Semileptonic B decays - Experimental Status

 FPCP-2019

Eiasha Waheed
University of Melbourne
(On behalf of Belle Collaboration also including material from LHCb and BaBar)

CKM Quark Mixing

Importance of $\mathrm{IV}_{\mathrm{cb}}$ and $\mathrm{IV}_{\mathrm{ub}} \mathrm{I}$

- Test of CKM sector
- So far huge success for SM
- New Physics still possible within current precision
- IVubl has largest error among parameters of UT

Semileptonic B decays

But quarks are bounded by soft gluons: nonperturbative
+long distance interactions of b quark with light quark

Semileptonic B decays from HFLAV[1]

$$
\begin{aligned}
& B^{0} \rightarrow D^{*-} \ell \nu_{\ell}=5.05 \pm 0.02 \pm 0.14 \\
& B^{+} \rightarrow \bar{D}^{* 0} \ell \nu_{\ell}=5.66 \pm 0.07 \pm 0.21 \\
& B^{0} \rightarrow D^{-} \ell \nu_{\ell}=2.31 \pm 0.04 \pm 0.09 \\
& B^{+} \rightarrow \bar{D}^{0} \ell \nu_{\ell}=2.35 \pm 0.03 \pm 0.09 \\
& \hline \mathcal{B}\left(\bar{B} \rightarrow X_{c} \ell^{-} \bar{\nu}_{\ell}\right)=(10.65 \pm 0.16) \%
\end{aligned}
$$

$$
\mathcal{B}\left(\bar{B} \rightarrow \pi \ell^{-} \bar{\nu}_{\ell}\right)=(1.47 \pm 0.06) \times 10^{-4}
$$

$$
\mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)=(1.86 \pm 0.10 \pm 0.14) \times 10^{-3}
$$

- Decay rate $\Gamma_{x} \equiv \Gamma(b \rightarrow x \mid v) \propto\left|V_{x b}\right|^{2}$
- Γ_{C} larger than Γ_{u} by a factor ~ 50
- Extracting $\mathrm{b} \rightarrow \mu \mathrm{lv}$ signal challenging

A persistent puzzle in $\left|V_{x b}\right|$ determination

Inclusive Approach ($B \rightarrow \mathbf{X}_{\mathbf{c}} \mathbf{I v}$)

- B Meson acts like ab quark which means that the decay can be described as $b \rightarrow c$, u quark transition.
- Calculated with Heavy Quark Expansion. (Phys.Rev.Lett. 114 (2015), 061802)

Exclusive Approach $B \rightarrow D^{*} / v / B \rightarrow \pi / v$

- Hadronic transitions for $B \rightarrow D^{*} / B \rightarrow \pi$ described with form factors. LQCD and LCSR
- Theoretically calculable at kinematical limits
- Lattice QCD works if D^{*} or π is at rest relative to B (arXiv:1203.1204)

Experimental Measurements at Belle/BaBar

Tagged Measurement
One B reconstructed completely in a known $b \rightarrow c$ mode without v. "Bmeson Beam"

Untagged Measurement

Initial 4 momentum known, missing 4-
momentum $=v$
Reconstructed $B \rightarrow X_{q}$ Iv
Other side information to constrain signal B flight
direction

- High efficiency
- Low purity, large background

Basic Analysis Steps

- Reconstruction
- Projection into bins of kinematic variables
- Fitting signal yield
- Compare measured events to expected events (Fit to calculate $\mathrm{IV}_{\mathrm{cb}} \mid$ and $\mathrm{V}_{\mathrm{ubl}} \mid$)

Recent Semileptonic Measurements at B Factories

$B \rightarrow D^{*} \ell \nu$ BaBar tagged 2019
(arXiv:1903.10002,
submitted to PRL)
$B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}$ Belle untagged 2018/2019
(arXiv:1809.03290, submitted to PRD)

Relative $B^{-} \rightarrow D^{0} / D^{* 0} / D^{* * 0} \mu^{-} \nu_{\mu}$ branching fractions (arXiv:1807.10722, submitted to PRD) (arXiv:1611.05624, Phys. Inclusive $\left|V_{u b}\right|$ BaBar tagged 2019 Rev. D 95, 072001(2017))

Measurement of shape of $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}$ differential decay rate
D^{*-} polarisation in $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau} \quad$ arXiv:1903.03102
D^{*-} polarisation in $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau} \quad$ arX
$B \rightarrow D^{*} \pi \ell \nu_{\ell}$ Belle hadronic tagged 2018
(arXiv:1803.06444, Phys. Rev. D 98, 012005 (2018))
(arXiv:1709.01920
Phys. Rev. D 96, 112005 (2017))

$\left|\mathrm{V}_{\mathrm{cb}}\right|$

Semileptonic Observables

- Four momentum of charged lepton
- Experimentally: good LeptonID to minimise fakes
- Four momentum of hadronic system
- Experimentally: slow pion momentum - B

- $q^{2}=\left(p_{1}+p_{\mathrm{v}}\right)^{2}$
- Hadronic recoil
$\cdot w \equiv v_{B} \cdot v_{D^{*}}=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}$
- For $B^{0} \rightarrow D^{*-} \ell^{+} \nu: 1<w<1.504$

$\mathrm{w}=1$
B

- Normalisation $(w=1)=1$ (Heavy quark limit)

$\mid \mathrm{V}_{\mathrm{cb}} \mathrm{l}$ and Decay Rate of $\quad B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}$

Differential Decay rate

$$
\begin{aligned}
& \frac{d \Gamma\left(B^{0} \rightarrow D^{*} \ell^{+} \nu_{\ell}\right)}{d w d \cos \theta_{\ell} \cos \theta_{V} d_{\chi}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{48 \pi^{3}} F\left(w, \theta_{\ell}, \theta_{V}, \chi\right) G(w) \\
& \quad \text { Form factor of } \mathrm{B} \rightarrow \mathrm{D}^{*} \text { transition phase space (known) }
\end{aligned}
$$

In case of $B \rightarrow D \ell \nu$ decay rate only depend on w.

