Semileptonic B decays - Experimental Status FPCP-2019

Eiasha Waheed

University of Melbourne (On behalf of Belle Collaboration also including material from LHCb and BaBar)

CKM Quark Mixing

Importance of IV_{cb}I and IV_{ub}I

- Test of CKM sector
- So far huge success for SM
- New Physics still possible within current precision
- IV_{ub}I has largest error among parameters of UT

 $u_i \quad V_{ij} \quad d_j$

ar, Belle

MELBOURNE

2

Semileptonic B decays

Decay properties depend on IV_{cb}I & IV_{ub}I and m_b perturbative regime

But quarks are bounded by soft gluons: nonperturbative

+long distance interactions of b quark with light quark

- Decay rate $\Gamma_X \equiv \Gamma(b \rightarrow x I v) \propto |V_{xb}|^2$
- $\Gamma_{\rm C}$ larger than $\Gamma_{\rm U}$ by a factor ~50
 - Extracting $b \rightarrow \mu lv$ signal challenging

$$B^{0} \to D^{*-} \ell \nu_{\ell} = 5.05 \pm 0.02 \pm 0.14$$
$$B^{+} \to \bar{D}^{*0} \ell \nu_{\ell} = 5.66 \pm 0.07 \pm 0.21$$

$$B^0 \to D^- \ell \nu_\ell = 2.31 \pm 0.04 \pm 0.09$$

$$B^+ \to \bar{D}^0 \ell \nu_\ell = 2.35 \pm 0.03 \pm 0.09$$

$$\mathcal{B}(\bar{B} \to X_c \ell^- \bar{\nu}_\ell) = (10.65 \pm 0.16)\%$$

$$\mathcal{B}(\bar{B} \to \pi \ell^- \bar{\nu}_\ell) = (1.47 \pm 0.06) \times 10^{-4}$$
$$\mathcal{B}(B \to X_u \ell \nu) = (1.86 \pm 0.10 \pm 0.14) \times 10^{-3}$$

3

A persistent puzzle in IV_{xb}I determination

Inclusive Approach ($B \rightarrow X_c lv$)

- B Meson acts like a b quark which means that the decay can be described as b→c, u quark transition.
- Calculated with Heavy Quark Expansion.
 (Phys.Rev.Lett. 114 (2015), 061802)

Exclusive Approach $B \rightarrow D^* lv / B \rightarrow \pi lv$

- Hadronic transitions for B→ D*/B→ π described with form factors. LQCD and LCSR
 - Theoretically calculable at kinematical limits
 - Lattice QCD works if D^* or π is at rest relative to *B* (arXiv:1203.1204)

Experimental Measurements at Belle/BaBar

Tagged Measurement

One B reconstructed completely in a known b→c mode without v. "B- meson Beam"

- High purity, very small background
- · Low Efficiency , large stat. errors

Untagged Measurement

Initial 4 momentum known, missing 4momentum = v Reconstructed B $\rightarrow X_q Iv$ Other side information to constrain signal B flight direction

- High efficiency
- Low purity, large background

Basic Analysis Steps

- Reconstruction
- Projection into bins of kinematic variables
- Fitting signal yield
- Compare measured events to expected events (Fit to calculate IV_{cb}I and IV_{ub}I)

BELLE

Eiasha WAHEED

MELBOURNE

5

Recent Semileptonic Measurements at B Factories

(arXiv:1903.10002, • $B \to D^* \ell \nu$ BaBar tagged 2019 submitted to PRL)

 $\bullet B^0 \to D^{*-} \ell^+ \nu_{\ell}$ Belle untagged 2018/2019

(arXiv:1809.03290, submitted to PRD)

Measurement of shape of $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}$ differential decay rate

(arXiv:1709.01920 Phys. Rev. D 96, 112005 (2017))

- D^{*-} polarisation in $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ arXiv:1903.03102
- (arXiv:1803.06444, Phys. • $B \to D^* \pi \ell \nu_{\ell}$ Belle hadronic tagged 2018 Rev. D 98, 012005 (2018))

• Relative $B^- \to D^0/D^{*0}/D^{**0}\mu^-\nu_\mu$ branching fractions

Inclusive $|V_{ub}|$ BaBar tagged 2019

(arXiv:1807.10722, submitted to PRD)

(arXiv:1611.05624, Phys. Rev. D 95, 072001(2017))

IV_{cb}

Semileptonic Observables

- Four momentum of charged lepton
 - Experimentally: good LeptonID to minimise fakes
- Four momentum of hadronic system
 - Experimentally: slow pion momentum important for measurement at low recoil
 - Momentum transfer to leptonic system
 - $q^2 = (p_1 + p_v)^2$
 - Hadronic recoil

$$w \equiv v_B . v_{D^*} = \frac{m_B^2 + m_{D^*}^2 - q}{2m_B m_{D^*}}$$

• For $B^0 \to D^{*-} \ell^+ \nu : 1 < w < 1.504$

0

Normalisation (w = 1) = 1 (Heavy quark limit)

