{\mathcal{B}(\Xi_b^- \to J/\psi\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda^0)} = \frac{\textit{f}_{\Xi_b^-}}{\textit{f}_{\Lambda_b^0}} \cdot \frac{\Gamma(\Xi_b^- \to J/\psi\Xi^-)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)} \cdot \frac{\textit{\tau}_{\Xi_b^-}}{\textit{\tau}_{\Lambda_b^0}}$$

Ratio measurement

PRD 99 (2019) 052006

PRL 115 (2015) 24 801

$$R = rac{N(\Xi_b^- o J/\psi \Xi^-)}{N(\Lambda_b^0 o J/\psi \Lambda^0)} rac{\epsilon_{\Lambda_b^0}}{\epsilon_{\Xi_b^-}}$$

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 11/30

Introduction

Production

Branching fractions

Conclusions

Backup

$\Xi_b^- \rightarrow J/\psi \Xi^-$ signal extraction (LHCb)

- $J/\psi
 ightarrow \mu^+\mu^-$: two muons $\left| M(\mu^+\mu^-) m_{J/\psi}
 ight| <$ 40 MeV
- "long"/"downstream" tracks: including/without hits in the vertex detector
 - $\Lambda^0 \rightarrow p\pi^-$: two "downstream" tracks, $|M(p\pi^-) m_{\Lambda^0}| < 8 \text{ MeV}$
 - $\Xi^- \rightarrow \Lambda^0 \pi^-$: "long" track as pion candidate, $|(M(\Lambda^0 \pi^-) - M(p\pi^-) + m_{\Lambda^0} - m_{\Xi^-}| < 10 \text{ MeV}$
 - $|(M(\Lambda^{\circ}\pi^{\circ}) M(p\pi^{\circ}) + m_{\Lambda^{\circ}} m_{\Xi^{-}}| < 10$ MeV
- good vertex quality, displaced vertices from PV

•
$$\Lambda^0_b$$
 , Ξ^-_b candidates: 2 $< |\eta| <$ 6 , $p_T <$ 20 GeV

$\sqrt{s} = (7, 8, 13) \; ext{GeV}$, $\mathcal{L} = (1.0, 2.0, 1.6) \; ext{pb}^{-1}$

- $\Lambda^0_b \to J/\psi \Lambda^0$, $\Xi^-_b \to J/\psi \Xi^-$ invariant mass distributions
- Unbinned max likelihood fit:
 - Sum of 2 CB function, common peak position and sigma (signal)
 - exponential (background)

•
$$m_{\Xi_b^-} = (5796.70 \pm 0.39(ext{stat}) \pm 0.15(ext{syst}) \pm 0.17(m_{\Lambda_b^0})) ext{ MeV}$$

Introduction

Branching fractions

Conclusions

Backup

$\Xi_b^- \rightarrow J/\psi \Xi^-$ signal extraction (LHCb)

Introduction

Branching fractions

Conclusions

Backup

$\Xi_b^- \rightarrow J/\psi \Xi^-$ signal extraction (LHCb)

• $J/\psi \rightarrow \mu^+\mu^-$: two muons $|M(\mu^+)|$ $\Xi_{b}^{-}
ightarrow J/\psi \Xi^{-}$, $\sqrt{s}=$ 13 TeV "long"/"downstream" tracks: including/without hits in the vertex Candidates / (5 MeV/c²) • $\Lambda^0 \rightarrow p\pi^-$: two "downstream" ti I HCb + Data √s=13 TeV - Full PDF • $\Xi^- \rightarrow \Lambda^0 \pi^-$: "long" track as pio $\cdots \Xi_{h} \rightarrow J/\psi \Xi^{-}$ $|(M(\Lambda^0\pi^-) - M(p\pi^-) + m_{\Lambda^0} - r)|$ $(\Xi^{-} \rightarrow \Lambda \pi_{-})$ good vertex quality, displaced ver • Λ_b^0 , Ξ_b^- candidates: $2 < |\eta| < 6$, 20 $\sqrt{s} = (7, 8, 13) \text{ GeV}$, $\mathcal{L} =$ • $\Lambda_b^0 \to J/\psi \Lambda^0$, $(\Xi_b^- \to J/\psi \Xi^-)$ invari 5800 5700 5900 J/w E mass [MeV/c2] Unbinned max likelihood tit: Sum of 2 CB function, common peak position and sigma (signal) exponential (background)

$$m_{\Xi_b^-} = (5796.70 \pm 0.39(ext{stat}) \pm 0.15(ext{syst}) \pm 0.17(m_{\Lambda_b^0})) ext{ MeV}$$

Introduction

 $f_{\Xi_{h}^{-}}/f_{\Lambda_{h}^{0}}$ (LHCb)

Production

Branching fractions

Conclusions Backup

$$\mathsf{R} = rac{\mathsf{N}(\Xi_b^- o J/\psi \Xi^-)}{\mathsf{N}(\Lambda_b^0 o J/\psi \Lambda^0)} rac{\epsilon_{\Lambda_b^0}}{\epsilon_{\Xi_b^-}}$$

• $N(\Xi_b^- o J/\psi \Xi^-)$, $N(\Lambda_b^0 o J/\psi \Lambda^0)$ from mass distributions fit