Form factor parameterisation

Caprini, Lelouch, Neubert (CLN)
Theoretical assumptions used to reduce the number of free parameters describing form factors: to measure $\mathrm{I} \mathrm{V}_{\mathrm{cb}} \mathrm{l}$ with a smaller data set

$$
F\left(w, \theta_{\ell}, \theta_{V}, \chi\right)
$$

	3 non trivial form $\mathrm{A}_{2}(\mathrm{w})$ and $\mathrm{V}(\mathrm{w})$
$R_{1}(w)$	$=V / A_{1}$
$R_{2}(w)$	$=A_{2} / A_{1}$
$\rho^{2}(w)$	$=-d F /\left.d w\right\|_{w=1}$

$\mathrm{F}(\mathrm{w})$ normalised at zero recoil ($\mathrm{w}=1$)
Boyd Grinstein Lebed (BGL)
arXiv:hep-ph/9504235,
Phys.Lett.B353:306-312,1995
$F\left(w, \theta_{\ell}, \theta_{V}, \chi\right)$ is written as the most generic parameterisation with minimal theory assumptions, the expansion is constrained by unitarity (can have more coefficients than CLN at O(3))

Form factor parameterisation: CLN Vs BGL

- CLN
- HQET relations + corrections in powers of $\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}$,
- For $B \rightarrow D^{*}$ lv

$$
\begin{aligned}
h_{A_{1}}(w)= & h_{A_{1}}(1)\left(-z^{3}\left(231 \rho_{D^{*}}^{2}-91\right)+\right. \\
& \left.+z^{2}\left(53 \rho_{D^{*}}^{2}-15\right)-8 z \rho_{D^{*}}^{2}+1\right) \\
R_{1}(w)= & R_{1}(1)+0.05(w-1)^{2}-0.12(w-1) \\
R_{2}(w)= & R_{2}(1)-0.06(w-1)^{2}+0.11(w-1)
\end{aligned}
$$

- For B \rightarrow DIv
$\mathcal{G}(w)=\mathcal{G}(1)\left(1-8 \rho_{D}^{2} z+\left(51 \rho_{D}^{2}-10\right) z^{2}\right.$
$\left.-(252) \rho_{D}^{2}-84\right) z^{3}$
- BGL

Phys.Lett. B771 (2017) Phys.Lett. B769 (2017)

- No HQET input
- For $B \rightarrow$ D*IV

$$
\begin{aligned}
h_{A_{1}}(w) & =\frac{f(w)}{\sqrt{m_{B} m_{D^{*}}}(1+w)} \\
R_{1}(w) & =(w+1) m_{B} m_{D^{*}} \frac{g(w)}{f(w)} \\
R_{2}(w) & =\frac{w-r}{w-1}-\frac{\mathcal{F}_{1}(w)}{m_{B}(w-1) f(w)}
\end{aligned}
$$

where f, g and F_{1} are
parameterised as

$$
f(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{n=0}^{N} a_{i, n} z^{n}
$$

cut off at $n=1,2 \ldots$

Exclusive $\mathrm{I} \mathrm{V}_{\mathrm{cb}}$ from $B \rightarrow D^{*} \ell \nu$ tagged

- Tag side B reconstructed (hadronically) to reconstruct unknown neutrino momentum
- Reconstruct Bsignal (comprised of $\mathrm{D}^{*} \mathrm{e}, \mathrm{D}^{*} \mu$ and $\mathrm{D}^{* 0} \mathrm{e}, \mathrm{D}^{*} 0 \mu$ where D^{0} from $\mathrm{D}^{*(0)}$ decays to $K^{-} \pi^{+}, K^{-} \pi^{-} \pi^{0}, K^{-} \pi^{+} \pi^{-} \pi^{+}$combined with π^{0} and π^{+})
- Signal selection using $\Delta m=\left(m_{D^{*}}-m_{D}\right)$ and $p_{\text {lep }}$
- Kinematic fit to $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B_{\mathrm{tag}} \bar{B}_{\mathrm{sig}}\left(\rightarrow D^{*} \ell^{-} \bar{\nu}_{l}\right)$

BaBar 469 fb-1
$\mathrm{N}_{\text {signals }}=5932$

Exclusive $\mathrm{I}_{\mathrm{cb}} \mathrm{l}$ from $B \rightarrow D^{*} \ell \nu$ tagged

- Measure $\mathrm{IV}_{\mathrm{cb}} \mathrm{l}$ and form factor parameters
- First unbinned (ML) fit in 4-D of $q^{2}, \cos \theta$, $\cos \theta_{\mathrm{v}}, X$ for $B G L$ expansion ($\mathrm{N}=1$)
- Tension remain between inclusive and exclusive $\mathrm{V}_{\mathrm{cb}} \mathrm{l}$

