

Bottom meson and baryon spectroscopy

Giovanni Cavallero on behalf of the LHCb collaboration

with results from the ATLAS and CMS collaborations

University of Genova and INFN

FPCP 2019, 6-10 May, Victoria BC Canada

Outline

- introduction on b-hadron spectroscopy
- *b*-hadrons at the LHC
- observation of two resonances in the $\Lambda^0_b\pi^\pm$ systems
- B_c^+ meson spectroscopy results
- conclusions and future perspectives

Introduction

Quarks and gluons (theory) versus hadrons (experiment)

- the study of heavy hadrons plays an important role in the **understanding** of the mechanism of confinement
- the understanding of non-perturbative QCD is also crucial as the experimental sensitivity of new physics searches improve
- many flavour physics observables are limited by hadron-related theoretical uncertainties, either entering in measurements directly involving hadrons in the initial/final states or in hadronic contributions in loops
- the agreement between theory and experiments in the hadron spectroscopy sector is a measure of our knowledge of non-perturbative QCD

Bottom meson and baryon spectroscopy

b-hadron production at the LHC

- all types of *b*-hadrons, and their excitations, can be produced at the LHC: $B^0 = |\bar{b}d\rangle, B^+ = |\bar{b}u\rangle, B^0_s = |\bar{b}s\rangle,$ $B^+_c = |\bar{b}c\rangle, \Lambda^0_b = |udb\rangle, \Xi^-_b = |dsb\rangle \dots$
- $\sigma(pp \rightarrow b\bar{b}X) = 72.0 \pm 0.3 \pm 6.8 \,\mu b$ at 7 TeV in the forward region $\Rightarrow \sim 30,000 \ b\bar{b}/s$ inside LHCb acceptance
- $\sigma(pp \rightarrow b\bar{b}X) = 154.3 \pm 1.5 \pm 14.3 \,\mu\text{b}$ at 13 TeV in the forward region $\Rightarrow \sim 60,000 \ b\bar{b}/s$ inside LHCb acceptance [Phys. Rev. Lett. 118, 052002]
- ATLAS and CMS ran at larger luminosity and have larger geometrical acceptance $\Rightarrow \sim 40x \ b\bar{b}/s$ inside acceptance

Unprecedented $b\bar{b}$ sample delivered by the LHC

The ATLAS, CMS and LHCb experiments

- complementary in *b*-hadron acceptance
- ATLAS and CMS cover high-p_T and −2.4 < η < 2.4 ⇒~ 45% of bb̄ pairs inside acceptance
- LHCb covers low- p_T and $1.8 < \eta < 4.9$ $\Rightarrow \sim 25\%$ of $b\bar{b}$ pairs inside acceptance
- LHCb ran at $\mathcal{L} = 4 \times 10^{32} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ levelled luminosity to optimise the triggering and reconstruction of *b*-and *c*-hadrons
- ATLAS and CMS ran at about one order of magnitude higher instantaneous luminosity

$\bar{b}b$ production angle plots

Observation of two resonances in the $\Lambda^0_b \pi^\pm$ systems

Observation of two resonances in the $\Lambda_b^0 \pi^{\pm}$ systems: motivations [Phys. Rev. Lett. 122 (2019) 012001]

- many QCD-inspired phenomenological models have been used to study the properties of the ground state heavy baryons
- there are also several Lattice QCD studies investigating the internal structure and the quark dynamics of the low lying bottom baryons
- less effort devoted to study the excited states and decay properties of singly heavy baryons
- only a few excited baryons have been observed in the bottom sector
- the search for and the measurement of their properties will shed light on the effective degrees of freedom necessary to describe the dynamics inside baryons
- the Λ_b^0 baryon is the lowest-lying singlet ground state $|udb\rangle$ with $J^P = \frac{1}{2}^+$
- Σ_b^{\pm} ($|uub\rangle$ and $|ddb\rangle$) states can decay to the Λ_b^0 baryon via the emission of a charged pion: no excited Σ_b^{\pm} states observed so far

