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There is a tension of 3.7σ for the muon aµ = (gµ − 2)/2:

aEXP
µ − aSMµ = 27.4 (2.7)︸︷︷︸

HVP

(2.6)︸︷︷︸
HLbL

(0.1)︸︷︷︸
other

(6.3)︸︷︷︸
EXP

×10−10

HVP

HLbL

2019: δaEXP
µ → 4.5× 10−10 (avg. of BNL/estimate of 2019 Fermilab result)

Targeted final uncertainty of Fermilab E989: δaEXP
µ → 1.6× 10−10

⇒ by 2019 consolidate HVP/HLbL, over the next years uncertainties to O(1× 10−10)

Also: In few years independent experimental result from J-PARC E34
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There is also a tension of −2.4σ for the muon ae = (ge − 2)/2:

aEXP
e − aSMe = −87 (28)︸︷︷︸

EXP

(23)︸︷︷︸
α

(02)︸︷︷︸
SM

×10−14 ,

��*

Gabrielse group 2008 6

Müller group 2018

SM uncertainty far from dominant, however, check of five-loop QED
calculation by Aoyama/Kinoshita/Nio is desirable (and a six-loop
approximate answer?)

Possible future progress by lattice methods:

I Numerical Stochastic Perturbation Theory Burgio et al. 1998

I Diagrammatic Monte-Carlo Prokof’ev & B.V.Svistunov 1998
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Status of hadronic vacuum polarization (HVP)



Status of HVP determinations

No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

Mainz 2019
FNAL/HPQCD/MILC 2019

SK 2019
ETMC 2018

RBC/UKQCD 2018
BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013
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Dispersive method - Overview

e+

e−

γ e+e− → hadrons(γ)

Jµ = V I=1,I3=0
µ + V I=0,I3=0

µ

τ → νhadrons(γ)

Jµ = V I=1,I3=±1
µ − AI=1,I3=±1

µ

ν

τ W

Knowledge of isospin-breaking corrections and separation of vector and axial-vector
components needed to use τ decay data.

Can have both energy-scan and ISR setup.
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Dispersive method - e+e− status

Recent results by Keshavarzi et al. 2018, Davier et al. 2017:

Channel This work (KNT18) DHMZ17 [78] Di↵erence
Data based channels (

p
s  1.8 GeV)

⇡0� (data + ChPT) 4.58 ± 0.10 4.29 ± 0.10 0.29
⇡+⇡� (data + ChPT) 503.74 ± 1.96 507.14 ± 2.58 �3.40
⇡+⇡�⇡0 (data + ChPT) 47.70 ± 0.89 46.20 ± 1.45 1.50
⇡+⇡�⇡+⇡� 13.99 ± 0.19 13.68 ± 0.31 0.31
⇡+⇡�⇡0⇡0 18.15 ± 0.74 18.03 ± 0.54 0.12
(2⇡+2⇡�⇡0)no ⌘ 0.79 ± 0.08 0.69 ± 0.08 0.10
3⇡+3⇡� 0.10 ± 0.01 0.11 ± 0.01 �0.01
(2⇡+2⇡�2⇡0)no ⌘! 0.77 ± 0.11 0.72 ± 0.17 0.05
K+K� 23.00 ± 0.22 22.81 ± 0.41 0.19
K0

SK0
L 13.04 ± 0.19 12.82 ± 0.24 0.22

KK⇡ 2.44 ± 0.11 2.45 ± 0.15 �0.01
KK2⇡ 0.86 ± 0.05 0.85 ± 0.05 0.01
⌘� (data + ChPT) 0.70 ± 0.02 0.65 ± 0.02 0.05
⌘⇡+⇡� 1.18 ± 0.05 1.18 ± 0.07 0.00
(⌘⇡+⇡�⇡0)no ! 0.48 ± 0.12 0.39 ± 0.12 0.09
⌘2⇡+2⇡� 0.03 ± 0.01 0.03 ± 0.01 0.00
⌘! 0.29 ± 0.02 0.32 ± 0.03 �0.03
!(! ⇡0�)⇡0 0.87 ± 0.02 0.94 ± 0.03 �0.07
⌘� 0.33 ± 0.03 0.36 ± 0.03 �0.03
�! unaccounted 0.04 ± 0.04 0.05 ± 0.00 �0.01
⌘!⇡0 0.10 ± 0.05 0.06 ± 0.04 0.04
⌘(! npp)KK̄no �!KK̄ 0.00 ± 0.01 0.01 ± 0.01 � 0.01*

Estimated contributions (
p

s  1.8 GeV)
(⇡+⇡�3⇡0)no ⌘ 0.40 ± 0.04 0.35 ± 0.04 0.05
(⇡+⇡�4⇡0)no ⌘ 0.12 ± 0.12 0.11 ± 0.11 0.01
KK3⇡ � 0.02 ± 0.01 � 0.03 ± 0.02 0.01
!(! npp)2⇡ 0.08 ± 0.01 0.08 ± 0.01 0.00
!(! npp)3⇡ 0.10 ± 0.02 0.36 ± 0.01 �0.26
!(! npp)KK 0.00 ± 0.00 0.01 ± 0.00 �0.01
⌘⇡+⇡�2⇡0 0.03 ± 0.01 0.03 ± 0.01 0.00

Other contributions
J/ 6.26 ± 0.19 6.28 ± 0.07 �0.02
 0 1.58 ± 0.04 1.57 ± 0.03 0.01
⌥(1S � 4S) 0.09 ± 0.00 - 0.09**

Contributions by energy region
1.8  p

s  3.7 GeV 34.54 ± 0.56 (data) 33.45 ± 0.65 (pQCD)*** 1.09
3.7  p

s  5.0 GeV 7.33 ± 0.11 (data) 7.29 ± 0.03 (data) 0.04
5.0  p

s  9.3 GeV 6.62 ± 0.10 (data) 6.86 ± 0.04 (pQCD) �0.24
9.3  p

s  12.0 GeV 1.12 ± 0.01 (data+pQCD) 1.21 ± 0.01 (pQCD) �0.09
12.0  p

s  40.0 GeV 1.64 ± 0.00 (pQCD) 1.64 ± 0.00 (pQCD) 0.00
> 40.0 GeV 0.16 ± 0.00 (pQCD) 0.16 ± 0.00 (pQCD) 0.00

Total 693.3 ± 2.5 693.1 ± 3.4 0.2

*DHMZ have not removed the decay of ⌘ to pionic states which incurs a double counting of this
contribution with the KKn⇡ channels.