$\mathrm{q}^{2}\left(\mathrm{GeV}^{2}\right)$

$$
\begin{array}{|l}
\left|V_{c b}\right| \times 10^{3}=38.03 \pm 1.05\left(B^{-}-e\right) \\
\left|V_{c b}\right| \times 10^{3}=38.68 \pm 1.16\left(B^{-}-\mu\right) \\
\left|V_{c b}\right| \times 10^{3}=38.59 \pm 1.15\left(B^{0}-e\right) \\
\left|V_{c b}\right| \times 10^{3}=38.24 \pm 1.05\left(B^{0}-\mu\right) \\
\hline
\end{array}
$$

$a_{0}^{f} \times 10^{2}$	$a_{1}^{f} \times 10^{2}$	$a_{1}^{F_{1}} \times 10^{2}$	$a_{0}^{g} \times 10^{2}$	$a_{1}^{g} \times 10^{2}$	$\left\|V_{c b}\right\| \times 10^{3}$
1.29	1.63	0.03	2.74	8.33	38.36
± 0.03	± 1.00	± 0.11	± 0.11	± 6.67	± 0.90

$q^{2}\left(\mathrm{GeV}^{2}\right)$

$B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}$ using untagged approach

- Measure $\mathrm{IV}_{\mathrm{cb}}$ l using Belle $711 \mathrm{fb}^{-1}$.
- Signal Selection using
- 3D - Binned Maximum Likelihood fit of
- $\left(\cos \theta_{\mathrm{B}, \mathrm{D}^{\star}}\right)$
- $\Delta \mathrm{M}=$ mass $\left(\mathrm{D}^{\star}-\mathrm{D}^{0}\right)$
- lepton momentum

- Float Signal \& Backgrounds components from MC to extract background yields

FF parameters and IV $\mathrm{cbl}_{\mathrm{cl}}$ from CLN

 submitted to PRDSimultaneous fit of 1D projections of $w, \cos \theta_{I}, \cos \theta_{v}, X$ to extract $\rho^{2}, R_{1}(1)$, $\mathrm{R}_{2}(1)$ and $\mathrm{F}(1)\left|\mathrm{V}_{\mathrm{cb}}\right|$

$\rho^{2}=1.106 \pm 0.031 \pm 0.007$
$R_{1}(1)=1.229 \pm 0.028 \pm 0.009$
$R_{2}(1)=0.852 \pm 0.021 \pm 0.006$

FF parameters and IV col from BGL

Simultaneous fit of 1D projections of $\mathrm{w}, \cos \theta_{\mathrm{I}}, \cos \theta_{\mathrm{v}}, \mathrm{X}$ to extract the coefficients of the BGL expansion (up to 3rd order) and $F(1)\left|V_{c b}\right|$

$F(1) I V_{\text {cb }} \mid \eta_{E W} \times 10^{3}=34.9 \pm 0.2 \pm 0.6$

- Consistent with CLN
- Differential data is provided

$$
\begin{aligned}
\tilde{a}_{0}^{f} \times 10^{3} & =-0.506 \pm 0.004 \pm 0.008, \\
\tilde{a}_{1}^{f} \times 10^{3} & =-0.65 \pm 0.17 \pm 0.09, \\
\tilde{a}_{1}^{F_{1}} \times 10^{3} & =-0.270 \pm 0.064 \pm 0.023, \\
\tilde{a}_{2}^{F_{1}} \times 10^{3} & =+3.27 \pm 1.25 \pm 0.45, \\
\tilde{a}_{0}^{g} \times 10^{3} & =-0.929 \pm 0.018 \pm 0.013,
\end{aligned}
$$

Signal
Fake Lepton, True/Fake D*
Fake ${ }^{\text {D }}$
D**
Non-Signal/non-D**
D^{*} \& I from different B^{0} Off-Resonance Data

IV V_{cb} from BaBar and Belle From CLN and BGL

Last 10 years...

$$
\left\lvert\, \begin{aligned}
& I V_{c b} \times 10^{3}=38.4 \pm 0.6(\text { CLN-Belle2019 })\left(B \rightarrow D^{\star} \mid v\right)^{[1]} \\
& I V_{c b} \times 10^{3}=38.3 \pm 0.8(B G L-B e l l e 2019)\left(B \rightarrow D^{\star} \mid v\right)^{[1]} \\
& I V_{c b} \times 10^{3}=38.4 \pm 0.9(B G L-B a B a r 2019)\left(B \rightarrow D^{\star} \mid v\right)^{[2]} \\
& I V_{c b} \times 10^{3}=39.9 \pm 1.3\left(\text { CLN-Belle2016) }(B \rightarrow D \mid v)^{[3]}\right. \\
& I V_{c b} \times 10^{3}=40.8 \pm 1.1(B C L-B e l l e 2016)(B \rightarrow D \mid v)^{[3]} \\
& I V_{c b} \mid \times 10^{3}=42.2 \pm 0.8(\text { Inclusive-HFLAV }){ }^{[4]}
\end{aligned}\right.
$$

- CLN and BGL agree for both Belle and BaBar
- Inclusive and Exclusive tension still persistent !!!
- CLN and BGL form factor differences at zero-recoil (minimum higher order HQET corrections) need to be investigated further.
- Differential decay rate (as function of q^{2}) is compared with expectations from HQET and unquenched lattice QCD predictions.
- $\quad \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}$ described by (6) form factors (FF) corresponding to the vector and axial-vector components.