Observation of two resonances in the $\Lambda_b^0 \pi^{\pm}$ systems: selection of the candidates

[Phys. Rev. Lett. 122 (2019) 012001]

- $3 \, {\rm fb}^{-1}$ of *pp* collision data collected at $\sqrt{s} = 7$ and $8 \, {\rm TeV}$
- Λ^0_b candidates from $\Lambda^+_c (o p K^+ \pi^-) \pi^+$ combinations
- particle identification (PID) and track quality requirements on the final state tracks
- Λ⁰_b decay vertex required to be significantly displaced from the primary vertex (PV) to reduce combinatorial background
- Boosted Decision Tree (BDT) algorithm exploiting topological and kinematical variables to further reduce the background

- Λ_b^0 candidates within $\pm 50 \,\mathrm{MeV}$ around the peak combined with a prompt charged pion to form $\Lambda_b^0 \pi^{\pm}$ combinations
- study of $Q \equiv m(\Lambda_b^0 \pi^{\pm}) m(\Lambda_b^0) m(\pi^{\pm})$ where $m(\Lambda_b^0 \pi^{\pm})$ is recomputed constraining the Λ_b^0 and Λ_c^+ masses to their known values

Bottom meson and baryon spectroscopy

Observation of two resonances in the $\Lambda_b^0 \pi^\pm$ systems: $Q < 200 \,{
m MeV}$ [Phys. Rev. Lett. 122 (2019) 012001]

• apply the $Q < 200 \, {
m MeV}$ and $p_T(\pi^\pm) > 200 \, {
m MeV}$ requirements

• $\Sigma_b^{(*)\pm}$ ($|uub\rangle$ and $|ddb\rangle$) $J^P = \frac{1}{2}^+ (\frac{3}{2}^+)$ ground states first observed by CDF [Phys. Rev. Lett. 99 (2007) 202001]

- signal shapes: relativistic Breit-Wigners convolved with the detector resolution function determined from simulation ($\sigma \sim 1 \, {\rm MeV}$)
- background shape: smooth threshold function validated by using candidates from Λ_b^0 sidebands

Observation of two resonances in the $\Lambda_b^0 \pi^\pm$ systems: $Q < 600 \,{ m MeV}$ [Phys. Rev. Lett. 122 (2019) 012001]

- study up to $Q=600~{
 m MeV}$
- larger Q-value \Rightarrow larger prompt background $\Rightarrow p_T(\pi^{\pm}) > 1000 \, {
 m MeV}$ requirement

- new Σ_b(6097)[±] resonances (12.7σ and 12.6σ local statistical significance, respectively)
- signal shapes: relativistic Breit-Wigners convolved with the detector resolution function determined from simulation ($\sigma \sim 2.35 \,\mathrm{MeV}$)
- background shape: sigmoid function validated by using candidates from Λ⁰_b sidebands

Bottom meson and baryon spectroscopy

Observation of two resonances in the $\Lambda_b^0 \pi^{\pm}$ systems: fit results and systematic uncertainties

[Phys. Rev. Lett. 122 (2019) 012001]

State	$Q_0 \; [\text{MeV}]$	$\Gamma [MeV]$	Yield
Σ_b^-	56.45 ± 0.14	5.33 ± 0.42	3270 ± 180
Σ_b^{*-}	75.54 ± 0.17	10.68 ± 0.60	7460 ± 300
Σ_b^+	51.36 ± 0.11	4.83 ± 0.31	3670 ± 160
Σ_b^{*+}	71.09 ± 0.14	9.34 ± 0.47	7350 ± 260
$\Sigma_b(6097)^-$	338.8 ± 1.7	28.9 ± 4.2	880 ± 100
$\Sigma_{b}(6097)^{+}$	336.6 ± 1.7	31.0 ± 5.5	900 ± 110