•
$$\epsilon_{\Lambda_b^0}$$
, $\epsilon_{\Xi_b^-}$ from simulation ($\epsilon_{\Lambda_b^0}/\epsilon_{\Xi_b^-} \sim 14\%$)

Production rate times branching fractions ratio

$$egin{aligned} R &= (10.8 \pm 0.9 (ext{stat}) \pm 0.8 (ext{syst})) imes 10^{-2} & [\sqrt{s} = 7, 8 ext{ TeV}] \ R &= (13.1 \pm 1.1 (ext{stat}) \pm 1.0 (ext{syst})) imes 10^{-2} & [\sqrt{s} = -13 ext{ TeV}] \end{aligned}$$

Fragmentation ratio

PRD 99 (2019) 052006

$$\begin{split} \frac{I_{\Xi_{b}^{-}}}{f_{\Lambda_{b}^{0}}} &= (6.7 \pm 0.5(\text{stat}) \pm 0.5(\text{syst}) \pm 2.0(\text{f.s.})) \times 10^{-2} \ [\sqrt{s} = 7,8 \ \text{TeV}] \\ \frac{I_{\Xi_{b}^{-}}}{f_{\Lambda_{b}^{0}}} &= (8.2 \pm 0.7(\text{stat}) \pm 0.6(\text{syst}) \pm 2.5(\text{f.s.})) \times 10^{-2} \ [\sqrt{s} = 13 \ \text{TeV}] \end{split}$$

Introduction

Production

Branching fractions

Conclusions Backup

 $\overline{f_{\Xi_b^-}}/f_{\Lambda_b^0}$ (LHCb)

$$N(\Xi_{h}^{-} \rightarrow J/\psi\Xi^{-}) \stackrel{\epsilon_{\Lambda_{b}^{0}}}{\rightarrow} \frac{\epsilon_{\Lambda_{b}^{0}}}{\epsilon_{\Xi_{b}^{-}}}$$

$$N(\Xi_{b}^{-} \rightarrow J/\psi\Xi^{-}), N(\Lambda_{b}^{0} \rightarrow J/\psi\Lambda^{0}) \text{ from mass distributions fit}$$

$$\epsilon_{\Lambda_{b}^{0}}, \epsilon_{\Xi_{b}^{-}} \text{ from simulation } (\epsilon_{\Lambda_{b}^{0}}/\epsilon_{\Xi_{b}^{-}} \sim 14\%)$$

$$Production rate times branching fractions ratio$$

$$R = (10.8 \pm 0.9(\text{stat}) \pm 0.8(\text{syst})) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \text{ TeV}]$$

$$R = (13.1 \pm 1.1(\text{stat}) \pm 1.0(\text{syst})) \times 10^{-2} \quad [\sqrt{s} = 13 \text{ TeV}]$$

Fragmentation ratio

PRD 99 (2019) 052006

$$\begin{split} \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} &= (6.7 \pm 0.5(\text{stat}) \pm 0.5(\text{syst}) \pm 2.0(\text{f.s.}) \times 10^{-2} \ [\sqrt{s} = 7,8 \ \text{TeV}] \\ \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} &= (8.2 \pm 0.7(\text{stat}) \pm 0.6(\text{syst}) \pm 2.5(\text{f.s.}) \times 10^{-2} \ [\sqrt{s} = 13 \ \text{TeV}] \end{split}$$

Backup

Outline

Introduction

• Production cross-sections:

- inclusive *b*-hadrons
- bottom mesons and baryons
- quarkonia
- Branching fractions:
 - bottom baryon decay
 - baryon production in meson decays
 - look for intermediate states

Conclusions

Branching fractions

Conclusions o Backup

Quarkonia production cross-section

Heavy quarkonia production models & tests

- Test factorization and NRQCD G.T.Bodwin *et al.*, PRD 51 (1995) 1125, PRD 55 (1997) 5853
 BCba and A.K. Laibauith, PRD 52 (1996) 150, PRD 53 (1997) 5853
- 2 phases:
 B. Gong et al., PRL 112 (2014) 032001, Z.-B. Kang et al., PRD 91 (2015) 014030
 - perturbative generation of QQ pair (singlet/octet)
 - hadronization producing bound state (LDME)
- Different center of mass energies:
 - perturbative calculations appropriate for energy
 - same LDME P.Faccioli et al., PLB 736 (2014) 98 G.T.Bodwin et al., PRL 113 (2014) 022001
- Higher energy and higher cross-section: extended p_T reach

Several $pp \rightarrow q\bar{q}$ cross-section measurements at ATLAS, CMS and LHCb

Introduction

Branching fractions

Conclusions

Backup

Quarkonia production cross-section (ATLAS)