$$
\frac{d \Gamma}{d w}=G K(w) \xi_{B}^{2}
$$

$$
\begin{aligned}
G & =\frac{2}{3} \frac{G_{F}^{2}}{(2 \pi)}\left|V_{c b}\right|^{2}\left(m_{\Lambda^{\circ}}\right)^{4} r^{4} \\
\xi_{B}(w) & =1-\rho^{2}(w-1)+\frac{1}{2} \sigma^{2}(w-1)^{2}+\ldots, \\
K(w) & =m_{A+1} \sqrt{w^{2}-1}\left(3 w\left(1-2 r w+r^{2}\right)+2 r\left(w^{2}-1\right) .\right.
\end{aligned}
$$

$$
\rho^{2}=1.63 \pm 0.07 \pm 0.08
$$ consistent with Lattice ${ }^{1}$, QCD ${ }^{2}$, and relativistic quark model ${ }^{3}$

Further studies with a suitable normalisation channel will lead to a precise independent determination of the CKM parameter $\mathrm{V}_{\mathrm{cb}} \mathrm{I}$.

D^{*-} polarisation in $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$ arxiv:1 1003.03102

- $F_{L}^{D^{*}}$ is fraction of D^{*} polarisation in $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$ decay from angular distribution in $\quad D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$
- SM prediction ${ }^{1}: \quad F_{L}^{D^{*}}=0.45$
$\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{\text {hel }}}=\frac{3}{4}\left(2 F_{L}^{D^{*}} \cos ^{2} \theta_{\text {hel }}+\left(1-F_{L}^{D^{*}}\right) \sin ^{2} \theta_{\text {hel }}\right)$
- $\theta_{\text {hel }}$ is angle between D^{0} and direction opposite to B^{0} in D^{*-} rest frame
- Rest of event information to reconstruct $\mathrm{B}_{\mathrm{tag}}$
- Calculate helicity angle in 3 bins
- Signal yield in bins of $\cos \theta_{\text {hel }}$ is extracted from extended unbinned ML fit to Mtag

agrees within about 1.7σ with SM

$$
F_{L}^{D^{*}}=0.60 \pm 0.08(\text { stat }) \pm 0.04(\mathrm{sys})
$$

Importance of $\mathrm{B} \rightarrow \mathrm{D}^{* *}$ Iv Measurement

- $D^{* *}$ is important background for both semileptonic $\left(B \rightarrow D^{\star} \mid v\right)$ and semitonic ($B \rightarrow D^{*} \tau$ v) measurements
- $\mathrm{D}^{* *}$ is leading systematic error for both measurement
- Can mimic signal while measuring $R(D)$ and $R\left(D^{*}\right)$
arXiv:1904.08794

Source	$\Delta R(D)(\%)$	$\Delta R\left(D^{*}\right)(\%)$
$D^{* *}$ composition	0.76	1.41
Fake $D^{(*)}$ calibration	0.19	0.11
$B_{\text {tag }}$ calibration	0.07	0.05
Feed-down factors	1.69	0.44
Efficiency factors	1.93	4.12
Lepton efficiency and fake rate	0.36	0.33
Slow pion efficiency	0.08	0.08
MC statistics	4.39	2.25
B decay form factors	0.55	0.28
Luminosity	0.10	0.04
$\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)$	0.05	0.02
$\mathcal{B}(D)$	0.35	0.13
$\mathcal{B}\left(D^{*}\right)$	0.04	0.02
$\mathcal{B}\left(\tau^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)$	0.15	0.14
Total	5.21	4.94

$B \rightarrow D^{(*)} \pi \ell \nu$ hadronic tagged

Important background for $B \rightarrow D^{*}$ tv and $R\left(D^{*}\right)$ measurement

$$
\begin{aligned}
B \rightarrow\left(D^{* *}\right. & \left.\rightarrow D^{(*)} \pi \ell \nu_{\ell}\right) \\
& \mapsto D^{* *} \rightarrow D \pi \rightarrow D^{* 0} \rightarrow D^{0} \pi^{0}
\end{aligned}
$$

Belle 711fb-1

$$
\mathcal{B}\left(B^{+} \rightarrow D^{-} \pi^{+} \ell^{+} \nu\right)
$$

$$
=[4.55 \pm 0.27 \text { (stat.) } \pm 0.39 \text { (syst.) }] \times 10^{-3}
$$

$$
\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{-} \ell^{+} \nu\right)
$$

$$
=[4.05 \pm 0.36 \text { (stat.) } \pm 0.41 \text { (syst.) }] \times 10^{-3},
$$

$$
\mathcal{B}\left(B^{+} \rightarrow D^{*-} \pi^{+} \ell^{+} \nu\right)
$$

$$
=[6.03 \pm 0.43 \text { (stat.) } \pm 0.38 \text { (syst.) }] \times 10^{-3},
$$

$$
\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{* 0} \pi^{-} \ell^{+} \nu\right)
$$

$$
=[6.46 \pm 0.53 \text { (stat.) } \pm 0.52 \text { (syst.) })] \times 10^{-3} .
$$

Relative $B^{-} \rightarrow D^{0} / D^{* 0} / D^{* * 0} \mu^{-} \nu_{\mu}$ branching fractions using B^{-} from $B_{s 2}^{* L}$ decays arXiv:1807.10722, submitted to PRD

First LHCb measurement of $f\left(\mathrm{D}^{0} / \mathrm{D}^{*} / \mathrm{D}^{* *}\right) \rightarrow$ distinguishes $\mathrm{D}^{0} / \mathrm{D}^{*} / \mathrm{D}^{* *}$ in semileptonic B decay