**DHMZ include the contributions from the ⌥ resonances in the energy region 9.3  p
s  12.0 GeV.

***DHMZ have inflated errors to account for di↵erences between data and pQCD.

Table 5: Comparison of the contributions to ahad, LO VP
µ calculated by DHMZ17 and in this work

(KNT18), where all results are given in units ahad, LO VP
µ ⇥ 1010. The first column indicates the

final state or individual contribution, the second column gives the KNT18 estimate, the third
column states the DHMZ17 estimate and the last column gives the di↵erence between the two
evaluations. For the final states in this work that have low energy contributions estimated from
chiral perturbation theory (see [7]), the contributions from these regions have been added to the
contributions from the respective data.
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Channel This work (KNT18) DHMZ17 [78] Di↵erence
Data based channels (

p
s  1.8 GeV)
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⇡+⇡� (data + ChPT) 503.74 ± 1.96 507.14 ± 2.58 �3.40
⇡+⇡�⇡0 (data + ChPT) 47.70 ± 0.89 46.20 ± 1.45 1.50
⇡+⇡�⇡+⇡� 13.99 ± 0.19 13.68 ± 0.31 0.31
⇡+⇡�⇡0⇡0 18.15 ± 0.74 18.03 ± 0.54 0.12
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(2⇡+2⇡�2⇡0)no ⌘! 0.77 ± 0.11 0.72 ± 0.17 0.05
K+K� 23.00 ± 0.22 22.81 ± 0.41 0.19
K0
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L 13.04 ± 0.19 12.82 ± 0.24 0.22

KK⇡ 2.44 ± 0.11 2.45 ± 0.15 �0.01
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⌘� (data + ChPT) 0.70 ± 0.02 0.65 ± 0.02 0.05
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⌘2⇡+2⇡� 0.03 ± 0.01 0.03 ± 0.01 0.00
⌘! 0.29 ± 0.02 0.32 ± 0.03 �0.03
!(! ⇡0�)⇡0 0.87 ± 0.02 0.94 ± 0.03 �0.07
⌘� 0.33 ± 0.03 0.36 ± 0.03 �0.03
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⌘!⇡0 0.10 ± 0.05 0.06 ± 0.04 0.04
⌘(! npp)KK̄no �!KK̄ 0.00 ± 0.01 0.01 ± 0.01 � 0.01*
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(⇡+⇡�3⇡0)no ⌘ 0.40 ± 0.04 0.35 ± 0.04 0.05
(⇡+⇡�4⇡0)no ⌘ 0.12 ± 0.12 0.11 ± 0.11 0.01
KK3⇡ � 0.02 ± 0.01 � 0.03 ± 0.02 0.01
!(! npp)2⇡ 0.08 ± 0.01 0.08 ± 0.01 0.00
!(! npp)3⇡ 0.10 ± 0.02 0.36 ± 0.01 �0.26
!(! npp)KK 0.00 ± 0.00 0.01 ± 0.00 �0.01
⌘⇡+⇡�2⇡0 0.03 ± 0.01 0.03 ± 0.01 0.00

Other contributions
J/ 6.26 ± 0.19 6.28 ± 0.07 �0.02
 0 1.58 ± 0.04 1.57 ± 0.03 0.01
⌥(1S � 4S) 0.09 ± 0.00 - 0.09**

Contributions by energy region
1.8  p

s  3.7 GeV 34.54 ± 0.56 (data) 33.45 ± 0.65 (pQCD)*** 1.09
3.7  p

s  5.0 GeV 7.33 ± 0.11 (data) 7.29 ± 0.03 (data) 0.04
5.0  p

s  9.3 GeV 6.62 ± 0.10 (data) 6.86 ± 0.04 (pQCD) �0.24
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s  12.0 GeV 1.12 ± 0.01 (data+pQCD) 1.21 ± 0.01 (pQCD) �0.09
12.0  p

s  40.0 GeV 1.64 ± 0.00 (pQCD) 1.64 ± 0.00 (pQCD) 0.00
> 40.0 GeV 0.16 ± 0.00 (pQCD) 0.16 ± 0.00 (pQCD) 0.00

Total 693.3 ± 2.5 693.1 ± 3.4 0.2

*DHMZ have not removed the decay of ⌘ to pionic states which incurs a double counting of this
contribution with the KKn⇡ channels.

**DHMZ include the contributions from the ⌥ resonances in the energy region 9.3  p
s  12.0 GeV.

***DHMZ have inflated errors to account for di↵erences between data and pQCD.

Table 5: Comparison of the contributions to ahad, LO VP
µ calculated by DHMZ17 and in this work

(KNT18), where all results are given in units ahad, LO VP
µ ⇥ 1010. The first column indicates the

final state or individual contribution, the second column gives the KNT18 estimate, the third
column states the DHMZ17 estimate and the last column gives the di↵erence between the two
evaluations. For the final states in this work that have low energy contributions estimated from
chiral perturbation theory (see [7]), the contributions from these regions have been added to the
contributions from the respective data.
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Good agreement for total, individual channels disagree to some degree.
Muon g-2 Theory Initiative workshops recently held at Fermilab,
KEK, UConn, and Mainz, intend to facilitate discussions and further
understanding of these tensions. Whitepaper in preparation.