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 15/30

Introduction

Branching fractions

Conclusions

Backup

53 03

Quarkonia production cross-section (CMS) $\sigma(pp \rightarrow (J/\psi, \psi(2S))X)$ $\sqrt{s} = 7 \text{ TeV}$ JHEP 02 (2012) 011, PRL 114 (2015) 191802 $\sigma(pp \to \Upsilon(nS)X)$ $\sqrt{s} = 7 \text{ TeV}$ PLB 727 (2013) 101, PLB 749 (2015) 14 $\sigma(\chi_{c2})/\sigma(\chi_{c1}), \sigma(\chi_{b2})/\sigma(\chi_{b1})$ $\sqrt{s} = 7 \text{ TeV}$ EPJC 72 (2012) 2251, PLB 743 (2015) 383 $\sigma(pp \rightarrow (J/\psi, \psi(2S), \Upsilon(nS))X)$ $\sqrt{s} = 13 \text{ TeV}$ PLB 780 (2018) 251 • 2 phas J/ψ , $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$: comparison with NRQCD 91 (2015) 014030 pe CMS 2.3 - 2.7 fb⁻¹ (13 TeV) CMS 2.7 fb⁻¹ (13 TeV) ha d'a [pb/GeV] d^{ig} [pb/GeV] NROCD Y(1S) (x 100) NROCD NRQCD • w(2S) NRQCD Differe NROCD pe PLB 736 (2014) 98 Sa 13 (2014) 022001 10 Higher ach data heory data heory 3TeV 3TeV p_ [GeV] p, [GeV] Several $pp \rightarrow q\bar{q}$ cross-section measurements at ATLAS, CMS and LHCb P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 15/30

Introduction

Branching fractions

Conclusions

Backup

Quarkonia production cross-section (LHCb)

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 15/30

Introduction

Branching fractions

Conclusions

Backup

Quarkonia production cross-section in HI collisions

Quarkonia production	5.02 TeV . ATLAS	EPJC 78 (2018) 171
J/ψ elliptic flow	5.02 TeV, ATLAS	EPJC 78 (2018) 784
J/ψ and ψ (2S) production	5.02 TeV, ATLAS	EPJC 78 (2018) 762
J/ψ production	5.02 TeV, ATLAS	PRC 92 (2015) 034904
	8.16 TeV , LHCb	JHEP 11 (2018) 194
J/ψ production and nuclear modification	8.16 TeV , LHCb	PLB 774 (2017) 159
$\psi(2S)$ production and cold nuclear matter effects	5 TeV, LHCb	JHEP 03 (2016) 133
Υ production and cold nuclear matter effects	5 TeV, LHCb	JHEP 07 (2014) 094
J/ψ production and cold nuclear matter effects	5 TeV, LHCb	JHEP 02 (2014) 072
J/ψ elliptic flow	8.16 TeV , CMS	PLB 791 (2019) 172
Nuclear modification factors of Υ	5.02 TeV, CMS	PLB 790 (2019) 270
ψ (2S) production	5.02 TeV, CMS	PLB 790 (2019) 509
Charmonium suppression	5.02 TeV, CMS	EPJC 78 (2018) 509
Suppression of excited Υ	5.02 TeV, CMS	PRL 120 (2018) 142301
J/ψ production	5.02 TeV, CMS	EPJC 77 (2017) 269
Relative modification of prompt $\psi(2S)$ and J/ψ yields	5.02 TeV, CMS	PRL 118 (2017) 162301
Suppression of Υ	2.76 TeV, CMS	PLB 770 (2017) 357
Suppression of J/ψ	2.76 TeV, CMS	EPJC 77 (2017) 252
Prompt $\psi(2S)$ to J/ψ yield ratios	2.76 TeV, CMS	PRL 113 (2014) 262301
Suppression of J/ψ and $\Upsilon(1S)$)	2.76 TeV, CMS	JHEP 05 (2012) 063
Suppression of Excited Υ	2.76 TeV, CMS	PRL 107 (2011) 052302
Υ production ratios vs. multiplicity	7 TeV, CMS	CMS-PAS-BPH-14-009

Introduction

Branching fractions

Conclusions

Backup

Double quarkonia production

High parton densities in *pp* collisions

- Single parton scattering (SPS):
 - assumed to dominate
 - strongly correlated pairs, small $|\Delta y|$
- Double parton scattering (DPS):
 - multiple heavy-flavour production,
 - large |∆y| values

S. Baranov, et al., PLB 705 (2011) 116-119, C.H.Kom et al., PRL 107 (2011) 082002

Quarkonium pair production mechanism

Color singlet: dominant at low p_T

• Color octet: important at high p_T

P. Ko et al., JHEP 01 (2011) 070, J.Campbell et al., PRL 98 (2007) 252002

Possibly produced in decays of tetra-quarks

A.V.Berezhnoy, et al., PRD 86 (2012) 034004

Introduction

Branching fractions

Conclusions

Backup

Double quarkonia production

High parton densities in <i>pp</i> collisions					
Measurements at LHC experiments					
double J/ψ	$\sqrt{s} = 7$ TeV	LHCb	PLB 707 (2012) 52		
double J/ψ	$\sqrt{s} = 7 \text{ TeV}$	CMS	JHEP 09 (2014) 094		
double J/ψ	$\sqrt{s} = 8 \text{ TeV}$	ATLAS	EPJC 77 (2017) 76		
double Ƴ	$\sqrt{s} = 8$ TeV	CMS	JHEP 05 (2017) 013		
double J/ψ	$\sqrt{s} =$ 13 TeV	LHCb	JHEP 06 (2017) 047, JHEP 10 (2017) 068		