- Useful input for B production rate at LHCb.
B* ${ }_{\text {s2 }}$ decay used to separate the three components

B.F relative to the inclusive

$$
B^{-} \rightarrow D^{0} X \mu^{-} \bar{\nu}_{\mu}
$$

$$
f_{D^{* * 0}}=\frac{\mathcal{B}\left(B^{-} \rightarrow\left(D^{* * 0} \rightarrow D^{0} X\right) \mu^{-} \bar{\nu}_{\mu}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} X \mu^{-} \bar{\nu}_{\mu}\right)}=0.21 \pm 0.07 .
$$

$$
f_{D^{0}}=\frac{\mathcal{B}\left(B^{-} \rightarrow D^{0} \mu^{-} \bar{\nu}_{\mu}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} X \mu^{-} \bar{\nu}_{\mu}\right)}=0.25 \pm 0.06
$$

$$
\longrightarrow f_{D^{* 0}}=1-f_{D^{0}}-f_{D^{* * 0}}
$$

$\left|V_{\text {ub }}\right|$

IV ubl Status

- Clean signal in missing mass for exclusive modes to measure $\left|V_{u b}\right|$
- Form factors $f\left(q^{2}\right)$ computed with Light Cone Sum Rules or LQCD
- $b \rightarrow u l v$ signal enhanced w.r.t. $b \rightarrow c$ backgrounds in low M_{x} and high q^{2}
- systematics effects the charm background composition and u quark fragmentation

Summary of IV ubl determined from leptonic decay, exclusive modes compared with lattice QCD

Inclusive IVubl from BaBar

- Inclusive B \rightarrow Xev measurement from full BaBar data set of $424 \mathrm{fb}-1$
- Cut applied to electron momentum to seperate signal $B \rightarrow X_{u} e v(\sim 2.6 \mathrm{GeV} / \mathrm{c})$ to background $B \rightarrow X_{c} e v(\sim 2.3 \mathrm{GeV} / \mathrm{c}$)
- Perform fit to the inclusive electron momentum spectrum averaged over charged and neutral B meson.

- $\mathrm{IV}_{\text {ubl }}$ is extracted as a function of plep.
- $\mathrm{IV}_{\mathrm{ub}}=\left(3.794 \pm 0.107_{\exp }{ }_{-0.219}^{+0.292}{ }_{{ }_{-0.068}}^{+0.078}\right.$ theory $) \times 10^{-3} \quad$ (DeFazio and Neubert)
- $\mid \mathrm{V}_{\mathrm{ub}}=\left(4.563 \pm 0.126_{\text {exp }}{ }_{-0.208 \mathrm{SF}}^{+0.230}{ }_{-0.163 \text { theory }}^{+0.162}\right) \times 10^{-3} \quad$ (Bosch, Lange, Neubert, Paz)

Belle II prospects of IVubl

- Improvement of experimental uncertainties expected in both inclusive and exclusive determination

Mode and dataset	Uncertainty (\%) EXP. ONLY	
\|Vub	exclusive (tagged)	
Belle	3.8	
Belle II 5 ab $^{-1}$	1.8	
Belle II 50 ab $^{-1}$	1.2	
\|Vub	exclusive (untagged)	2.7
Belle	1.2	
Belle II 5 ab $^{-1}$	0.9	
Belle II 50 ab $^{-1}$	6.0	
\|Vub \mid inclusive (tagged)	2.6	
Belle	1.7	
Belle II 5 ab $^{-1}$		
Belle II 50 ab $^{-1}$		

- Expect theory error to decrease to 1% for exclusive and 2-4\% for inclusive
- Exclusive analyses (hadronic tags) \rightarrow perform clean and detailed exploration of exclusive $b \rightarrow u$ modes spectra
- Untagged $B \rightarrow \pi I v$ competitive for $\left|V_{u b}\right|$
- Exploit at maximum the differential distributions for a global $\mathrm{V}_{\text {ub }}$ fit (inclusive measurement)

Summary

- New B \rightarrow D* * v tagged measurement from BaBar 2019 (BGL)
- $\quad \mid \mathrm{V}_{\mathrm{cb}} \times 10^{3}=38.4 \pm 0.6$ (BGL)
- $B^{0} \rightarrow D^{*} I v$ untagged measurement from Belle,2018/2019 (BGL and CLN)
- IV cbl $\times 10^{3}=38.4 \pm 0.6(\mathrm{CLN})$
- $\mid \mathrm{V}_{\mathrm{cb}} \mathrm{x} 10^{3}=38.3 \pm 0.8$ (BGL)
- Shape parameters of $d \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda^{+}{ }_{c} \mu^{-} v_{\mu}\right) / d q^{2}$
- D* polarisation $F_{L}^{D^{*}}=0.60 \pm 0.08$ (stat) ± 0.04 (sys)
- f(D0/D*0/D*0) by LHCb
- Result of inclusive $\mathrm{B} \rightarrow$ Xulv from BaBar
- Measurements are coming up from Belle on inclusive $I V_{u b l}$
- Belle II will collect ~5ab-1 data by 2020, enough to look for NP
- Precise model independent measurement of $I V_{c b} \mid$ and $I V_{u b} \mid$