8

$|V_{cb}|$ and Decay Rate of $B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$

Eiasha WAHEED

9

Form factor parameterisation

Caprini, Lelouch, Neubert (CLN)

arXiv:hep-ph/9712417, Nucl.Phys. B530 (1998)

Theoretical assumptions used to reduce the number of free parameters describing form factors: to measure IV_{cb}I with a smaller data set

3 non trivial form factors $A_1(w)$, $A_2(w)$ and V(w)

$$R_1(w) = V/A_1$$

$$R_2(w) = A_2/A_1$$

$$\rho^2(w) = -dF/dw|_{w=1}$$

F(w) normalised at zero recoil (w=1)

Boyd Grinstein Lebed (BGL) $F(w, \theta_{\ell}, \theta_{V}, \chi)$ is written as the most generic parameterisation with minimal theory assumptions, the expansion is constrained by unitarity (can have more coefficients than CLN at O(3))

 $F(w, heta_\ell, heta_V,\chi)$

Form factor parameterisation: CLN Vs BGL

arXiv:hep-ph/9712417, CLN Nucl.Phys. B530 (1998) HQET relations + corrections in powers of Λ_{QCD}/m_b , • For $B \rightarrow D^* Iv$ $h_{A_1}(w) = h_{A_1}(1) \left(-z^3 \left(231 \rho_{D^*}^2 - 91 \right) + \right)$ $+z^{2}\left(53\rho_{D^{*}}^{2}-15\right)-8z\rho_{D^{*}}^{2}+1\right),$ $R_1(w) = R_1(1) + 0.05(w-1)^2 - 0.12(w-1)$ $R_2(w) = R_2(1) - 0.06(w - 1)^2 + 0.11(w - 1)$ • For $B \rightarrow DIv$ $\mathcal{G}(w) = \mathcal{G}(1)(1 - 8\rho_D^2 z + (51\rho_D^2 - 10)z^2)$ $-(252)\rho_D^2-84)z^3$

Phys.Lett. B771 (2017) BGL Phys.Lett. B769 (2017) No HQET input For $B \rightarrow D^* Iv$ $h_{A_1}(w) = \frac{f(w)}{\sqrt{m_B m_{D^*}}(1+w)}$ $R_1(w) = (w+1)m_Bm_{D^*}\frac{g(w)}{f(w)}$ $R_{2}(w) = \frac{w - r}{w - 1} - \frac{\mathcal{F}_{1}(w)}{m_{B}(w - 1)f(w)}$ where f, g and F_1 are parameterised as $f(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{\infty} a_{i,n} z^n$ cut off at n=1,2 ...

arXiv:1903.10002, Exclusive IV_{cb}I from $B \rightarrow D^* \ell \nu$ tagged submitted to PRL

- Tag side B reconstructed (hadronically) to reconstruct unknown neutrino momentum
- Reconstruct Bsignal (comprised of D*e, D* μ and D*⁰e, D*⁰ μ where D⁰ from D^{*(0)} decays to $K^-\pi^+, K^-\pi^-\pi^0, K^-\pi^+\pi^-\pi^+$ combined with π^0 and π^+)
- Signal selection using $\Delta m = (m_{D^*} m_D)$ and p_{lep}
- Kinematic fit to $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{\text{tag}}\bar{B}_{\text{sig}}(\rightarrow D^*\ell^-\bar{\nu}_l)$

12

MELBOURNE

FPCP2019

Exclusive IV_{cb}I from $B \rightarrow D^* \ell \nu$ tagged

- Measure IV_{cb}I and form factor parameters
- First unbinned (ML) fit in 4-D of q^2 , $cos\theta_1$, • $\cos\theta_v$, X for BGL expansion (N=1)
- Tension remain between inclusive and exclusive IV_{cb}I

IV_{cb}l consistent with CLN-WA

arXiv:1903.10002,

submitted to PRL

MELBOURNE

13

6

Eiasha WAHEED

MELBOURNE

FF parameters and IV_{cb}I from CLN

arXiv:1809.03290, submitted to PRD

FF parameters and $|V_{cb}|$ from BGL

arXiv:1809.03290, submitted to PRD

Simultaneous fit of 1D projections of w, $\cos\theta_{l}$, $\cos\theta_{v}$, X to extract the coefficients of the BGL expansion (up to 3rd order) and F(1)IV_{cb}I

IV_{cb}I from BaBar and Belle From CLN and BGL

Last 10 years...