- iaigo <u>ia</u>y vaiaoo

S. Baranov, et al., PLB 705 (2011) 116-119, C.H.Kom et al., PRL 107 (2011) 082002

Quarkonium pair production mechanism

Color singlet: dominant at low p_T

Color octet: important at high p_T

P. Ko et al., JHEP 01 (2011) 070, J.Campbell et al., PRL 98 (2007) 252002

Possibly produced in decays of tetra-quarks

A.V.Berezhnoy, et al., PRD 86 (2012) 034004

Introduction

Branching fractions

Conclusions Backup

EPJC 77 (2017) 76

Double J/ψ production cross-section (ATLAS, $\sqrt{s} = 8$ TeV)

$\mathcal{L} = \mathsf{11.4~fb}^{-1} \ , \ \left| y_{J/\psi} ight| < \mathsf{2.1} \ , \ p_{T,J/\psi} > \mathsf{8.5~GeV}$

- Different pp interaction removed: $|d_z| < 1.2$ cm
- Data split in 2 rapidity regions: $\left|y_{J/\psi}
 ight| <$ 1.05 , 1.05 < $\left|y_{J/\psi}
 ight| <$ 2.1
- Di- J/ψ signal: fit on 2D mass distribution (p_{T,µ} \geq 2.5 GeV , $|\eta_{\mu}|$ < 2.3)
- Prompt-prompt fraction: fit on 2D transverse decay length Lxy
- Residual pile-up contamination:
 - estimated with a fit on wide dz range
 - kinematic variables distributions from sidebands $|d_z| > 1.2$ cm

Double parton scattering contribution:

 J/ψ mesons assumed to be produced independently

 DPS template Δy, Δφ distribution with J/ψ pairs from different events

• Event weights computed: $w_{\text{DPS}}(\Delta\phi, \Delta y) = \frac{N_{\text{DPS}}(\Delta\phi, \Delta y)}{N_{\text{Data}}(\Delta\phi, \Delta y)}$

Introduction

Branching fractions

Conclusions Backup

Normalized with

data at large Δy

EPJC 77 (2017) 76

Double J/ψ production cross-section (ATLAS, $\sqrt{s} = 8$ TeV)

$$\mathcal{L}=$$
 11.4 fb $^{-1}$, $\left|y_{J/\psi}
ight|<$ 2.1 , $ho_{\mathcal{T},J/\psi}>$ 8.5 GeV $\,$

- Different pp interaction removed: $|d_z| < 1.2$ cm
- Data split in 2 rapidity regions: $\left|y_{J/\psi}
 ight| <$ 1.05 , 1.05 < $\left|y_{J/\psi}
 ight| <$ 2.1
- Di- J/ψ signal: fit on 2D mass distribution (p_{7,µ} \geq 2.5 GeV , $|\eta_{\mu}|$ < 2.3)
- Prompt-prompt fraction: fit on 2D transverse decay length I yr
- Residual pile-up contamination:
 - estimated with a fit on wide dz range
 - kinematic variables distributions from sidebands $|a_2| > 1.2$ cm

Double parton scattering contribution:

 J/ψ mesons assumed to be produced independently

 DPS template Δy, Δφ distribution with J/ψ pairs from different events

• Event weights computed: $w_{\text{DPS}}(\Delta\phi, \Delta y) = \frac{N_{\text{DPS}}(\Delta\phi, \Delta y)}{N_{\text{Data}}(\Delta\phi, \Delta y)}$

Introduction

Production

Branching fractions

Conclusions Backup

Double J/ψ production: results (ATLAS, $\sqrt{s} = 8$ TeV)

Differential cross-section vs. p_T , Δy

- DPS fraction estimated from event weights
- Predictions from NLO*

J.P. Lansberg, H.S. Shao PLB 751 (2015) 479, PRL 111 (2013) 122001

Introduction

Branching fractions

Conclusions Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

Analogous measurement from LHCb

- DPS predictions from pseudoexperiments
- SPS predictions from different models (LO-CO, NLO*-CS, k_{T.aluon})
- Fraction from fits to different variables $(p_{T,\psi\psi}, y_{\psi\psi}, M_{\psi\psi}, |\Delta y|)$

 ${\cal L}=279~{
m pb}^{-1}$, 2.0<|y|<4.5 , ${\cal p}_T<10~{
m GeV}$, jher 06 (2017) 047, jher 10 (2017) 068

 $\sigma = (15.2 \pm 1.0 (\text{stat}) \pm 0.9 (\text{syst})) \text{ nb}; f_{\text{DPS}} = ((42 \pm 25) \div (86 \pm 55))\%$

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 19/30

Outline

Introduction

- Production cross-sections:
 - inclusive *b*-hadrons
 - bottom mesons and baryons
 - quarkonia
- Branching fractions:
 - bottom baryon decay
 - baryon production in meson decays
 - look for intermediate states

Conclusions

Introduction

Production

Branching fractions

Conclusions

Backup

$\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda^0)$ ratio (LHCb)