One difference: treatment of correlations, impactful in particular in case
when not all experimental data agrees
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https://indico.him.uni-mainz.de/event/11/


Dispersive method - e+e− status

Tension in 2π experimental input. BaBar and KLOE central values differ by
δaµ = 9.8(3.5)× 10−10, compare to quoted total uncertainties of dispersive results of
order δaµ = 3× 10−10.

 360  365  370  375  380  385  390  395

aµ
π+π−

 (0.6 ≤ �√s ≤ 0.9 GeV) x 1010

Fit of all π+π− data: 369.41 ± 1.32

Direct scan only: 370.77 ± 2.61

KLOE combination: 366.88 ± 2.15

BaBar (09): 376.71 ± 2.72

BESIII (15): 368.15 ± 4.22

Figure 4: The comparison of the integration of the individual radiative return measurements and the
combination of direct scan ⇡+⇡� measurements between 0.6  p

s  0.9 GeV.
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Figure 5: Contributing data in the ⇢ resonance region of the ⇡+⇡� channel plotted against the new fit
of all data (left panel), with an enlargement of the ⇢� ! interference region (right panel).

error instead of a global one is clearly visible. Tensions arise in particular in the ⇢ resonance
region, where the cross section is large.

The full combination of all ⇡+⇡� data is found to give

a⇡
+⇡�

µ [0.305  p
s  1.937 GeV] = 502.97 ± 1.14 ± 1.59 ± 0.06 ± 0.14

= 502.97 ± 1.97 (3.3)

and
�↵⇡+⇡�(M2

Z)[0.305  p
s  1.937 GeV] = 34.26 ± 0.12 . (3.4)
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Conflicting input limits the precision and reliability of the dispersive results.

Looking for more data and insight: energy-scans update from CMD-3 in Novosibirsk
and ISR updates from KLOE2, BaBar, Belle, BESIII and BelleII. (For a BaBar update,
see talk by M. Ebert, Tue 5:30pm.)
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Dispersive method - τ status
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Fig. 7. Fit of the pion form factor from 4m2
⇡ to 0.3 GeV2 using a third order expansion with the constraint

F (0) = 1 and using the measured pion charge radius-squared from space-like data. The result of the fit is
integrated only up to 0.13 GeV2. This figure supersedes the corresponding plot in Fig. 4 of [9].

ahad,LO
µ [⇡⇡, ⌧ ] (10�10)

Experiment
2m⇡± � 0.36 GeV 0.36 � 1.8 GeV

ALEPH 9.80 ± 0.40 ± 0.05 ± 0.07 501.2 ± 4.5 ± 2.7 ± 1.9
CLEO 9.65 ± 0.42 ± 0.17 ± 0.07 504.5 ± 5.4 ± 8.8 ± 1.9
OPAL 11.31 ± 0.76 ± 0.15 ± 0.07 515.6 ± 9.9 ± 6.9 ± 1.9
Belle 9.74 ± 0.28 ± 0.15 ± 0.07 503.9 ± 1.9 ± 7.8 ± 1.9

Combined 9.82 ± 0.13 ± 0.04 ± 0.07 506.4 ± 1.9 ± 2.2 ± 1.9

Table 6. The isospin-breaking-corrected ahad,LO
µ [⇡⇡, ⌧ ] (in units of 10�10) from the measured mass spectrum by

ALEPH, CLEO, OPAL and Belle, and the combined spectrum using the corresponding branching fraction values.
The results are shown separately in two di↵erent energy ranges. The first errors are due to the shapes of the mass
spectra, which also include very small contributions from the ⌧ -mass and |Vud| uncertainties. The second errors
originate from B⇡⇡0 and Be, and the third errors are due to the isospin-breaking corrections, which are partially
anti-correlated between the two energy ranges. The last row gives the evaluations using the combined spectra.
This table supersedes the corresponding results shown in Table 2 of [9].

8 Conclusions

The ALEPH non-strange spectral functions from hadronic ⌧ decays have been updated using a new
method to unfold the measured mass spectra from detector e↵ects. The new method provides a more
accurate unfolding and corrects a problem in the correlation matrix of the published spectral functions [3].
The updated spectral functions have been used to repeat the analyses of [3]: a phenomenological fit to
the ⇡⇡0 mass spectrum, a QCD analysis using the vector, axial-vector, and total non-strange spectral
functions, and the computation of the hadronic contribution to the anomalous magnetic moment of the
muon. The results obtained, although similar in most cases, supersede those reported in Ref. [3].

We thank the former ALEPH Collaboration for providing the original data used in this re-analysis.

References
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Davier et al. 2013: ahad,LO
µ [ππ, τ ] = 516.2(3.5)× 10−10 (2m±π – 1.8 GeV)

Compare to e+e−:

I ahad,LO
µ [ππ, e+e−] = 507.1(2.6)× 10−10 (DHMZ17, 2m±π – 1.8 GeV)

I ahad,LO
µ [ππ, e+e−] = 503.7(2.0)× 10−10 (KNT18, 2m±π – 1.937 GeV)

Here treatment of isospin-breaking to relate matrix elements of V I=1,I3=1
µ to V I=1,I3=0

µ

crucial. Progress towards a first-principles calculation from LQCD+QED
(arXiv:1811.00508).
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Lattice QCD

I Simulate QFT in terms of fundamental quarks and gluons
(QCD) on a supercomputer with discretized four-dimensional
space-time lattice

I Hadrons are emergent phenomena of statistical average over
background gluon configurations to which quarks are coupled

I In this framework draw diagrams only with respect to quarks,
photons, and leptons; gluons and their effects are generated
by the statistical average.

Lattice QCD action density, Leinweber, CSSM,
Adelaide, 2003
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Euclidean Space Representation

Starting from the vector current Jµ(x) = i
∑

f Qf Ψf (x)γµΨf (x) we may
write

aHVP LO
µ =

∞∑

t=0

wtC (t)

with

C (t) =
1

3

∑

~x

∑

j=0,1,2

〈Jj(~x , t)Jj(0)〉

and wt capturing the photon and muon part of the HVP diagrams.