$$\begin{aligned} |V_{cb}| \times 10^{3} &= 38.4 \pm 0.6 \text{ (CLN-Belle2019) } (B \rightarrow D^{*}lv)^{[1]} \\ |V_{cb}| \times 10^{3} &= 38.3 \pm 0.8 \text{ (BGL-Belle2019) } (B \rightarrow D^{*}lv)^{[1]} \\ |V_{cb}| \times 10^{3} &= 38.4 \pm 0.9 \text{ (BGL-BaBar2019) } (B \rightarrow D^{*}lv)^{[2]} \\ |V_{cb}| \times 10^{3} &= 39.9 \pm 1.3 \text{ (CLN-Belle2016) } (B \rightarrow Dlv)^{[3]} \\ |V_{cb}| \times 10^{3} &= 40.8 \pm 1.1 \text{ (BCL-Belle2016)} (B \rightarrow Dlv)^{[3]} \\ |V_{cb}| \times 10^{3} &= 42.2 \pm 0.8 \text{ (Inclusive-HFLAV)}^{[4]} \end{aligned}$$

- CLN and BGL agree for both Belle and BaBar
- Inclusive and Exclusive tension still persistent !!!
- CLN and BGL form factor differences at zero-recoil (minimum higher order HQET corrections) need to be investigated further.

$\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}$ differential decay rate arXiv:1709.01920, Phys. Rev. D 96, 112005 (2017)

- Differential decay rate (as function of q²) is compared with expectations from HQET and unquenched lattice QCD predictions.
- $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu}$ described by (6) form factors (FF) corresponding to the vector and axial-vector components.

Eiasha WAHEED

precise independent determination of the CKM parameter IV_{cb}I.

BELLE

FPCP2019

D^{*-} polarisation in $B^0 \rightarrow D^{*-} \tau^+ \nu_{ au}$ arXiv:1903.03102

- $F_L^{D^*}$ is fraction of D* polarisation in $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ decay from angular distribution in $D^{*-} \to \overline{D}^0 \pi^-$
- SM prediction¹: $F_L^{D^*} = 0.45$

 $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{3}{4} (2F_L^{D^*}\cos^2\theta_{\text{hel}} + (1 - F_L^{D^*})\sin^2\theta_{\text{hel}})$

- θ_{hel} is angle between D⁰ and direction opposite to B⁰ in D^{*-} rest frame
- Rest of event information to reconstruct B_{tag}
- Calculate helicity angle in 3 bins
- Signal yield in bins of cosθ_{hel} is extracted from extended unbinned ML fit to Mtag

 $F_L^{D^*} = 0.60 \pm 0.08 (\text{stat}) \pm 0.04 (\text{sys})$

agrees within about 1.7σ with SM

19

FPCP2019

Importance of B→D** Iv Measurement

- D** is important background for both semileptonic (B→D*lv) and semitonic (B→D*τ v) measurements
- D** is leading systematic error for both measurement
- Can mimic signal while measuring R(D) and R(D*)

Events / (0.12 GeV) 4 D* τ ν B->D*0 (Normalisation D*Iv Region) → D** | ν 2 Other Fake D* 0 Ó) 0.2 0.4 0.6 0.8 1.2 E_{ECL} (GeV) Events / (0.12 GeV) 00 001 B->D*0 (Signal Region) 50 0 0 0.2 0.4 0.6 0.8 E_{ECL} (GeV)

Source	$\Delta R(D)$ (%)	$\Delta R(D^*)$ (%)
D^{**} composition	0.76	1.41
Fake $D^{(*)}$ calibration	0.19	0.11
$B_{\rm tag}$ calibration	0.07	0.05
Feed-down factors	1.69	0.44
Efficiency factors	1.93	4.12
Lepton efficiency and fake rate	0.36	0.33
Slow pion efficiency	0.08	0.08
MC statistics	4.39	2.25
B decay form factors	0.55	0.28
Luminosity	0.10	0.04
$\mathcal{B}(B \to D^{(*)} \ell \nu)$	0.05	0.02
$\mathcal{B}(D)$	0.35	0.13
$\mathcal{B}(D^*)$	0.04	0.02
$\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$	0.15	0.14
Total	5.21	4.94

Eiasha WAHEED

arXiv:1904.08794

 $|\mathcal{B}|$

Important background for $B \rightarrow D^*\tau v$ and $R(D^*)$ measurement Belle 711fb⁻¹ $B \to (D^{**} \to D^{(*)} \pi \ell \nu_\ell)$ $D^{**} \to D\pi \longrightarrow D^{*0} \to D^0\pi^0$. $\rightarrow D^{**} \rightarrow D^* \pi \rightarrow D^{*+} \rightarrow D^+ \pi^0. D^0 \pi^+$ -0.2 $\mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu)$ $= [4.55 \pm 0.27 \text{ (stat.)} \pm 0.39 \text{ (syst.)}] \times 10^{-3},$ $B^0 \to \overline{D}^0 \; \pi^{\!-} \, l^{\!+} \; \nu$ Counts/(0.032 (GeV/c² 0 8 00 70 07 07 07 $\mathcal{B}(B^0 \to \bar{D}^0 \pi^- \ell^+ \nu)$ $= [4.05 \pm 0.36 \text{ (stat.)} \pm 0.41 \text{ (syst.)}] \times 10^{-3},$ $\mathcal{B}(B^+ \to D^{*-} \pi^+ \ell^+ \nu)$