Bottom hadrons decays with charmonia in final state

- Ratios of branching fractions of *b*-hadrons into ψ(2S)X and J/ψX : test factorisation of amplitudes.
- Measured by ATLAS: $\frac{\mathcal{B}(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)}{\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi\Lambda^0)} = 0.501 \pm 0.033(\text{stat}) \pm 0.019(\text{syst})$

PLB 751 (2015) 63

• Discrepancy from covariant quark model prediction: $\frac{\mathcal{B}(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)}{\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi\Lambda^0)} = 0.8 \pm 0.1$ T. Gutsche *et al.* PRD 88 (2013) 114018, PRD 92 (2015) 114008

$2.0 < \eta_{\Lambda^0_h} < 4.5$, ${m ho}_{{\cal T},\Lambda^0_h} < 20~{ m GeV}$

- JHEP 03 (2019) 126
- J/ψ , $\psi(2S)$: two muons not coming from any PV
- Λ⁰ : two tracks, same "type" (long/downstream)
- Common vertex, displaced from PV
- $m_{\Lambda^0_h}$: kinematic fit, constrained m_ψ , m_{Λ^0}

Introduction

Branching fractions

Conclusions

Backup

$\mathcal{B}(\Lambda_b^0 \to \overline{\psi}(2S)\Lambda^0)/\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda^0)$ ratio (LHCb)

• Efficiency from simulation, weights given by inverse of efficiency • $B^0 \rightarrow \psi(K_S^0 \rightarrow \pi^+\pi^-)$, $\Xi_b^- \rightarrow \psi(\Xi^- \rightarrow \Lambda^0\pi^-)$ bg from simulation

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 22/30

Introduction

Branching fractions

Conclusions

Backup

$\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda^0)$ ratio (LHCb)

• Efficiency from simulation, weights given by inverse of efficiency • $B^0 \rightarrow \psi(K^0_S \rightarrow \pi^+\pi^-)$, $\Xi^-_b \rightarrow \psi(\Xi^- \rightarrow \Lambda^0\pi^-)$ bg from simulation

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 22/30

Introduction

Branching fractions

Conclusions

Backup

$\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda^0)$ ratio (LHCb)

• Efficiency from simulation, weights given by inverse of efficiency • $B^0 \rightarrow \psi(K_S^0 \rightarrow \pi^+\pi^-)$, $\Xi_b^- \rightarrow \psi(\Xi^- \rightarrow \Lambda^0\pi^-)$ bg from simulation

Branching fraction ratio

B

JHEP 03 (2019) 126

$$\frac{G(\Lambda_b^0 o \psi(2S)\Lambda^0)}{B(\Lambda_b^0 o J/\psi\Lambda^0)} = 0.513 \pm 0.023(ext{stat}) \pm 0.016(ext{syst}) \pm 0.011(ext{br})$$

Introduction	Production

Outline

Introduction

- Production cross-sections:
 - inclusive *b*-hadrons
 - bottom mesons and baryons
 - quarkonia
- Branching fractions:
 - bottom baryon decay
 - baryon production in meson decays
 - look for intermediate states

• Conclusions

Introduction

Branching fractions

Conclusions Backup

$\mathcal{B}(B^0_{d,s} \to J/\psi p \bar{p})$ (LHCb)

Bottom hadrons decays with baryons & charmonia in final state

- Possible pentaquark intermediate states
- Previous evidence from LHCb in $\Lambda^0_b \to J/\psi p K^-$ decay

PRL 115 (2015) 072001, PRL 117 (2016) 082002

Baryon-antibaryon system: possible glueball states

PRD 60 (1999) 034509, PRD 73 (2006) 014516

• Branching ratio expected at 10^{-9} level, possible enhancement via resonant contribution $f_J(2220) \rightarrow p\bar{p}$

Introduction

Branching fractions

Conclusions Backup

$\mathcal{B}(B^0_{d,s} \to J/\psi \rho \bar{p})$: strategy & signal extraction (LHCb)

Branching ratio extracted by comparison with a normalization channel

$$\mathcal{B}(\mathcal{B}^{0}_{d,s} \to J/\psi \rho \bar{\rho}) = \frac{N_{\mathcal{B}^{0}_{d,s} \to J/\psi \rho \bar{\rho}}}{N_{\mathcal{B}^{0}_{s} \to J/\psi \phi}} \cdot \mathcal{B}(\mathcal{B}^{0}_{s} \to J/\psi \phi) \cdot \mathcal{B}(\phi \to K^{+}K^{-})[\cdot \frac{f_{s}}{f_{d}}]$$

- $J/\psi \rightarrow \mu^+\mu^-$ candidates paired with two tracks:
 - identified as protons
 - identified as kaons, $|M_{K^+K^-} M_{\phi}| < 5 \text{ MeV}$
- BDT used to discriminate signal and background
- Acceptance and efficiency from simulation, applied event by event
- Signal yield from extended UML fit

Introduction

Branching fractions

Conclusions

Backup

${\cal B}(B^0_{d,s} o J/\psi \rho ar p)$: strategy & signal extraction (LHCb)