The correlator C (t) is computed in lattice QCD+QED at physical pion
mass with non-degenerate up and down quark masses including up,
down, strange, charm, and bottom quark contributions.
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Statistical variance of correlator

〈J(t)J(0)〉

is itself a correlation function

σ2(t) = 〈J(t)2J(0)2〉 − 〈J(t)J(0)〉2 .

While C (t) ∝ e−mρt (vector channel), σ2(t) ∝ e−mπt (pseudoscalar
channel). Therefore signal-to-noise is exponentially bad for large t.

C(t) is, however, very precise for shorter Euclidean times t (on order of
1− 2 fm)
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Lattice+R-ratio to replace part of ππ data (RBC/UKQCD 2018)

We therefore also consider a window method

aµ = aSDµ + aWµ + aLDµ

with

aSDµ =
∑

t

C (t)wt [1−Θ(t, t0,∆)] ,

aWµ =
∑

t

C (t)wt [Θ(t, t0,∆)−Θ(t, t1,∆)] ,

aLDµ =
∑

t

C (t)wtΘ(t, t1,∆) ,

Θ(t, t ′,∆) = [1 + tanh [(t − t ′)/∆]] /2 .

In this version of the calculation, we use
C (t) = 1

12π2

∫∞
0

d(
√
s)R(s)se−

√
st with R(s) = 3s

4πα2σ(s, e+e− → had)
to compute aSDµ and aLDµ and Lattice QCD+QED for aWµ .
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How does this translate to the time-like region?
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BaBar (09): 376.71 ± 2.72
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Figure 4: The comparison of the integration of the individual radiative return measurements and the
combination of direct scan ⇡+⇡� measurements between 0.6  p
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Figure 5: Contributing data in the ⇢ resonance region of the ⇡+⇡� channel plotted against the new fit
of all data (left panel), with an enlargement of the ⇢� ! interference region (right panel).

error instead of a global one is clearly visible. Tensions arise in particular in the ⇢ resonance
region, where the cross section is large.

The full combination of all ⇡+⇡� data is found to give

a⇡
+⇡�

µ [0.305  p
s  1.937 GeV] = 502.97 ± 1.14 ± 1.59 ± 0.06 ± 0.14

= 502.97 ± 1.97 (3.3)

and
�↵⇡+⇡�(M2

Z)[0.305  p
s  1.937 GeV] = 34.26 ± 0.12 . (3.4)
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Supplementary Information – S1

SUPPLEMENTARY MATERIAL

In this section we expand on a selection of technical de-
tails and add results to facilitate cross-checks of di↵erent
calculations of aHVP LO

µ .

Continuum limit: The continuum limit of a selec-
tion of light-quark window contributions aW

µ is shown in
Fig. 8. We note that the results on the coarse lattice di↵er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a⇤)2 = 0.05 with ⇤ = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014

x 
10

-1
0

a2 / fm2

t0 = 0.4, t1 = 0.9, Light
t0 = 0.4, t1 = 1.0, Light
t0 = 0.4, t1 = 1.1, Light

FIG. 8. Continuum limit of light-quark aW
µ with t0 = 0.4 fm

and � = 0.15 fm.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

x 
10

-1
0

t / fm

C(t) wtC(t) wt θ(t,1.5fm,0.15fm)
C(t) wt [1-θ(t,0.4fm,0.15fm)]

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

 0.1  1  10  100
sqrt(s) / GeV

Σt C(t) wt
Σt C(t) wt θ(t,1.5fm,0.15fm)

Σt C(t) wt [1-θ(t,0.4fm,0.15fm)]

FIG. 9. Window of R-ratio data in Euclidean position space
(top) and the e↵ect of the window in terms of re-weighting
energy regions (bottom).

may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ππ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.
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Status of HVP determinations

No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

Mainz 2019
FNAL/HPQCD/MILC 2019

SK 2019
ETMC 2018

RBC/UKQCD 2018
BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013

610 630 650 670 690 710 730 750

Lattice + R-ratio

Lattice

R-ratio

aµ × 1010
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Conclusions and Outlook

I Target precision for HVP is of O(1× 10−10) in a few years; for now
consolidate error at O(3× 10−10)

I Dispersive result from e+e− → hadrons right now is at 3× 10−10

but limited by experimental tensions

I Two-pion channel from DHMZ17, KNT18 (e+e−) and DHMYZ13
(τ) are scattered by 12.5× 10−10

Experimental updates and first-principles calculation of
isospin-breaking corrections desirable. Combination of dispersive
and lattice results can in short term lessen dependence on contested
experimental data.

I Lattice efforts by many groups, results at physical pion mass, QED,
SIB corrections available. New methods to reduce statistical and
systematic errors.

I By end of this year, first-principles lattice result could have error of
O(5× 10−10)

I In a few years, new spacelike measurements from MUonE
experiment (t-channel scattering) may be available
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Status of hadronic light-by-light contribution
(HLbL)



Current HLbL value is model estimate

Contributions to aHLbL
µ × 1010

PdRV09 JN09 FJ17
π0, η, η′ 11.4(1.3) 9.9(1.6) 9.5(1.2)
π,K loops -1.9(1.9) -1.9(1.3) -2.0(5)
axial-vector 1.5(1.0) 2.2(5) 0.8(3)

scalar -0.7(7) -0.7(2) -0.6(1)
quark loops 0.2 (charm) 2.1(3) 2.2(4)

tensor 0.1(0)
NLO 0.3(2)
Total 10.5(4.9) 11.6(3.9) 10.3(2.9)

10.5(2.6) (quadrature)

Potential double-counting and ad-hoc uncertainties
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Two new avenues for a model-independent value for the HLbL

�
����

H
HHHj

Dispersive analysis +
Experimental/lattice input Direct lattice calculation

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]

Q21,2 =
Σ

3

(
1 − r

2
cos φ ∓ r

2
√
3 sin φ

)
, Q23 =

Σ

3
(1 + r cosφ) . ���

There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −Fπ0γ∗γ∗

(−Q21,−Q22
)Fπ0γ∗γ∗

(−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −Fπ0γ∗γ∗

(−Q21,−Q23
)Fπ0γ∗γ∗

(−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher

4
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Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by
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where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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. . .