References

- Slide 3
1.Eur. Phys. J. C77 (2017) 895
- Slide4
1.M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- Slide 8
1.Phys. Rev. D57 (1998) 6948, arXiv:hep-lat/9709028.
2.Phys. Lett. B629 (2005) 27, arXiv:hep-ph/0502004.
3.Phys. Rev. D73 (2006) 094002, arXiv:hep-ph/0604017
- Slide 17
4.arXiv:1809.03290
5.arXiv:1903.10002
6.Phys. Rev. D 93, 032006
7.Eur. Phys. J. C77 (2017) 895
- Slide 19

1. Phys. Rev. D 87, 034028 (2013).

BACKUP

Exclusive IV ${ }_{\mathrm{cb}}$ from $B \rightarrow D^{*} \ell_{\nu}$ untagged

$B \rightarrow D^{(*)} \pi \ell \nu$ hadronic tagged

	$B^{+} \rightarrow D^{-} \pi^{+} \ell^{+} \nu \quad B^{0} \rightarrow \bar{D}^{0} \pi^{-} \ell^{+} \nu$		$B^{+} \rightarrow D^{*-} \pi^{+} \ell^{+} \nu \quad B^{0} \rightarrow \bar{D}^{* 0} \pi^{-} \ell^{+} \nu$
Charged PID	4.8 6.9	Charged PID	2.1 6.5
$\pi^{0} \mathrm{PID}$	1.2 6.0	π^{0} PID	2.0 - 5.2
Tracking efficiency	2.6 3.6	Tracking efficiency	2.9 3.2
$D^{* *}$ form factors	0.3 0.2	$D^{* *}$ form factors	0.2 0.1
D meson BRs	1.7	D meson BRs	1.8 1.1
B meson BRs	$0.0 \quad 0.1$	B meson BRs	0.0 0.1
Number of $B \bar{B}$	$1.4 \quad 1.4$	Number of $B \bar{B}$	$1.4 \quad 1.4$
Tag efficiency	4.6 3.2	Tag efficiency	4.2 2.8
$\Upsilon(4 S) \mathrm{BR}$	1.2 1.2	$\Upsilon(4 S) \mathrm{BR}$	1.2
Combined	$8.3 \quad 9.7$	Combined	5.8 7.2

The table lists the relative uncertainties in the branching fractions in percent for each channel for the combined fits. The last row gives the combined variation of all sources.

D^{*-} polarisation in $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$

Source		$\Delta F_{L}^{D^{*}}$
Monte Carlo	AR shape and peaking background	± 0.032
statistics	CB shape	± 0.010
	Background scale factors	± 0.001
Background	$B \rightarrow D^{* *} \ell \nu$	± 0.003
modeling	$B \rightarrow D^{* *} \tau \nu$	± 0.011
	$B \rightarrow$ hadrons	± 0.005
	$B \rightarrow \bar{D}^{*} M$	± 0.004
Signal modeling	Form factors	± 0.002
	$\cos \theta_{\text {hel }}$ resolution	± 0.003
	Acceptance non-uniformity	${ }_{-0.005}^{+0.015}$
Total		${ }_{-0.037}^{+0.039}$

Measurement of the relative $B^{-} \rightarrow D^{0} / D^{* 0} / D^{* 0} \mu^{-} v_{\mu}$ branching fractions using B^{-}mesons from $\mathrm{B}^{\circ}{ }_{\text {s2 }}$ decays

	Source of uncertainty	$f_{D^{0}}$	$f_{D^{* * 0}}$
Statistical	OSK sample	0.025	0.027
	Templates	0.047	0.052
Floating syst.	Signal form-factors	0.006	0.004
	Non- B^{-}, \bar{B}^{0} backgrounds	0.004	0.004
	B^{-}, \bar{B}^{0} background normalization	0.003	0.015
	\bar{B}^{0} fraction and $m_{\text {miss }}^{2}$ shape	0.004	0.030
Fixed syst.	$D^{* * 0}$ branching fractions	0.025	0.044
	Relative signal efficiency	0.003	0.003
Total uncertainty	0.056	+0.070	
			-0.074

Measurement of $R(D)$ and $R\left(D^{*}\right)$ with a semileptonic tag

TABLE I. Systematic uncertainties contributing to the $\mathcal{R}\left(D^{(*)}\right)$ results.

Source	$\Delta R(D)(\%)$	$\Delta R\left(D^{*}\right)(\%)$
$D^{* *}$ composition	0.76	1.41
Fake $D^{(*)}$ calibration	0.19	0.11
$B_{\text {tag }}$ calibration	0.07	0.05
Feed-down factors	1.69	0.44
Efficiency factors	1.93	4.12
Lepton efficiency and fake rate	0.36	0.33
Slow pion efficiency	0.08	0.08
MC statistics	4.39	2.25
B decay form factors	0.55	0.28
Luminosity	0.10	0.04
$\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)$	0.05	0.02
$\mathcal{B}(D)$	0.35	0.13
$\mathcal{B}\left(D^{*}\right)$	0.04	0.02
$\mathcal{B}\left(\tau^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)$	0.15	0.14
Total	5.21	4.94

Source	Uncertainty (\%)
$\bar{B} \rightarrow \pi \ell^{-} \bar{\nu}_{\ell}$ form-factor	0.9
$\bar{B} \rightarrow \rho \ell^{-} \bar{\nu}_{\ell}$ form-factor	12
$B^{-} \rightarrow K_{L}^{0} \pi^{-}$	5.5
$B^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \gamma$	6
Continuum shape	15
Signal peak shape	11
Trigger	8
$\mathcal{B}\left(\bar{B} \rightarrow \pi \ell^{-} \bar{\nu}_{\ell}\right)$	3.4
Total	24.6