Eiasha WAHEED

 $= [6.03 \pm 0.43 \text{ (stat.)} \pm 0.38 \text{ (syst.)}] \times 10^{-3},$ $\mathcal{B}(B^0 \to \bar{D}^{*0} \pi^- \ell^+ \nu)$ $= [6.46 \pm 0.53 \text{ (stat.)} \pm 0.52 \text{ (syst.)}] \times 10^{-3}.$

within 1σ of WA

$B \rightarrow D^{(*)} \pi \ell \nu$ hadronic tagged arXiv:1803.06444, Phys. Rev. D 98, 012005 (2018)

MELBOURNE

- First LHCb measurement of f(D⁰/D^{*0}/D^{**0}) → distinguishes D⁰/D^{*0}/D^{**0} in semileptonic B decay
- Useful input for B production rate at LHCb.
- B^{*0}_{s2} decay used to separate the three components
- B.F relative to the inclusive $B^- \to D^0 X \mu^- \bar{\nu}_\mu$

$$f_{D^{**0}} = \frac{\mathcal{B}(B^- \to (D^{**0} \to D^0 X)\mu^- \bar{\nu}_{\mu})}{\mathcal{B}(B^- \to D^0 X\mu^- \bar{\nu}_{\mu})} = 0.21 \pm 0.07.$$

$$f_{D^0} = \frac{\mathcal{B}(B^- \to D^0 \mu^- \bar{\nu}_{\mu})}{\mathcal{B}(B^- \to D^0 X \mu^- \bar{\nu}_{\mu})} = 0.25 \pm 0.06.$$

$$f_{D^{*0}} = 1 - f_{D^0} - f_{D^{**0}}$$

MELBOURNE

IV_{ub}I

IV_{ub}I Status

- Clean signal in missing mass for exclusive modes to measure IV_{ub}I
- Form factors f_i(q²) computed with Light Cone Sum Rules or LQCD
- $b \rightarrow u \mid v$ signal enhanced w.r.t. $b \rightarrow c$ backgrounds in low M_x and high q^2
- systematics effects the charm background composition and u quark fragmentation

Summary of IV_{ub}I determined from leptonic decay, exclusive modes compared with lattice QCD

Inclusive IV_{ub}I from BaBar

- Inclusive B → Xev measurement from full BaBar data get of 424 fb⁻¹
- Cut applied to electron momentum to seperate signal B^{*} → X_uev (~ 2.6 GeV/c) to background B → X_cev (~ 2.3 GeV/c)
- Perform fit to the inclusive $_{3.6}$ electron momentum spectrum $_{3.5}$ averaged over charged and neutral B meson. • $^{0.8 \ 1} \ ^{1.2 \ 1.4 \ 1.6 \ 1.8 \ 2 \ p_{min}} (GeV/c)$ • $^{0.8 \ 1} \ ^{1.2 \ 1.4 \ 1.6 \ 1.8 \ 2 \ 2.2 \ p_{min}} (GeV/c)$

IV_{ub}I is extracted as a function of plep.

FPCP2019

• $|V_{ub}| = (3.794 \pm 0.107_{exp} + 0.292 + 0.078_{-0.219 \text{ SF}} - 0.068 \text{ theory}) \times 10^{-3}$ (DeFazio and Neubert) • $|V_{ub}| = (4.563 \pm 0.126_{exp} + 0.230 + 0.162_{-0.208 \text{ SF}} - 0.163 \text{ theory}) \times 10^{-3}$ (Bosch, Lange, Neubert, Paz) • $|V_{ub}| = (3.959 \pm 0.104_{exp} + 0.164 + 0.042_{-0.154 \text{ SF}} - 0.079 \text{ theory}) \times 10^{-3}$ (DGE)

Belle II prospects of IV_{ub}I

 Improvement of experimental uncertainties expected in both inclusive and exclusive determination

Mode and dataset	Uncertainty (%) EXP. ONLY
Vub exclusive (tagged)	
Belle	3.8
Belle II 5 ab ⁻¹	1.8
Belle II 50 ab ⁻¹	1.2
Vub exclusive (untagged)	
Belle	2.7
Belle II 5 ab ⁻¹	1.2
Belle II 50 ab ⁻¹	0.9
Vub inclusive (tagged)	
Belle	6.0
Belle II 5 ab ⁻¹	2.6
Belle II 50 ab ⁻¹	1.7