Truncation of cuts and states
7 quark-level topologies
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Dispersive analysis



JHEP 1509 (2015) 074: Colangelo, Hoferichter, Procura, Stoffer

I Start with four-point function

1 Introduction
The anomalous magnetic moment of the muon (g − 2)µ has been measured [1] and computed to
very high precision of about 0.5 ppm (see e.g. [2]). For more than a decade, a discrepancy has
persisted between the experiment and the Standard Model prediction, now of about 3σ. Forthcoming
measurements at FNAL [3] and J-PARC [4] will update the experimental value. The aim is to increase
the precision by a factor of 4 and check for systematic errors.
The main uncertainty of the theory prediction is due to strong interaction effects. At present, the

largest error arises from hadronic vacuum polarisation, which, however, forthcoming data from e+e−
experiments [2] may help reduce. Thus in a few years, the subleading1 hadronic light-by-light contri-
bution might dominate the theory error. In present calculations of the HLbL contribution, systematic
errors are difficult, if not impossible, to quantify, due to model dependence. A new strategy is required
to provide a solid estimate of the theory uncertainties and reduce them. Lattice QCD is making re-
markable progress in this direction, and may play a leading rROH LQ WKLV ¿HOG LQ WKH QHDU IXWXUH >�±��@�
,Q >��� ��@� ZH KDYH SUHVHQWHG WKH ¿UVW GLVSHUVLYH GHVFULSWLon of the HLbL tensor.2 By making use
of the fundamental principles of unitarity, analyticity, crossing symmetry, and gauge invariance, we
provide an approach that reduces model dependence and allows for a more data-driven determination
of the HLbL contribution to (g − 2)µ.
Here, we report on a several improvements of our dispersive fUDPHZRUN >��±��@� :H KDYH FRQ�

structed a generating set of Lorentz structures for the HLbL tensor that is free of kinematic singu-
ODULWLHV DQG ]HURV� 7KLV VLPSOL¿HV VLJQL¿FDQWO\ WKH FDOFXOation of the HLbL contribution to (g − 2)µ.
:LWKLQ RXU GLVSHUVLYH IRUPDOLVP� WKH GH¿QLWLRQV RI ERWK WKH pion-pole and pion-box topologies are
unambiguous. By constructing a Mandelstam representation for the scalar functions, we prove that
the box topologies coincide with the scalar-QED (sQED) contribution multiplied by pion vector form
factors. Here we present a numerical evaluation of the pion bR[ XVLQJ D IRUP IDFWRU ¿W WR KLJK�VWDWLVWLFV
data, in turn using a dispersive representation to analytically continue the time-like data into the space-
like region required for the (g − 2)µ integral and show that this contribution can be calculated with
QHJOLJLEOH XQFHUWDLQWLHV� :H WKHQ SUHVHQW D ¿UVW QXPHULFDO evaluation of S -wave ππ-rescattering ef-
fects, which unitarize the pion-pole contribution to γ∗γ∗ → ππ� 7KLV FRQVWLWXWHV WKH ¿UVW VWHS WRZDUGV
a full treatment of the γ∗γ∗ → ππ SDUWLDO ZDYHV >��±��@� ,Q SDUWLFXODU� RXU FDOFXODWLRQ VHWWles the role
of the pion polarizability, which enters at next-to-leading order in the chiral expansion of the HLbL
DPSOLWXGH >��±��@ DQG KDV EHHQ VXVSHFWHG WR SURGXFH VL]DEOH corrections in [24].

2 Lorentz structure of the HLbL tensor
In order to study the HLbL contribution to (g−2)µ, we need a description of the HLbL tensor, namely
the hadronic Green’s function of four light-quark electromagnetic currents, evaluated in pure QCD:

Πµνλσ(q1, q2, q3) = −i
∫
d4x d4y d4z e−i(q1 ·x+q2·y+q3·z)⟨0|T { jµem(x) jνem(y) jλem(z) jσem(0)}|0⟩. (1)

Gauge invariance requires the HLbL tensor to satisfy the Ward-Takahashi (WT) identities

{qµ1, qν2, qλ3, qσ4 }Πµνλσ(q1, q2, q3) = 0, (2)

where q4 = q1 + q2 + q3. The HLbL tensor can be written a priori in terms of 138 basic Lorentz
structures built out of the metric tensor and the four-momenWD >��@� 2XU ¿UVW WDVN LV WR ZULWH WKH

1Even higher-order hadronic contributions have been considered in [5, 6].
2A different approach, which aims at a dispersive description of the muon vertex function instead of the HLbL tensor, has

been presented in [16].

2
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I A-priori 138 basic Lorentz structures (compare to 2 for HVP)

I Gauge invariance imposes 95 linear relations

I Special care needs to be taken (Tarrach) such that the resulting
scalar functions are free of kinematic singularities that would
complicate a dispersive discussion; a redundant basis satisfying this
following Bardeen, Tung, and Tarrach with 54 elements can be
chosen

I Crossing symmetry imposes additional constraints such that only 7
distinct structures remain
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Organizing principle: systematic cuts and state truncation

I Estimate of truncation of this procedure is crucial and still being
developed; ideas to use lattice for this are being explored (RBC
2018)

I Dominant contributions from pion-pole (needs π → γ∗γ∗ form
factors)

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]

Q21,2 =
Σ

3

(
1 − r

2
cosφ ∓ r

2
√
3 sin φ

)
, Q23 =

Σ

3
(1 + r cosφ) . ���

There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −Fπ0γ∗γ∗

(−Q21,−Q22
)Fπ0γ∗γ∗

(−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −Fπ0γ∗γ∗

(−Q21,−Q23
)Fπ0γ∗γ∗

(−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher

4
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I next leading contribution from two-pion states (box topologies)

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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)
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −Fπ0γ∗γ∗

(−Q21,−Q22
)Fπ0γ∗γ∗

(−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −Fπ0γ∗γ∗

(−Q21,−Q23
)Fπ0γ∗γ∗

(−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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Recent results

I PRD94(2016)074507 (Mainz): Pion-pole contribution

aπ−pole
µ = 6.50(83)× 10−10 using a model parametrization of the π → γ∗γ∗

form factor constrained by lattice data

4

Table I. Asymptotic behavior of the form factor for the di↵erent models (for LMD+V, eh1 = 0 is assumed). The last line
corresponds to the theoretical constraints discussed in the text.