Branching ratio extracted by comparison with a normalization channel

$$\mathcal{B}(B^{0}_{d,s} \to J/\psi p\bar{p}) = \frac{N_{B^{0}_{d,s} \to J/\psi p\bar{p}}}{N_{B^{0} \to J/\psi \phi}} \mathcal{B}(B^{0}_{s} \to J/\psi \phi) \cdot \mathcal{B}(\phi \to K^{+}K^{-})[\cdot \frac{f_{s}}{f_{d}}]$$

- $J/\psi \rightarrow \mu^+\mu^-$ candidates paired with two tracks:
 - identified as protons
 - identified as kaons, $|M_{K^+K^-} M_{\phi}| < 5 \text{ MeV}$
- BDT used to discriminate signal and background
- Acceptance and efficiency from simulation, applied event by event
 Signal yield from extended UML fit

From previous measurements

$$\mathcal{B}(B^0_s o J/\psi \phi) \cdot \mathcal{B}(\phi o K^+K^-) \cdot rac{f_s}{f_d} = (1.314 \pm 0.016 \pm 0.079) imes 10^{-4}$$

PRD 87 (2013) 072004

LHCb-CONF-2013-011

JHEP 04 (2013) 001, PRL 118 (2017) 191801

$$rac{f_s}{f_d} = 0.259 \pm 0.015 [\cdot (1.068 \pm 0.046)]$$

Introduction

Branching fractions Conclusions

Backup

$\mathcal{B}(B^0_{d,s} \rightarrow J/\psi p \bar{p})$: strategy & signal extraction (LHCb)

Introduction

Branching fractions

Conclusions

Backup

${\cal B}(B^0_{d,s} o J/\psi p ar p)$: result (LHCb)

Branching ratio extracted by comparison with a normalization channel

$$\mathcal{B}(\mathcal{B}^{0}_{d,s} \to J/\psi \rho \bar{\rho}) = \frac{N_{\mathcal{B}^{0}_{d,s} \to J/\psi \rho \bar{\rho}}}{N_{\mathcal{B}^{0}_{s} \to J/\psi \phi}} \cdot \mathcal{B}(\mathcal{B}^{0}_{s} \to J/\psi \phi) \cdot \mathcal{B}(\phi \to K^{+}K^{-})[\cdot \frac{f_{s}}{f_{d}}]$$

- $J/\psi \rightarrow \mu^+\mu^-$ candidates paired with two tracks:
 - identified as protons
 - identified as kaons, $|M_{K^+K^-} M_{\phi}| < 5 \text{ MeV}$
- BDT used to discriminate signal and background
- Acceptance and efficiency from simulation, applied event by event
- Signal yield from extended UML fit

Absolute branching fractions

arXiv:1902.05588

$$egin{aligned} \mathcal{B}(B^0_d &
ightarrow J/\psi
ho ar{p}) = (4.51 \pm 0.40(ext{stat}) \pm 0.44(ext{syst})) imes 10^{-7} \ \mathcal{B}(B^0_s &
ightarrow J/\psi
ho ar{p}) = (3.58 \pm 0.19(ext{stat}) \pm 0.33(ext{syst})) imes 10^{-6} \end{aligned}$$

Introduction	Production

Outline

Introduction

- Production cross-sections:
 - inclusive *b*-hadrons
 - bottom mesons and baryons
 - quarkonia

• Branching fractions:

- bottom baryon decay
- baryon production in meson decays
- look for intermediate states

• Conclusions

Introduction

Production

Branching fractions

Conclusions

Backup

${\cal B}(B^+ o J/\psi ar{\Lambda}^0 p)$ (CMS)

• First seen at B-factories

PRL 90 (2003) 231801, PRD 72 (2005) 051105

- Search for new exotic states in $J/\psi\bar{\Lambda}^0$ and $J/\psi p$ systems
- Branching fraction ratio with normalization channel $B^+ \rightarrow J/\psi K^{*+}$ ($K^{*+} \rightarrow K^0_S \pi^+$, $K^0_S \rightarrow \pi^+ \pi^-$)

Signal extraction

CMS-PAS-BPH-18-005

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 27/30

Introduction

Production

Branching fractions

Conclusions

Backup

${\cal B}(B^+ o J/\psi \bar{\Lambda}^0 ho)$ (CMS)

• First seen at B-factories

PRL 90 (2003) 231801, PRD 72 (2005) 051105

- Search for new exotic states in $J/\psi\bar{\Lambda}^0$ and $J/\psi p$ systems
- Branching fraction ratio with normalization channel $B^+ \rightarrow J/\psi K^{*+}$ ($K^{*+} \rightarrow K^0_S \pi^+$, $K^0_S \rightarrow \pi^+ \pi^-$)