FPCP2019

- Expect theory error to decrease to 1% for exclusive and 2-4% for inclusive
- Exclusive analyses (hadronic tags)→ perform clean and detailed exploration of exclusive b→u modes spectra
- Untagged $B \rightarrow \pi I v$ competitive for $IV_{ub}I$
- Exploit at maximum the differential distributions for a global V_{ub} fit (inclusive measurement)

Summary

- New $B \rightarrow D^* I \vee tagged$ measurement from BaBar 2019 (BGL)
 - $|V_{cb}| \ge 10^3 = 38.4 \pm 0.6$ (BGL)
- $B^0 \rightarrow D^* I \vee untagged$ measurement from Belle,2018/2019 (BGL and CLN)
 - $|V_{cb}| \ge 10^3 = 38.4 \pm 0.6 (CLN)$
 - $|V_{cb}| \ge 10^3 = 38.3 \pm 0.8$ (BGL)
- Shape parameters of $d\Gamma(\Lambda^0_b \rightarrow \Lambda^+_c \mu^- v_\mu)/dq^2$
- **D*** polarisation $F_L^{D^*} = 0.60 \pm 0.08 (\text{stat}) \pm 0.04 (\text{sys})$
- f(D⁰/D^{*0}/D^{**0}) by LHCb
- Result of inclusive $B \rightarrow X_u lv$ from BaBar
- Measurements are coming up from Belle on inclusive IV_{ub}l
- Belle II will collect ~ 5ab⁻¹ data by 2020, enough to look for NP
- Precise model independent measurement of IV_{cb}I and IV_{ub}I

References

• Slide 3

1.Eur. Phys. J. C77 (2017) 895

• Slide4

1.M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

• Slide 8

1. Phys. Rev. D57 (1998) 6948, arXiv:hep-lat/9709028.

2. Phys. Lett. B629 (2005) 27, arXiv:hep-ph/0502004.

3. Phys. Rev. D73 (2006) 094002, arXiv:hep-ph/0604017

• Slide 17

4.arXiv:1809.03290

5.arXiv:1903.10002

6. Phys. Rev. D 93, 032006

7.Eur. Phys. J. C77 (2017) 895

- Slide 19
 - 1. Phys. Rev. D 87, 034028 (2013).

BACKUP

Exclusive $|V_{cb}|$ from $B \rightarrow D^* \ell \nu$ untagged

Source	$ ho^2$	$R_{1}(1)$	$R_{2}(1)$	$\mathcal{F}(1) V_{cb} $ [%]	$\mathcal{B}(B^0 \to D^{*-}\ell^+\nu_\ell) \ [\%]$
Slow pion efficiency	0.005	0.002	0.001	0.65	1.29
Lepton ID combined	0.001	0.006	0.004	0.68	1.38
$\mathcal{B}(B \to D^{**}\ell\nu)$	0.002	0.001	0.002	0.26	0.52
$B \to D^{**} \ell \nu$ form factors	0.003	0.001	0.004	0.11	0.22
f_{+-}/f_{00}	0.001	0.002	0.002	0.52	1.06
Fake e/μ	0.004	0.006	0.001	0.11	0.21
Continuum norm.	0.002	0.002	0.001	0.03	0.06
${\rm K}/\pi~{\rm ID}$	< 0.001	< 0.001	< 0.001	0.39	0.77
Fast track efficiency	-	-	-	0.53	1.05
$N\Upsilon(4S)$	-	-	-	0.68	1.37
B^0 lifetime	-	-	-	0.13	0.26
$\mathcal{B}(D^{*+} \to D^0 \pi_s^+)$	-	-	-	0.37	0.74
$\mathcal{B}(D^0 \to K\pi)$	-	-		0.51	1.02
Total systematic error	0.008	0.009	0.007	1.60	3.21

CLN systematic

Source	\tilde{a}^f_0 [%]	\tilde{a}_1^f [%]	\tilde{a}_1^{F1} [%]	\tilde{a}_{2}^{F1} [%]	\tilde{a}^g_0 [%]	$\eta_{EW} \mathcal{F}(1) V_{cb} \ [\%]$	$\mathcal{B}(B^0 \to D^{*-} \ell^+ \nu_\ell) \ [\%]$
Slow pion efficiency	0.79	9.59	5.61	4.46	0.18	0.79	1.57
Lepton ID combined	0.67	5.45	1.35	0.73	0.38	0.67	1.33
$\mathcal{B}(B \to D^{**}\ell\nu)$	0.05	5.02	4.34	9.31	0.37	0.05	0.10
$B \to D^{**} \ell \nu$ form factors	0.08	2.08	3.56	6.78	0.12	0.08	0.16
f_{+-}/f_{00}	0.56	0.46	0.50	0.48	0.56	0.56	1.05
Fake e/μ	0.07	6.43	3.03	5.92	0.14	0.07	0.11
${\rm K}/\pi~{\rm ID}$	0.39	0.39	0.39	0.39	0.39	0.39	0.77
Fast track efficiency	0.53	0.53	0.53	0.53	0.53	0.53	1.05
$N(\Upsilon(4S))$	0.69	0.69	0.69	0.69	0.69	0.69	1.37
B^0 lifetime	0.13	0.13	0.13	0.13	0.13	0.13	0.26
$\mathcal{B}(D^{*+} \to D^0 \pi_s^+)$	0.37	0.37	0.37	0.37	0.37	0.37	0.74
$\mathcal{B}(D^0 \to K\pi)$	0.51	0.51	0.51	0.51	0.51	0.51	1.02
Total systematic error	1.65	13.93	8.69	13.77	1.40	1.65	3.26