F⇡0�⇤�⇤(0, 0) F⇡0�⇤�⇤(�Q2, 0) F⇡0�⇤�⇤(�Q2,�Q2)

VMD ↵ ↵M2
V /Q2 ↵M4

V /Q4

LMD ↵ ��/M2
V �2�/Q2

LMD+V ↵ �eh5/Q2 �2eh0/Q2

Eqs. (2) (4) (5) 1/(4⇡2F⇡) 2F⇡/Q2 2F⇡/(3Q2)

Again, one can set ↵ = 1/(4⇡2F⇡) to recover the anomaly constraint. The form factor behaves as 1/Q2 in the double-
virtual case and for � = �OPE = �F⇡/3 = �0.0308 GeV reproduces the leading OPE prediction, which is imposed
in the original LMD model by construction. On the other hand, the model does not reproduce the Brodsky-Lepage
behavior for the single-virtual form factor (4) but tends to a constant at large Euclidean momentum for the o↵-shell
photon. The original LMD model has no free parameters, but we will treat ↵,� and MV as free parameters in our
fits below.

Finally, in Ref. [40] the LMD+V model has been proposed as a refinement of the LMD model where a second
vector resonance (⇢0) is considered, see Ref. [17] for a recent brief review of the model. The LMD+V model can
simultaneously fulfill the Brodsky-Lepage and the leading OPE behavior. Using a slightly di↵erent parametrization
from Ref. [40], it can be written as

FLMD+V
⇡0�⇤�⇤ (q2

1 , q2
2) =

eh0 q2
1q2

2(q2
1 + q2

2) + eh1(q
2
1 + q2

2)2 + eh2 q2
1q2

2 + eh5 M2
V1

M2
V2

(q2
1 + q2

2) + ↵M4
V1

M4
V2

(M2
V1

� q2
1)(M2

V2
� q2

1)(M2
V1

� q2
2)(M2

V2
� q2

2)
. (8)

We have the relation eh1 = �(F⇡/3)h1, eh2 = �(F⇡/3)h̄2 and eh5 = �(F⇡/(3M2
V1

M2
V2

))h̄5 between the above

parametrization and the original model parameters hi (defined in the chiral limit) and h̄i (the latter parameters
include corrections proportional to powers of the pion mass). In the LMD+V model proposed in Ref. [40] only the
parameters hi (or h̄i) are treated as free parameters while the masses MV1

and MV2
are set equal to the physical masses

of the ⇢ and ⇢0 mesons. Furthermore the anomaly constraint is imposed, ↵ = 1/(4⇡2F⇡), as is the Brodsky-Lepage

behavior which leads to eh1 = 0. The form factor also has by construction the correct leading OPE behavior in the

double-virtual case when both photons carry large Euclidean momenta by setting eh0 = ehOPE
0 = �F⇡/3. As pointed

out in Ref. [41], the parameter h̄2 can be fixed by comparing with the subleading term in the OPE in Eq. (5). Finally
the parameter h̄5 has been determined in Ref. [40] by a fit to the CLEO data [19] for the single-virtual form factor.
One then obtains the model parameters

eh2 = 0.327 GeV3, [h̄2 = �4(M2
V1

+ M2
V2

) + (16/9)�2 = �10.63 GeV2], (9)

eh5 = (�0.166 ± 0.006) GeV, [h̄5 = (6.93 ± 0.26) GeV4]. (10)

Following Ref. [32], information on h̄5 can also be obtained from the decay ⇢+ ! ⇡+� (assuming octet symmetry)
which leads to the less precise determination h̄5 = (6.3 ± 0.9) GeV4 [40]. In our fits below, we will in principle treat

the parameters ↵,ehi and the masses MV1
and MV2

as free parameters. The additional factors M2
V1

M2
V2

in the term

with eh5 in the numerator in Eq. (8) will lead to more stable fits later.

A summary of the di↵erent asymptotic limits for each model and from the theory is given in Table. I.

III. METHODOLOGY

From this section on, we use Euclidean notation by default. In particular, time evolution is governed by e�H⌧

rather than e�iHt, and (Jµ)Minkowski = (J0,�iJk)Euclid. However the four-vectors q1 and q2 are always understood to

be Minkowskian, i.e. q2
1 = (q0

1)2 �P3
k=1(q

k
1 )2.

I JHEP1704(2017)161 (Colangelo et al.): Pion-box plus S-wave rescattering

aπ−box
µ + aππ,π−pole LHC ,J=0

µ = −2.4(1)× 10−10

I PRL121(2018)112002 (Hoferichter et al.); 1808.04823: Pion-pole contribution

aπ−pole
µ = 6.26(30)× 10−10 reconstructing π → γ∗γ∗ form factor from

e+e− → 3π, e+e−π0 and π0 → γγ width

Combining these results one finds: aπ−pole
µ + aπ−box

µ + aππµ = 3.9(3)× 10−10

ikely dominant missing terms: η, η′ pole: O(3× 10−10)

Compare to Glasgow consensus of aHLbL
µ = 10.5(2.6)× 10−10 which also models

contributions of heavier states and includes a matching with an high-energy quark
picture. Control of truncation error very important.
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Direct lattice calculation