Signal extraction

CMS-PAS-BPH-18-005

•
$$J/\psi \rightarrow \mu^+\mu^-$$
 candidates paired with:
• $a \bar{\Lambda}^0 \rightarrow \bar{p}\pi^+ (K^0_{S(\Lambda^0)} \rightarrow \pi^+\pi^-(\bar{p}) \text{ reflection veto}) \text{ for signal}$
• $a K^{*+} \rightarrow K^0_S \pi^+ (\bar{\Lambda}^0_{(K^0)} \rightarrow \bar{p}_{(\pi^-)}\pi^+ \text{ reflection veto}) \text{ for normalization}$
• Events weighted with inverse of efficiency
Branching fraction ratio & absolute value
 $\frac{\mathcal{B}(B^+ \rightarrow J/\psi \bar{\Lambda}^0 p)}{\mathcal{B}(B^+ \rightarrow J/\psi \bar{K}^{*+})} = 1.054 \pm 0.057(\text{st}) \pm 0.028(\text{sy}) \pm 0.011(\text{br})$
 $\mathcal{B}(B^+ \rightarrow J/\psi \bar{\Lambda}^0 p) = (15.07 \pm 0.81(\text{st}) \pm 0.40(\text{sy}) \pm 0.86(\text{br})) \times 10^{-6}$
 $\mathcal{M}_{(J/\psi \bar{K}^{*+})[\text{GeV}]}$
 $\mathcal{M}_{(J/\psi \bar{K}^{*+})[\text{GeV}]}$
 $\mathcal{M}_{(J/\psi \bar{K}^{*+})[\text{GeV}]}$
 $\mathcal{M}_{(J/\psi \bar{K}^{*+})[\text{GeV}]}$

Introduction

Branching fractions

Conclusions

Backup

${\cal B}(B^+ o J/\psi ar{\Lambda}^0 p)$: mass spectra (CMS)

Invariant mass distributions for $J/\psi\bar{\Lambda}^0$, $J/\psi p$, $\bar{\Lambda}^0 p$

- Search for intermediate states
- Comparison with expectations:
 - o pure phase space
 - phase space corrected for $K^{*+} \rightarrow \bar{\Lambda}^0 p$ resonances reflection
- Sample divided in $M(\bar{\Lambda}^0 p)$ bins
- In each bin Legendre polynomials and moments computed, using K^{*+}(Λ⁰p) helicity angle
- Simulated events reweighted:
 - *M*(Λ
 ⁰*p*) data/MC distributions ratio
 - weight given by Legendre polynomials and moments
- Obtained distributions fitted to data

Introduction

Branching fractions

Conclusions

Backup

${\cal B}(B^+ o J/\psi ar{\Lambda}^0 ho)$: mass spectra (CMS)

Invariant mass distributions & comparison

2000 pseudoexperiments generated according to the PDF for

- pure phase space
- reweighted angular distributions
- Log-likelihood ratio computed for invariant mass distributions
- (In)compatibility significance from difference between log-likelihood ratio in data and mean value in pseudoexperiments

Introduction

Branching fractions

Conclusions

Backup

${\cal B}(B^+ o J/\psi ar{\Lambda}^0 ho)$: mass spectra (CMS)

Invariant mass distributions & comparison

 2000 pseudoexperiments generated according to the PDF for Discrepancy significance
 CMS-PAS-BPH-18-005

	$oldsymbol{J}/\psi oldsymbol{p}$	$J/\psiar{\Lambda}^0$	$\bar{\Lambda}^0 p$
pure phase-space	$5.5 \div 7.4$	6.1 ÷ 8.0	$3.4 \div 4.6$
reweighted phase-space	1.3÷2.8	1.3 ÷ 2.7	_

log-likelihood ratio in data and mean value in pseudoexperiments

Introduction	Production

Conclusions

- ATLAS, CMS and LHCb have produced many measurements of heavy hadrons production cross-section and decay branching fractions:
 - cross-sections have been compared to predictions and simulations and are input for other measurements,
 - branching fractions allow test model predictions,
 - in the study of decays the possible presence of intermediate exotic states has been investigated.
- All those measurements allow important tests of QCD.

Introduction	Production

Conclusions

Backup

Extra informations

BACKUP

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 31/30

Introduction Production

Conclusions

Backup

b-hadron pair production (ATLAS, $\sqrt{s} = 8$ TeV)

Comparison of differential cross section with several PYTHIA options

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 32/30

Conclusions

Backup

b-hadron pair production (ATLAS, $\sqrt{s} = 8$ TeV)

Comparison of differential cross section with PYTHIA, MADGRAPH, SHERPA & HERWIG

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 33/30

Conclusions

Backup

b-hadron pair production (ATLAS, $\sqrt{s} = 8$ TeV)

Comparison of differential cross section with Pythia, MadGraph, Sherpa & Herwig

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 34/30

Conclusions

Backup

b-hadron pair production (ATLAS, $\sqrt{s} = 8$ TeV)

Comparison of differential cross section with PYTHIA, MADGRAPH, SHERPA & HERWIG

Conclusions

Backup

Quarkonia production cross-section (CMS)

Double differential cross sections

Conclusions

Backup

Quarkonia production cross-section (CMS)

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 37/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production: results (ATLAS, $\sqrt{s} = 8$ TeV)

Comparison of differential cross section with predictions

P. Ronchese - CMS + ATLAS & LHCb

Conclusions

Backup

Double J/ψ production: results (ATLAS, $\sqrt{s} = 8$ TeV)

Transverse dacay spectra for leading and subleading J/ψ

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 39/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production: results (ATLAS, $\sqrt{s} = 8$ TeV)

Double and Single Parton Scattering templates

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production: results (ATLAS, $\sqrt{s} = 8$ TeV)

Distance distribution for signal and pile-up

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 41/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production: results (ATLAS, $\sqrt{s} = 8$ TeV)