BGL systematic

			_		
	$B^+ \to D^- \pi^+ \ell^+ \nu$	$B^0 \to \bar{D}^0 \pi^- \ell^+ \nu$		$B^+ \to D^{*-} \pi^+ \ell^+ \nu$	$B^0 \to \bar{D}^{*0} \pi^- \ell^+ \nu$
Charged PID	4.8	6.9	Charged PID	2.1	6.5
π^0 PID	1.2	6.0	π^0 PID	2.0	5.2
Tracking efficiency	2.6	3.6	Tracking efficiency	2.9	3.2
D^{**} form factors	0.3	0.2	D^{**} form factors	0.2	0.1
D meson BRs	1.7	1.6	D meson BRs	1.8	1.1
B meson BRs	0.0	0.1	B meson BRs	0.0	0.1
Number of $B\bar{B}$	1.4	1.4	Number of $B\bar{B}$	1.4	1.4
Tag efficiency	4.6	3.2	Tag efficiency	4.2	2.8
$\Upsilon(4S)$ BR	1.2	1.2	$\Upsilon(4S)$ BR	1.2	1.2
Combined	8.3	9.7	Combined	5.8	7.2

The table lists the relative uncertainties in the branching fractions in percent for each channel for the combined fits. The last row gives the combined variation of all sources.

Source		$\Delta F_L^{D^*}$
Monte Carlo	AR shape and peaking background	± 0.032
statistics	CB shape	± 0.010
	Background scale factors	± 0.001
Background	$B \to D^{**} \ell \nu$	± 0.003
modeling	$B \to D^{**} \tau \nu$	± 0.011
	$B \rightarrow \text{hadrons}$	± 0.005
	$B \to \bar{D}^* M$	± 0.004
Signal modeling	Form factors	± 0.002
	$\cos \theta_{\rm hel}$ resolution	± 0.003
	Acceptance non-uniformity	$+0.015 \\ -0.005$
Total		$+0.039 \\ -0.037$

	Source of uncertainty	f_{D^0}	$f_{D^{**0}}$
Statistical	OSK sample Templates	$\begin{array}{c} 0.025\\ 0.047\end{array}$	$0.027 \\ 0.052$
Floating syst.	Signal form-factors Non- B^- , \overline{B}^0 backgrounds B^- , \overline{B}^0 background normalization \overline{B}^0 fraction and m_{miss}^2 shape	$0.006 \\ 0.004 \\ 0.003 \\ 0.004$	$\begin{array}{c} 0.004 \\ 0.004 \\ 0.015 \\ 0.030 \end{array}$
Fixed syst.	D^{**0} branching fractions Relative signal efficiency	$\begin{array}{c} 0.025\\ 0.003\end{array}$	$\begin{array}{c} 0.044 \\ 0.003 \end{array}$
Total uncertain	nty	0.056	$+0.070 \\ -0.074$

Measurement of R(D) and R(D*) with a semileptonic tag

TABLE	I.	Systematic	uncertainties	contributing	to	the
$\mathcal{R}(D^{(*)})$ r	esu	ilts.				

Source	$\Delta R(D)$ (%)	$\Delta R(D^*)$ (%)
D^{**} composition	0.76	1.41
Fake $D^{(*)}$ calibration	0.19	0.11
$B_{\rm tag}$ calibration	0.07	0.05
Feed-down factors	1.69	0.44
Efficiency factors	1.93	4.12
Lepton efficiency and fake rate	0.36	0.33
Slow pion efficiency	0.08	0.08
MC statistics	4.39	2.25
B decay form factors	0.55	0.28
Luminosity	0.10	0.04
$\mathcal{B}(B \to D^{(*)} \ell \nu)$	0.05	0.02
$\mathcal{B}(D)$	0.35	0.13
$\mathcal{B}(D^*)$	0.04	0.02
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.15	0.14
Total	5.21	4.94