$B \rightarrow \eta \ell \nu$ and $B \rightarrow \eta^{\prime} \ell \nu$ hadronic tagged Phys. Rev. \mathbf{D} 96, 091102(R) 2017

Mode	$\eta \rightarrow \gamma \gamma$			$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$			Both η modes			$\boldsymbol{\eta}^{\prime} \rightarrow \eta(\gamma \gamma) \pi^{+} \pi^{-}$	
$q^{2}\left[\mathrm{GeV}^{2}\right]$	All	<12	>12	All	< 12	> 12	All	<12	>12		
Track finding	± 0.35	± 0.35	± 0.35	± 1.05	± 1.05	± 1.05	± 0.5	± 0.5	± 0.5		± 1.05
Photon finding	± 4.0	± 4.0	± 4.0	± 0.0	± 0.0	± 0.0	± 3.1	± 3.1	± 3.1		± 4.0
π^{0} reconstruction	± 0.0	± 0.0	± 0.0	± 2.5	± 2.5	± 2.5	± 0.5	± 0.5	± 0.5		± 0.0
π^{0} veto	± 2.5	± 2.5	± 2.5	± 0.0	± 0.0	± 0.0	± 2.0	± 2.0	± 2.0		± 0.0
Pion ID	± 0.0	± 0.0	± 0.0	± 1.0	± 1.0	± 1.0	± 0.20	± 0.20	± 0.20		± 1.0
Lepton ID	± 2.0		± 2.0								
Lepton fake rate	± 0.36	${ }_{-0.13}^{+0.19}$	± 0.11	${ }_{-0.50}^{+0.46}$	$\begin{aligned} & +0.42 \\ & -0.47 \end{aligned}$	$\begin{aligned} & +0.18 \\ & { }_{-0.16} \end{aligned}$	${ }_{-0.44}^{+0.47}$	± 0.51	${ }_{-0.07}^{+0.02}$		${ }_{-1.8}^{+1.6}$
Signal model	± 0.83	± 0.75	± 1.0	± 0.50	± 0.70	± 0.46	± 0.88	± 0.71	± 2.0		± 0.28
$b \rightarrow u \ell \nu_{\ell}$ form factors	± 1.1	± 0.49	± 0.72	${ }_{-2.6}^{+1.8}$	${ }_{-0.16}^{+0.14}$	${ }_{-1.4}^{+0.82}$	${ }_{-0.43}^{+0.31}$	${ }_{-1.1}^{+0.73}$	${ }_{-0.70}^{+0.77}$		${ }_{-0.56}^{+0.92}$
$b \rightarrow u \ell \nu_{\ell}$ branching fractions	${ }_{-0.20}^{+0.26}$	± 1.0	${ }_{-1.3}^{+1.4}$	${ }_{-0.05}^{+0.04}$	± 0.05	${ }_{-0.95}^{+0.85}$	${ }_{-0.45}^{+0.50}$	${ }_{-1.8}^{+1.5}$	${ }_{-1.2}^{+0.86}$		${ }_{-2.4}^{+1.9}$
$b \rightarrow c \ell \nu_{\ell}$ form factors	${ }_{-0.15}^{+1.0}$	${ }_{-0.60}^{+2.3}$	± 0.0	${ }_{-0.06}^{+0.21}$	${ }_{-0.22}^{+0.70}$	± 0.0	${ }_{-0.10}^{+1.1}$	${ }_{-0.24}^{+1.3}$	± 0.0		${ }_{-0.23}^{+0.18}$
$b \rightarrow c \ell \nu_{\ell}$ branching fractions	± 0.14	± 0.80	± 0.29	± 0.28	${ }_{-0.45}^{+0.43}$	${ }_{-0.28}^{+0.18}$	± 0.13	± 0.64	${ }_{-0.27}^{+0.21}$		± 0.62
Secondary leptons	${ }_{-0.06}^{+0.00}$	± 0.12	${ }_{-0.03}^{+0.01}$	${ }_{-0.04}^{+0.07}$	${ }_{-0.13}^{+0.15}$	${ }_{-0.12}^{+0.02}$	${ }_{-0.01}^{+0.03}$	± 0.08	${ }_{-0.04}^{+0.06}$		${ }_{-0.00}^{+0.01}$
$\mathcal{B}\left(\eta^{(\prime)}\right) \quad 29$	± 0.50	± 0.50	± 0.50	± 1.2	± 1.2	± 1.2	± 0.50	± 0.50	± 0.50		± 1.7
Hadronic tag	± 4.2		± 4.2								
$\mathrm{N}(B \bar{B})$	± 1.4		± 1.4								
Continuum	${ }_{-0.80}^{+0.77}$	${ }_{-0.96}^{+0.98}$	${ }_{-0.30}^{+0.24}$	${ }_{-0.64}^{+0.66}$	${ }_{-1.2}^{+1.1}$	${ }_{-0.62}^{+0.71}$	± 0.47	± 0.83	${ }_{-1.3}^{+1.2}$		± 3.9
Fit procedure	± 2.9	± 9.8	± 2.0	± 6.3	± 8.7	± 9.6	± 2.2	± 5.6	± 3.2		± 5.2
Total	± 7.6	${ }_{-12.1}^{+12.3}$	± 7.3	${ }_{-9.0}^{+8.8}$	± 10.6	${ }_{-11.4}^{+11.3}$	± 6.7	± 8.7	${ }_{-7.5}^{+7.4}$		${ }_{-9.8}^{+9.7}$

semileptonic tag

$R(D) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{+} \ell^{-} \bar{\nu}_{\ell}\right)} \quad R\left(D^{*}\right) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)} \quad$ where $\ell=e, \mu$
Signal: $\quad B^{0 / \pm} \rightarrow D^{(*)} \tau^{-} \nu \quad$ Normalisation: $\quad B^{0 / \pm} \rightarrow D^{(*)} \ell^{-} \nu \quad$ B-tag: $\quad B^{0 / \pm} \rightarrow D^{(*)} \ell^{-} \nu$