J/ψ polarization effect

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 42/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production: results (ATLAS, $\sqrt{s} = 8$ TeV)

Differential cross-section vs. Δy , $\Delta \phi$, $M_{J/\psi J/\psi}$, $p_{T,J/\psi J/\psi}$

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 43/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

Comparison of differential cross section with predictions

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 44/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

Comparison of differential cross section with predictions

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 45/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

Comparison of differential cross section with predictions $(p_{T,J/\psi J/\psi} > 1 \text{ GeV})$

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 46/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

Comparison of differential cross section with predictions ($p_{T,J/\psi J/\psi} > 1~\text{GeV})$

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 47/30
Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

Comparison of differential cross section with predictions ($p_{T,J/\psi J/\psi} > 3 \mbox{ GeV})$

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 48/30

Introduction

Branching fractions

Conclusions

Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

Comparison of differential cross section with predictions ($p_{T,J/\psi J/\psi} > 3 \mbox{ GeV})$

P. Ronchese - CMS + ATLAS & LHCb

Heavy hadrons at LHC - 49/30

Introduction

Production

Branching fractions

Conclusions

Backup

Double J/ψ production cross-section (LHCb, $\sqrt{s} = 13$ TeV)

DPS fraction from fits

Variable	LOCS	$LO k_T$	$\rm NLO^* CS'$	$\frac{\text{NLC}}{\langle k_{\text{T}} \rangle} = 2 \text{GeV}/c$	${ m e}^* { m CS}'' \ \langle k_{ m T} angle = 0.5 { m GeV}/c$
			no $p_{\rm T}(J$	$J/\psi J/\psi$) cut	
$p_{\rm T}(J/\psi J/\psi$	·) —	78 ± 2		86 ± 55	81 ± 7
$y(J/\psi J/\psi)$	83 ± 39			75 ± 37	68 ± 34
$m(J/\psi J/\psi) 76 \pm 7$		74 ± 7		78 ± 7	
$ \Delta y $	59 ± 21	61 ± 18		63 ± 18	61 ± 18
			$p_{\mathrm{T}}(J/\psi J/\psi)$	ψ) > 1 GeV/c	
$\overline{y(J/\psi J/\psi)}$			75 ± 24	71 ± 38	68 ± 34
$m(J/\psi J/\psi$) —	73 ± 8	76 ± 7	88	± 1
$ \Delta y $		57 ± 20	59 ± 19	60 ± 18	60 ± 19
			$p_{\mathrm{T}}(J/\psi J/\psi)$	ψ) > 3 GeV/c	
$\overline{y(J/\psi J/\psi)}$			77 ± 18	64 ± 38	64 ± 35
$m(J/\psi J/\psi$) —	76 ± 10	84 ± 7	87	± 2
$ \Delta u $	·	42 ± 25	53 ± 21	53 ± 21	53 ± 21

P. Ronchese - CMS + ATLAS & LHCb Heavy hadrons at LHC - 50/30

Introduction

oduction

Branching fractions

Conclusions

Backup

$${\cal B}(B^0_{d.s} o J/\psi p \bar p)$$
 : strategy & signal extraction (LHCb)

$$\begin{aligned} \frac{\mathcal{B}(B^0_d \to J/\psi p\bar{p})}{\mathcal{B}(B^0_s \to J/\psi \phi) \cdot \mathcal{B}(\phi \to K^+ K^-) \cdot \frac{f_s}{f_d}} &= (0.329 \pm 0.029 \pm 0.022) \times 10^{-2} \\ \frac{\mathcal{B}(B^0_s \to J/\psi p\bar{p})}{\mathcal{B}(B^0_s \to J/\psi \phi) \cdot \mathcal{B}(\phi \to K^+ K^-)} &= (0.706 \pm 0.037 \pm 0.048) \times 10^{-2} \end{aligned}$$

Introduction

Production

Branching fractions

Conclusions

Backup

${\cal B}(B^+ \to J/\psi \bar{\Lambda}^0 p)$: mass spectra (CMS)

Phase space correction for $K^{*+} \rightarrow \bar{\Lambda}^0 p$ resonances reflection

Resonance	Mass [MeV]	Natural width [MeV]	J^P
$K_4^*(2045)^+$	2045 ± 9	198 ± 30	4^{+}
$K_{2}^{*}(2250)^{+}$	2247 ± 17	180 ± 30	2-
$K_{3}^{*}(2320)^{+}$	2324 ± 24	150 ± 30	3+

$$\frac{dN}{d\cos\theta_{K^*}} = \sum_{j=0}^{M_{max}} \left\langle P_j^U \right\rangle P_j(\cos\theta_{K^*}) \quad ; \quad \left\langle P_j^U \right\rangle = \sum_{i=1}^{N_{reco}} \frac{1}{\epsilon_i} P_j(\cos\theta_{K^*})$$

$$w_i = 1 + \sum_{j=0}^{l_{\max}} \left\langle P_j^N \right\rangle P_j(\cos \theta_{K^*}) \quad ; \quad \left\langle P_j^N \right\rangle = \frac{2 \left\langle P_j^U \right\rangle}{N_{
m reco}^{
m corr}}$$