Source	Uncertainty $(\%)$
$\bar{B} \to \pi \ell^- \bar{\nu}_\ell$ form-factor	0.9
$\bar{B} \to \rho \ell^- \bar{\nu}_\ell$ form-factor	12
$B^- \to K_L^0 \pi^-$	5.5
$B^- \to \mu^- \bar{\nu}_\mu \gamma$	6
Continuum shape	15
Signal peak shape	11
Trigger	8
$\mathcal{B}(\bar{B} \to \pi \ell^- \bar{\nu}_\ell)$	3.4
Total	24.6

$B o \eta \ell u$ and $B o \eta' \ell u$ hadronic tagged Phys. Rev. D 96, 091102(R) 2017

Mode	n	$\eta ightarrow \gamma^{2}$	γ	η –	$\eta ightarrow \pi^+\pi^-\pi^0$			h η mo	\mathbf{des}	$\eta' ightarrow \eta(\gamma\gamma)\pi^+\pi^-$
$q^2 \; [{ m GeV}^2]$	All	< 12	> 12	All	< 12	> 12	All	< 12	> 12	All
Track finding	± 0.35	± 0.35	± 0.35	± 1.05	± 1.05	± 1.05	± 0.5	± 0.5	± 0.5	± 1.05
Photon finding	± 4.0	± 4.0	± 4.0	± 0.0	± 0.0	± 0.0	± 3.1	± 3.1	± 3.1	± 4.0
π^0 reconstruction	± 0.0	± 0.0	± 0.0	± 2.5	± 2.5	± 2.5	± 0.5	± 0.5	± 0.5	± 0.0
π^0 veto	± 2.5	± 2.5	± 2.5	± 0.0	± 0.0	± 0.0	± 2.0	± 2.0	± 2.0	± 0.0
Pion ID	± 0.0	± 0.0	± 0.0	± 1.0	± 1.0	± 1.0	± 0.20	± 0.20	± 0.20	± 1.0
Lepton ID	± 2.0	± 2.0	± 2.0	± 2.0	± 2.0	± 2.0	± 2.0	± 2.0	± 2.0	± 2.0
Lepton fake rate	± 0.36	$^{+0.19}_{-0.13}$	± 0.11	$^{+0.46}_{-0.50}$	$^{+0.42}_{-0.47}$	$^{+0.18}_{-0.16}$	$^{+0.47}_{-0.44}$	± 0.51	$^{+0.02}_{-0.07}$	$^{+1.6}_{-1.8}$
Signal model	± 0.83	± 0.75	± 1.0	± 0.50	± 0.70	± 0.46	± 0.88	± 0.71	± 2.0	±0.28
$b \rightarrow u \ell \nu_{\ell}$ form factors	± 1.1	± 0.49	± 0.72	$^{+1.8}_{-2.6}$	$^{+0.14}_{-0.16}$	$^{+0.82}_{-1.4}$	$^{+0.31}_{-0.43}$	$^{+0.73}_{-1.1}$	$^{+0.77}_{-0.70}$	$^{+0.92}_{-0.56}$
$b \to u \ell \nu_\ell$ branching fractions	$^{+0.26}_{-0.20}$	± 1.0	$^{+1.4}_{-1.3}$	$^{+0.04}_{-0.05}$	± 0.05	$^{+0.85}_{-0.95}$	$^{+0.50}_{-0.45}$	$^{+1.5}_{-1.8}$	$^{+0.86}_{-1.2}$	$^{+1.9}_{-2.4}$
$b \to c \ell \nu_\ell$ form factors	$^{+1.0}_{-0.15}$	$^{+2.3}_{-0.60}$	± 0.0	$^{+0.21}_{-0.06}$	$^{+0.70}_{-0.22}$	± 0.0	$^{+1.1}_{-0.10}$	$^{+1.3}_{-0.24}$	± 0.0	$^{+0.18}_{-0.23}$
$b \to c \ell \nu_\ell$ branching fractions	± 0.14	± 0.80	± 0.29	± 0.28	$^{+0.43}_{-0.45}$	$^{+0.18}_{-0.28}$	± 0.13	± 0.64	$^{+0.21}_{-0.27}$	± 0.62
Secondary leptons	$^{+0.00}_{-0.06}$	± 0.12	$^{+0.01}_{-0.03}$	$^{+0.07}_{-0.04}$	$^{+0.15}_{-0.13}$	$^{+0.02}_{-0.12}$	$^{+0.03}_{-0.01}$	± 0.08	$^{+0.06}_{-0.04}$	$^{+0.01}_{-0.00}$
$\mathcal{B}(\eta^{(\prime)})$ 29	± 0.50	± 0.50	± 0.50	± 1.2	± 1.2	± 1.2	± 0.50	± 0.50	± 0.50	± 1.7
Hadronic tag	± 4.2	± 4.2	± 4.2	± 4.2	± 4.2	± 4.2	± 4.2	± 4.2	± 4.2	± 4.2
$\mathrm{N}(Bar{B})$	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4	±1.4
Continuum	$^{+0.77}_{-0.80}$	$^{+0.98}_{-0.96}$	$^{+0.24}_{-0.30}$	$^{+0.66}_{-0.64}$	$^{+1.1}_{-1.2}$	$^{+0.71}_{-0.62}$	± 0.47	± 0.83	$^{+1.2}_{-1.3}$	± 3.9
Fit procedure	± 2.9	± 9.8	± 2.0	± 6.3	± 8.7	± 9.6	± 2.2	± 5.6	± 3.2	± 5.2
Total	± 7.6	$+12.3 \\ -12.1$	± 7.3	$^{+8.8}_{-9.0}$	± 10.6	$+11.3 \\ -11.4$	± 6.7	± 8.7	$^{+7.4}_{-7.5}$	$+9.7 \\ -9.8$