- First $R(D)$ and $R\left(D^{*}\right)$ measurement with semileptonic tag
- Most Precise Measurement till date !!!
- Results compatible with SM expectations within 1.2 sigma
- $R(D)$ and $R\left(D^{*}\right)$ WA tension reduces to 3.1 sigma

$$
\begin{array}{|cc|}
\hline \mathcal{R}(D) & =0.307 \pm 0.037 \pm 0.016 \\
\mathcal{R}\left(D^{*}\right) & =0.283 \pm 0.018 \pm 0.014 \\
\hline
\end{array}
$$

$B \rightarrow \eta \ell \nu$ and $B \rightarrow \eta^{\prime} \ell \nu$ hadronic tagged Phys. Rev. D 96, 091102(F) 2017

To measure the inclusive $b \rightarrow$ ulv rate we must understand exclusive components. $\eta \rightarrow \gamma \gamma, \pi^{+} \pi \pi^{0}$
$\eta^{\prime} \rightarrow \pi^{+} \pi \gamma, \eta \gamma$ $\eta \rightarrow \gamma \gamma, \pi^{+} \pi \pi^{0}$
$\eta^{\prime} \rightarrow \pi^{+} \pi \gamma, \eta \gamma$

$$
B \rightarrow \eta \ell \nu_{\ell}
$$

$$
B \rightarrow \eta^{\prime} \ell \nu_{\ell}
$$

BACKUP

$$
\begin{aligned}
& \begin{aligned}
& \mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)=\left(4.2 \pm 1.1_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-5} \\
& \mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right)<0.72 \times 10^{-4} \quad 90 \% \quad \text { C.L. } \\
& \\
&\left|V_{u b}\right|=\left(3.59 \pm 0.58_{\text {stat }} \pm 0.13_{\text {syst }}{ }_{-0.32}^{+0.29} \text { theo }\right) \times 10^{-3} \\
& \hline
\end{aligned}
\end{aligned}
$$

IVubl measurement at LHCb $\quad \Lambda_{b} \rightarrow p \mu^{-} \nu_{\mu}$

- Missing neutrino momentum $\rightarrow B$ not fully reconstructed
- Generally affected by much higher (x 10) $\mathrm{X}_{\mathrm{b}} \rightarrow \mathrm{X}_{\mathrm{c}} \mu \mathrm{v}$ backgrounds
- Excellent μ and p PID LHCb from RICH/Muon
- precision vertexing and tracking used
- displaced p_{μ} vertex as signature in detector
- High production fraction of $\Lambda_{b}: \sim 20 \%$ of b-hadron
- Normalise signal yield to a V_{cb} decay $\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \mathrm{v}_{\mu}$

- cancels many systematic uncertainties \rightarrow the production rate of Λ_{b}
- Improved FF calculations from theory for $\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \mu^{-} \mathrm{v}_{\mu}$ and $\Lambda_{\mathrm{b}} \rightarrow \Lambda^{+}{ }_{\mathrm{c}} \mu^{-} \mathrm{v}_{\mu}$ in high q^{2} reaion \rightarrow there FF calculations from theorv are most precise

Analysis Strategy $\quad \Lambda_{b} \rightarrow p \mu^{-} \nu_{\mu}$

- Determine yields of $\Lambda_{b} \rightarrow \mathrm{p} \mu^{-} \mathrm{v} \mu$ and $\Lambda_{\mathrm{b}} \rightarrow\left(\Lambda_{\mathrm{c}}^{+} \rightarrow \mathrm{pK}^{-} \pi^{+}\right) \mu^{-} \mathrm{v}_{\mu}$
- Estimate relative experimental efficiency with high precision
- Measuring B.F:

$$
\frac{\mathcal{B}\left(\Lambda_{b} \rightarrow p \mu^{-} \nu_{\mu}\right)_{q^{2}>15 \mathrm{GeV}^{2}}^{\mathcal{B}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}\right)_{q^{2}>7 \mathrm{GeV}^{2}}}=(1.00 \pm 0.04(\text { stat }) \pm 0.08(\text { syst })) \times 10^{-2} .2{ }^{2} .}{}
$$

with

$$
\frac{\mathcal{B}\left(\Lambda_{b} \rightarrow p \mu^{-} \nu_{\mu}\right)}{\mathcal{B}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}\right)}=R_{\mathrm{FF}} \times \frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}} \text { with } R_{\mathrm{FF}}=0.68 \pm 0.07
$$

implies

$$
\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=0.083 \pm 0.004(\text { exp. }) \pm 0.004(\text { theo.) }
$$

using $W A I V_{c b} I=(39.5 \pm 0.8) \times 10^{-3}$ gives

$$
\left|V_{u b}\right|=\left(3.27 \pm 0.15(\text { exp. }) \pm 0.16(\text { theo. }) \pm 0.06\left(\left|V_{c b}\right|\right)\right) \times 10^{-3}
$$