7 quark-level topologies of direct lattice calculation

Hierarchy imposed by QED charges of dominant up- and down-quark contribution

Q4
u + Q4

d = 17/81 (Q2
u + Q2

d )2 = 25/81

(Q3
u + Q3

d )(Qu + Qd ) = 9/81

(Q2
u + Q2

d )(Qu + Qd )2 = 5/81

(Qu + Qd )4 = 1/81

Further insight for magnitude of individual topologies can be gained by studying
long-distance behavior of QCD correlation functions (Bijnens, RBC, . . .)
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Q4
u + Q4

d = 17/81 (Q2
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d )2 = 25/81
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d )(Qu + Qd ) = 9/81
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(Qu + Qd )4 = 1/81

Dominant diagrams in top row: connected and leading disconnected diagram

Further insight for magnitude of individual topologies can be gained by studying
long-distance behavior of QCD correlation functions (Bijnens, RBC, . . .)
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Finite-volume and infinite-volume formulations

I aHLbL
µ in finite-volume QCD and QED:

I PRD93(2016)014503 (RBC/UKQCD): Connected diagram with
mπ = 171 MeV; aHLbL

µ = 13.21(68)× 10−10

I PRL118(2017)022005 (RBC/UKQCD): Connected and leading
disconnected diagram with mπ = 139 MeV; aHLbL

µ = 5.35(1.35)× 10−10

(potentially large finite-volume systematics)

Strategy: extrapolate away 1/Ln (n ≥ 2) errors

I aHLbL
µ in finite-volume QCD and infinite-volume QED:

I Method proposed and successfully tested against the lepton-loop analytic
result: arXiv:1510.08384 (Mainz), arXiv:1609.08454 (Mainz)

I Similar method plus subtraction scheme to reduce systematic errors;
successfully tested against lepton-loop analytic result:
PRD96(2017)034515 (RBC/UKQCD)

Strategy: FV errors exponentially suppressed but still may be significant, effect
on noise?

At heavy pion mass of mπ ≈ 300 MeV, both groups have successfully cross-checked
the connected contribution (g-2 Theory Initiative Whitepaper)
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PRD93(2015)014503 (Blum, Christ, Hayakawa, Izubuchi, Jin, and CL):

New sampling strategy with 10x reduced noise for same cost (red versus black):

Mµ
LbL(q) remains constant, if we try to extract F2(q2) using Eq ???, the noise for F2(q2) would still

go like 1/ q. This can be a serious problem because we are really interested in the value of F2(q
2)

in the q→0 limit. Since we always evaluate the amplitude at q =2π/L, the noise for F2(q2) would
be proportion to L.

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

Figure 22. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. Just like Fig ???, 5 other possible permutations of the three internal photons are
not shown. (L) This is the diagram that we have already calculated. (M) We need to compute sequential
source propagators at xop for each polarizations of the external photon. (R) We also need to compuate
sequential source propagators at xop, but with the external photon momentum in opposite direction, since
we need use γ5-hermiticity to reverse the direction of the propagators, which reverses the momentum of the
external photon as well.

The reason that amplitude is proportion to q is the external photon is couple to a conserved
current of a quark loop. Current conservation ensures that the amplitude vanishes if the external
momentum is zero. Although we implemented exact conserved current at xop and sum it over the
entire space time in the method described above, we didn’t compute all three possible insertions for
the external photon. So the current is only truly conserved after stochastic average over x and y. As
a result, the noise would not be zero when q =0. To fix this, we just need to compute all diagrams
in above figure, then the noise would be proportion to q as well.1 These additional diagrams are
also computationally accessible. We only need to compute sequential propagators for each possible
polarizations and momentums of the external photon. We normally compute three polarization
directions x, y, and t, which are perpendicular to the direction of the external momentum z. This
would be six times more work for the quark loop part of the computation, but the cost for the
muon part remains unchanged. We can adjust M to rebalance the cost, so the over all cost increase
might not be significant but the potential gain can be large especially in a large volume.

There is also another trick. When we sum over z to get the exact photon, we don’t have to sum over
the entire volume, instead, we only sum over the region where |x− y |< |x−z | and |x− y |< |y −z |.2
This trick will enhance the signal in short distance but suppress signal and noise in long distance
where the distance. This trick is called MinDis in the tables blow.

4.1 Zero Total Current Prove

Here we try to prove that the sum of a conserved current is zero if it vanishes at the boundary.

Given:

∂µjµ = 0, (19)

1. Although the current conservation is exact, in finite lattice with periodic boundry condition, around the world
effects will contribute to the noise even when the external momentum is zero. But this noise is suppressed expo-
nentially in the large volume limit. In summary, in the small q and large volume limit, the noise is roughly
O(q)+ O

(
e−mπL/2

)
.

2. We need multiply some different factors when two edges happened to have the same length.

19

Figure 9. A comparison of the results for F2(q
2)/(α/π)3 obtained in the original lattice QCD

cHLbL calculation [17] (diamonds) with those obtained on the same gauge field ensemble using the

moment method presented here (circles). The points from the original subtraction method with

q2 = (2π/24)2 = (457MeV)2 were obtained from 100 configurations and the evaluation of 81,000

point-source quark propagators for each value of the source-sink separation tsep. In contrast, the

much more statistically precise results from the moment method required a combined 26,568 quark

propagator inversions for both values of tsep and correspond to q2 = 0. The moment method value

for tsep = 32 is listed in Tab. IX.

make use of the most effective of the numerical strategies discussed above: the use of exact

photon propagators and the position-space moment method to determine F2 evaluated at

q2 = 0. Since these calculations are less computationally costly than those for QCD we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [33, 34]. This QED calculation both

serves as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and non-zero-lattice-

spacing errors.

In Fig. 10 we show results for F2(0) computed for three different lattice spacings, i.e.