Measurement of R(D) and R(D*) with a

arXiv:1904.08794

MELBOURNE

38

$B ightarrow \eta \ell u$ and $B ightarrow \eta' \ell u$ hadronic tagged Phys. Rev. D 96, 091102(R) 2017

 $B o \eta \ell \nu_\ell$

 $B \to \eta' \ell \nu_\ell$

Yield: 39 ± 10 Events/0.2 GeV Gev To measure the $b \rightarrow u l v$ $b \rightarrow u h$ Events/0.2 ($b \rightarrow c l v$ inclusive $b \rightarrow u lv$ rate Continuum ontinuum ata on resonance we must understand Belle Belle 20E exclusive 711 fb⁻¹ 711 fb⁻¹ 15E components. 10 η*→*γγ, π+π⁻π⁰ N_{data}/N_{fit} $N_{\text{data}}/N_{\text{fit}}$ $\eta' \rightarrow \pi^+\pi^-\gamma, \eta \gamma$ ² M²_{miss} ⁴ [GeV²] M_{miss}^2 [GeV²] BACKUP $\mathcal{B}(B^+ o \eta \ell^+
u) = (4.2 \pm 1.1_{stat} \pm 0.3_{syst}) imes 10^{-5}$ $\mathcal{B}(B^+ \to \eta' \ell^+ \nu) < 0.72 \times 10^{-4}$ 90% C.L. $|V_{ub}| = (3.59 \pm 0.58_{stat} \pm 0.13_{syst - 0.32}) \times 10^{-3}$

IV_{ub}l measurement at LHCb $\Lambda_b \rightarrow p \mu^- \nu_\mu$

- Missing neutrino momentum → B not fully reconstructed
- Generally affected by much higher (x10) $X_b \rightarrow X_c \mu v$ backgrounds
- Excellent μ and p PID LHCb from RICH/Muon
- precision vertexing and tracking used
 - displaced p_{μ} vertex as signature in detector
- High production fraction of Λ_b : ~20% of b-hadron
- Normalise signal yield to a IV_{cb}I decay $\Lambda_b \rightarrow \Lambda_c \mu^- v_\mu$
 - cancels many systematic uncertainties \rightarrow the production rate of Λ_{b}
- Improved FF calculations from theory for $\Lambda_b \rightarrow p\mu v_\mu$ and $\Lambda_b \rightarrow \Lambda^+_c \mu^- v_\mu$ in high q² region \rightarrow there FF calculations from theory are most precise

MELBOURNE

Analysis Strategy $\Lambda_b \rightarrow p \mu^- \nu_\mu$

- Determine yields of $\Lambda_b \rightarrow p\mu^- \nu\mu$ and $\Lambda_b \rightarrow (\Lambda^+_c \rightarrow pK^-\pi^+)\mu^- \nu_\mu$
- Estimate relative experimental efficiency with high precision
 - Measuring B.F:

 $\frac{\mathcal{B}(\Lambda_b \to \rho \mu^- \nu_\mu)_{q^2 > 15 \,\mathrm{GeV}^2}}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \mu^- \nu_\mu)_{q^2 > 7 \,\mathrm{GeV}^2}} = (1.00 \pm 0.04(stat) \pm 0.08(syst)) \times 10^{-2}$

with

$$\frac{\mathcal{B}(\Lambda_b \to \rho \mu^- \nu_\mu)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \mu^- \nu_\mu)} = R_{\text{FF}} \times \frac{|V_{ub}|^2}{|V_{cb}|^2} \text{ with } R_{\text{FF}} = 0.68 \pm 0.07$$

implies

$$rac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004(\textit{exp.}) \pm 0.004(\textit{theo.})$$

using WA $|V_{cb}| = (39.5 \pm 0.8) \times 10^{-3}$ gives

 $|V_{ub}| = (3.27 \pm 0.15(exp.) \pm 0.16(theo.) \pm 0.06(|V_{cb}|)) \times 10^{-3}$