- fit results used to determine the parameters of the resonances, mass differences and isospin splittings
- dominant systematic uncertainty on the mass measurements comes from the 3×10^{-4} relative accuracy of the momentum scale (calibrated by using samples of $J/\psi \rightarrow \mu^+\mu^-$ and $B^+ \rightarrow J/\psi K^+$)
- this uncertainty largely cancels in the mass differences and splittings
- dominant systematic uncertainty on the width measurements comes from the parametrisation of the background

Observation of two resonances in the $\Lambda_b^0 \pi^{\pm}$ systems: interpretation of the results

[Phys. Rev. Lett. 122 (2019) 012001]

- masses and widths of the ground state baryons consistent with those measured by CDF, with a precision improved by a factor 5
- five Σ_b(1P) states are expected in the heavy-quark limit: the predictions of their masses and widths depend on their J^P
- the widths may be too large to disentangle these states: the observed states may be superpositions of more than one state
- the newly observed structures are consistent with being 1P excitations, but the molecular interpretation may also be possible

Quantity	Value [MeV]	
$m(\Sigma_b(6097)^-)$	$6098.0 \pm 1.7 \pm 0.5$	
$m(\Sigma_b(6097)^+)$	$6095.8 \pm \ 1.7 \ \pm \ 0.4$	
$\Gamma(\Sigma_b(6097)^-)$	$28.9 \pm \ 4.2 \ \pm \ 0.9$	
$\Gamma(\Sigma_b(6097)^+)$	$31.0\pm~5.5\pm~0.7$	
$m(\Sigma_b^-)$	$5815.64 \pm 0.14 \pm 0.24$	
$m(\Sigma_b^{*-})$	$5834.73 \pm 0.17 \pm 0.25$	
$m(\Sigma_b^+)$	$5810.55 \pm 0.11 \pm 0.23$	
$m(\Sigma_b^{*+})$	$5830.28 \pm 0.14 \pm 0.24$	
$\Gamma(\Sigma_b^-)$	$5.33 \pm 0.42 \pm 0.37$	
$\Gamma(\Sigma_b^{*-})$	$10.68 \pm 0.60 \pm 0.33$	
$\Gamma(\Sigma_b^+)$	$4.83 \pm 0.31 \pm 0.37$	
$\Gamma(\Sigma_b^{*+})$	$9.34 \pm 0.47 \pm 0.26$	
$m(\Sigma_b^{*-}) - m(\Sigma_b^{-})$	$19.09 \pm 0.22 \pm 0.02$	
$m(\Sigma_b^{*+}) - m(\Sigma_b^+)$	$19.73 \pm 0.18 \pm 0.01$	
$\Delta(\Sigma_b(6097)^{\pm})$	$-2.2 \pm 2.4 \pm 0.3$	
$\Delta(\Sigma_b^{\pm})$	$-5.09 \pm 0.18 \pm 0.01$	
$\Delta(\Sigma_{h}^{*\pm})$	$-4.45 \pm 0.22 \pm 0.01$	

B_c^+ meson spectroscopy

B_c^+ meson spectroscopy

- the B_c^+ mesons are intermediate between charmonium and bottomonium states both in mass and size
- however, the heavy-quark dynamics is richer than cc
 and bb
 states and
 the examination of the B⁺_c spectrum may reveal where approximations
 used for quarkonium states break down
- both $c\bar{c}$ and $b\bar{b}$ pairs have to be produced in the same parton-parton interaction $\Rightarrow B_c^+$ production suppressed by a factor $\alpha_s^2(Q^2)$

[arXiv:1903.11927 [hep-ph]]

Excited B_c^+ states

- the B_c^+ states cannot annihilate into gluons \Rightarrow narrow excited B_c^+ mesons below the *BD* threshold with widths less than a few hundred keV
- excited B⁺_c mesons below the BD threshold decay via electromagnetic or hadronic transitions between two different B⁺_c states
- ATLAS observed a state consistent with both $B_c(2S)^+$ and $B_c^*(2S)^+$ states in the $B_c^+\pi^+\pi^-$ spectrum by using $L \sim 24 \, \text{fb}^{-1}$ at $\sqrt{s} = 7$ and $8 \, \text{TeV}$
- not seen by LHCb using a partial dataset corresponding to $L=2\,{\rm fb}^{-1}$ at $\sqrt{s}=8\,{\rm TeV}$

$B_c(2S)^+$ and/or $B_c^*(2S)^+$?