39

�
�
���

A
A
AAU

Stochastically evaluate the sum over vertices x and y :

I Pick random point x on lattice

I Sample all points y up to a specific distance r = |x − y |
I Pick y following a distribution P(|x − y |) that is peaked at short distances

22 / 26



PRL118(2016)022005 (Blum, Christ, Hayakawa, Izubuchi, Jin, Jung, and CL):

I Calculation at physical pion mass with finite-volume QED prescription (QEDL)
at single lattice cutoff of a−1 = 1.73 GeV and lattice size L = 5.5 fm.

I Connected diagram:

acHLbL
µ = 11.6(0.96)× 10−10

I Leading disconnected diagram:

adHLbL
µ = −6.25(0.80)× 10−10

I Large cancellation expected from pion-pole-dominance considerations is realized:
aHLbL
µ = acHLbL

µ + adHLbL
µ = 5.35(1.35)× 10−10

Potentially large systematics due to finite-volume QED!
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Preliminary results for infinite-volume extrapolation
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Preliminary results for infinite-volume extrapolation
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Data used for finite-volume result in PRL118(2016)022005
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Roadmap to complete first-principles light-by-light calculation

I Calculation of connected plus leading disconnected diagram at
physical pion mass completed

I Infinite-volume extrapolation done (to be published)

I Discretization errors are now controlled for (four different lattice
spacings over two different actions, to be published)

I Calculation of sub-leading disconnected diagrams, starting with 3-1
topology first results

I Crosscheck of dispersive versus lattice (see, e.g., arXiv:1712.00421)
desirable
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Summary



Summary

I By end of 2019, experimental uncertainty may be reduced to
O(5× 10−10) level

I By end of 2019, lattice QCD+QED results for HVP and HLbL with
O(5× 10−10) errors are likely available

I Combination of lattice+dispersive methods may reduce dependence
on conflicting input data (ππ) and help estimate truncation errors
for dispersive HLbL

I Dispersive HVP awaits updates for ππ channel

I Extensive checks within dispersive results are currently being
performed as part of g-2 Theory Initiative

I g-2 Theory Initiative Whitepaper to be released before Fermilab
E989 result
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We present a first-principles lattice QCDþ QED calculation at physical pion mass of the leading-order
hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total
contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects
is aHVP LO

μ ¼ 715.4ð18.7Þ × 10−10. By supplementing lattice data for very short and long distances with
R-ratio data, we significantly improve the precision to aHVP LO

μ ¼ 692.5ð2.7Þ × 10−10. This is the currently
most precise determination of aHVP LO

μ .

DOI: 10.1103 /PhysRevLett.121.022003

Introduction.—The anomalous magnetic moment of the
muon aμ is defined as the deviation of the Landé factor gμ
from Dirac’s relativistic quantum mechanics result,
aμ ¼ ½ðgμ − 2Þ=2&. It is one of themost precisely determined
quantities in particle physics and is currently known both
experimentally (BNL E821) [1] and from a standard model
theory calculation [2] to approximately1=2parts permillion.
Interestingly, the standard model result aSMμ deviates

from the experimental measurement aexptμ at the 3–4σ level,
depending on which determination of the leading-order
hadronic vacuum polarization aHVP LO

μ is used. One finds
[3 –6]

aexptμ − aSMμ ¼ 25.0ð4.3Þð2.6Þð6.3Þ × 10−10 ½3; 4&;
31.8ð4.1Þð2.6Þð6.3Þ × 10−10 ½4; 5&;
26.8ð3.4Þð2.6Þð6.3Þ × 10−10 ½4; 6&; ð1Þ

where the quoted errors correspond to the uncertainty in
aHVP LO
μ , aSMμ − aHVP LO

μ , and aexptμ . This tension may hint at
new physics beyond the standard model of particle physics
such that a reduction of uncertainties in Eq. (1) is highly
desirable. New experiments at Fermilab (E989) [7] and
J-PARC (E3 4) [8] intend to decrease the experimental

uncertainty by a factor of 4. First results of the E989
experiment may be available before the end of 2018 [9]
such that a reduction in uncertainty of the aHVP LO

μ con-
tribution is of timely interest.
In the following, we perform a complete first-principles

calculation of aHVP LO
μ in lattice QCDþ QED at physical

pion mass with nondegenerate up and down quark masses
and present results for the up, down, strange, and charm
quark contributions. Our lattice calculation of the light-
quark QED correction to aHVP LO

μ is the first such calcu-
lation performed at physical pion mass. In addition, we
replace lattice data at very short and long distances by
experimental eþe− scattering data using the compilation of
Ref. [10], which allows us to produce the currently most
precise determination of aHVP LO

μ .
Computational method.—The general setup of our non-

perturbative lattice computation is described in Ref. [11].
We compute

aμ ¼ 4α2
Z

∞

0
dq2fðq2Þ½Πðq2Þ − Πðq2 ¼ 0Þ&; ð2Þ

where fðq2Þ is a known analytic function [11] and Πðq2Þ is
defined as

P
xe

iqxhJμðxÞJνð0Þi ¼ ðδμνq2 − qμqνÞΠðq2Þ
with sum over space-time coordinate x and JμðxÞ ¼
i
P

f Q fΨ̄fðxÞγμΨfðxÞ. The sum is over up, down, strange,
and charm quark flavors with QED charges Q up;charm ¼ 2=3
and Q down;strange ¼ −1=3. For convenience we do not
explicitly write the superscript HVP LO. We compute
Πðq2Þ using the kernel function of Refs. [12,13 ]
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This method allows us to reduce HVP uncertainty over next years to δaLO HVP
µ ∼ 1× 10−10, below Fermilab

E989 uncertainty



Computing resources

The RBC/UKQCD g − 2 project has used on the order of 109 core hours
(100k years on a single core) on the Mira supercomputer at Argonne,
USQCD clusters at JLab and BNL, the BNL CSI KNL cluster, and the
Oakforest and Hokusai supercomputers in Japan.

We have processed on the order of 5 petabytes of QCD data related to
this project.

10 PFLOPS

Next generation of runs on Summit in preparation
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