• ATLAS measurement could not distinguish between $B_c(2S)^+$ and $B_c^*(2S)^+$ because of the low yield and the Q-value resolution of $\sim 20 \,\mathrm{MeV}$

- the photon energy is predicted to be $\sim 50\,{\rm MeV}$ \Rightarrow too soft to be reconstructed at the LHC (huge combinatorial background)
- most predictions give $m(B_c(2S)^+) > m(B_c^*(2S)^+)_{
 m reco}$

Bottom meson and baryon spectroscopy

Observation of two excited B_c^+ states at CMS: selection of the candidates

[Phys. Rev. Lett. 122, 132001]

- full Run 2 143 ${
 m fb}^{-1}$ of *pp* collision data collected at $\sqrt{s}=13\,{
 m TeV}$
- B_c^+ candidates from $J/\psi(
 ightarrow \mu^+\mu^-)\pi^+$ combinations
- selection criteria based on the event topology and on the quality of the final state tracks
- $p_T(B_c^+) > 15 \, {
 m GeV}$
- B_c^+ decay length greater than 100 $\mu {
 m m}$
- $B_c^+ \rightarrow J/\psi K^+$ yield constrained to the ratio of the $B_c^+ \rightarrow J/\psi \pi^+$ and $B_c^+ \rightarrow J/\psi K^+$ branching fractions

- B_c^+ candidates between 6.2 and 6.355 GeV combined with two opposite-sign high-purity tracks, one track $p_T > 800 \text{ MeV}$ and the other track $p_T > 600 \text{ MeV}$
- use $m(B_c^+\pi^+\pi^-) m(B_c^+) + m(B_c^+)_{\text{PDG}}$ to improve the resolution

Bottom meson and baryon spectroscopy

Observation of two excited B_c^+ states at CMS: resolved $B_c(2S)^+$ and $B_c^*(2S)^+$ peaks

[Phys. Rev. Lett. 122, 132001]

- signal peaks fitted with a superposition of two Gaussian distributions
- background parametrised with a third-order Chebyshev polynomial
- misidentified background: shape identical to the signal peaks, normalisation constrained by the ratio of the corresponding yields in the $J/\psi\pi^+$ spectrum
- $\sigma \sim 6~{
 m MeV}$, consistent with simulation studies (BCVEGPY Monte Carlo generator)

Bottom meson and baryon spectroscopy

Observation of two excited B_c^+ states at CMS: results

[Phys. Rev. Lett. 122, 132001]

- 67 \pm 10 and 51 \pm 10 events for the lower-mass and higher-mass peak
- $\Delta M = 29.1 \pm 1.5 \,\mathrm{MeV}$
- the low-energy photon in the B^{*}_c(2S)⁺ → B^{*}_c(→ B⁺_cγ)π⁺π⁻ decay chain has a reconstruction efficiency of the order of 1% (from simulation studies) ⇒ the B^{*}_c(2S)⁺ mass can not be measured
- dominant systematic uncertainties: modelling of the peaks replacing Gaussians with Breit-Wigners convolved with Gaussian resolution functions (natural widths consistent with zero), and world-average B_c^+ mass
- observation of two peaks rather than one established at 6.5σ accounting for systematic uncertainties (dominant one is the background model)

$$\begin{split} \Delta M &= 29.1 \pm 1.5(\text{stat}) \pm 0.7(\text{syst}) \,\text{MeV} \\ \hline m(B_c(2S)^+) &= 6871.0 \pm 1.2(\text{stat}) \pm 0.8(\text{syst}) \pm 0.8(B_c^+) \,\text{MeV} \\ \hline m(B_c(2S)^+) - m(B_c^+) &= 596.1 \pm 1.2(\text{stat}) \pm 0.8(\text{syst}) \,\text{MeV} \\ \hline m(B_c^*(2S)^+) - m(B_c^{*+}) &= 567.0 \pm 1.0(\text{stat}) \pm 0.0(\text{syst}) \,\text{MeV} \end{split}$$

Observation of an excited B_c^+ state at LHCb: selection of the candidates

[arXiv:1904.00081 [hep-ex]]

- full $8.5\,{
 m fb}^{-1}$ of pp collision data collected at $\sqrt{s}=$ 7, 8 and 13 ${
 m TeV}$
- B_c^+ candidates from $J/\psi(
 ightarrow \mu^+\mu^-)\pi^+$ combinations
- PID and track quality requirements on final state tracks
- $p_T(\pi^+) > 1000 \text{ MeV},$ $\tau(B_c^+) > 0.2 \text{ ps, good quality}$ decay vertex
- $p_T(B_c^+) > 10 \, {
 m GeV}$
- BDT classifier using topological and kinematical variables to further suppress combinatorial background (simulated samples for the signal, generated with BCVEGPY)

- B_c^+ candidates between 6200 and 6320 MeV combined with two opposite-sign tracks consistent with pions, $p_T(\pi^{\pm}) > 300 \text{ MeV}$
- use $\Delta M \equiv m(B_c^+\pi^+\pi^-) m(B_c^+)$ with the J/ψ mass constrained to the PDG value to improve the resolution

Bottom meson and baryon spectroscopy

Observation of an excited B_c^+ state at LHCb: $m(B_c \pi^+ \pi^-)$ spectrum [arXiv:1904.00081 [hep-ex]]

- $m(B_c^+\pi^+\pi^-) m(B_c^+) m(\pi^+\pi^-) < 200 \,\mathrm{MeV}$ requirement
- same requirements applied to a same-sign sample, by using $m(B_c\pi^+\pi^+)$ or $m(B_c\pi^-\pi^-)$ combinations to ensure that the selection does not produce any artificial peaks
- selection efficiency found to change smoothly with $m(B_c^+\pi^+\pi^-)$
- no peaks in the same-sign sample

Observation of an excited B_c^+ state at LHCb: fit to the ΔM spectrum

[arXiv:1904.00081 [hep-ex]]

- each peak is modelled by a Gaussian function with asymmetric power-law tails
- combinatorial background described by a second-order polynomial
- $\sigma \sim 2.5 \, {
 m MeV}$

Observation of an excited B_c^+ state at LHCb: results [arXiv:1904.00081 [hep-ex]]

- 51 \pm 10 (6.8 σ) and 24 \pm 9 (3.2 σ) events (local statistical significance)
- $\Delta M = 31.0 \pm 1.4 \,\mathrm{MeV}$
- global statistical significances: 6.3σ and 2.2σ
- dominant systematic uncertainties: momentum scale and world-average $B_c^+ \mbox{ mass}$
- assuming the hint for a second structure is due to the $B_c(2S)^+$ state

$$\begin{split} \Delta M &= 31.0 \pm 1.4(\text{stat}) \pm 0.0(\text{syst}) \,\text{MeV} \\ \hline m(B_c(2S)^+) &= 6872.1 \pm 1.3(\text{stat}) \pm 0.1(\text{syst}) \pm 0.8(B_c^+) \,\text{MeV} \\ \hline m(B_c^*(2S)^+)_{\text{reco}}) &= 6841.2 \pm 0.6(\text{stat}) \pm 0.1(\text{syst}) \pm 0.8(B_c^+)) \,\text{MeV} \end{split}$$

CMS and LHCb results compared with Lattice QCD predictions

Conclusions

- crucial interplay between experiments, QCD-inspired phenomenological models and Lattice QCD to improve our understanding of the non-perturbative regime of QCD
- "indirect" impact on the measurement of flavour physics observables and SM self-consistency checks
- observations of new b-hadrons have been achieved by the LHC experiments
- new results, exploiting the huge integrated luminosity collected by ATLAS and CMS and the *b*-hadron reconstruction capabilities of LHCb, are expected in the near future

Thanks and stay tuned for new results!