# **Top Quark Flavour Physics**

FPCP 2019 06-10 May, Victoria, Canada

### Mohammad J. Kareem on behalf of the ATLAS and CMS collaborations









### Why Studying Top Quark Properties?

- Heaviest fundamental particle discovered so far  $\rightarrow m_t \approx 173 \text{ GeV}$
- Extremely short lifetime  $\rightarrow$  a unique opportunity to study a bare quark
- Strong coupling to Higgs → special role in the Standard Model
- A portal to new physics?
- High production rate at the LHC  $\rightarrow$  precision measurements and detailed studies of properties



### **Top Quark Properties**





### **Top Quark Mass Measurement**



#### **Measurement strategies**

- Direct: Using the decay products of the top quark
- Indirect: Using cross sections or unfolded distributions and compare with theory predictions

#### **Direct** measurement @8TeV, Combination of 7 & 8 TeV

- top mass measurement in I+jets channel @8TeV
- Analysis technique: three-dimensional template fit
  - events are reconstructed via kinematic likelihood fit
  - (*m*<sub>top</sub>)<sup>reco</sup>, (*m*<sub>W</sub>)<sup>reco</sup>, (*R*<sub>bq</sub>)<sup>reco</sup> =sum(pTb-jets)/sum(pT light-jets)
  - simultaneous fit for  $m_{top}$  for and energy scale factors

 $(JSF, bJSF) \rightarrow$  reduces the total uncertainty in  $m_{top}$ 

 $m_{top} = 172.08 \pm 0.39(stat) \pm 0.82(syst) \text{ GeV}$ 

- Dominant systematics: JES, b-tagging
- Combination with previous measurements:  $m_{top} = 172.69 \pm 0.25 \text{ (stat)} \pm 0.41 \text{ (syst) GeV}$ Total uncertainty: 0.48 GeV ( $\Delta = 0.28\%$ )



### **Top Quark Mass Measurement**



### **Indirect** measurements @13TeV

- Calculation of  $t\overline{t}$  production depends on:
  - Strong coupling (α<sub>s</sub>)
  - Top quark pole mass
  - Gluon PDF
- Analysis method: triple-differential cross section dilepton

channel to simultaneously determine all fit parameters:

 $m_{\rm t}^{\rm pole} = 170.5 \pm 0.7 ({\rm fit})^{+0.1}_{-0.1} ({\rm mod})^{+0.0}_{-0.1} ({\rm par})^{+0.3}_{-0.3} ({\rm scale}) {\rm ~GeV}$ 

Total uncertainty: 0.8 GeV ( $\Delta = 0.45\%$ )

- Inclusive cross section measurement in dilepton channel
- ${\ensuremath{\, \bullet }}$  extracting the pole mass and  $\alpha_{s}$  by using theoretical prediction at

NNLO with different PDF sets

| PDF set  | $m_{\rm t}^{\rm pole}$ [GeV]                                       |
|----------|--------------------------------------------------------------------|
| ABMP16   | $169.9 \pm 1.8$ (fit + PDF + $\alpha_S$ ) $^{+0.8}_{-1.2}$ (scale) |
| NNPDF3.1 | $173.2 \pm 1.9$ (fit + PDF + $\alpha_S$ ) $^{+0.9}_{-1.3}$ (scale) |
| CT14     | $173.7 \pm 2.0$ (fit + PDF + $\alpha_S$ ) $^{+0.9}_{-1.4}$ (scale) |
| MMHT14   | 173.6 $\pm$ 1.9 (fit + PDF + $\alpha_S$ ) $^{+0.9}_{-1.4}$ (scale) |

Total uncertainty: 2.4 GeV ( $\Delta = 1.4\%$ )



### **Top Quark Properties - Production**





### **Charge Asymmetry**



#### Where charge asymmetry comes from?

- @LO: Top quark and Top anti-quark are symmetric with respect to the angular distribution
- **@Higher orders:**  $q\bar{q} \rightarrow t\bar{t}$  mainly causes an **asymmetry** in top quark and Top anti-quark **rapidity**

#### **A**<sub>FB</sub> Forward-backward asymmetry

- $p\bar{p}$  collisions @Tevatron  $q\bar{q} \rightarrow t\bar{t}$  ~ 85%
- Direction of incoming quark almost always coincides with that of proton
- Allows to define a direct **A**<sub>FB</sub> measurement
- SM: 8 9%

#### Ac Charge asymmetry

 $qar{q} 
ightarrow tar{t}$  ~ 10% @ 13 TeV *pp* collisions @LHC Valence quarks carry on average larger fraction of the proton momentum than the sea quarks Top quarks (anti-quarks) are more forward (central)

where:

SM: ~1% 



## **Charge Asymmetry**





## **Charge Asymmetry**



### ATLAS+CMS Combination - differential @ 8 TeV

- bin-to-bin correlations for a particular source
- 20% (last bin) to 52% (first bin) improvement over ATLAS result
  - Weight: 0.22 (first bin) to 0.59 (last bin)
- 9% (last bin) to 31% (first bin) improvement over CMS result
  - Weight: 0.41 (first bin) to 0.78 (last bin)
- The result uniquely restricts wide regions of the possible
   BSM parameter space, e.g. for axigluon models





### **Top Quark Properties - Production**







### Where the top polarization comes from?

- Top quarks decay before fragmentation
  - spin information is transferred to daughter particles
- In SM, top quarks produced un-polarized, and spins are correlated but ...
  - New physics could induce polarization
  - change spin structure via new mediator or change the *Wtb* vertex structure



#### Indirect vs. direct measurements

#### Indirect:

- Top spins determine the preferred lepton directions
  - charge lepton is perfect spin analyzer
  - **\Delta \phi:** angle between leptons in transverse plan
  - large  $\Delta \phi$  preferred: tops are produced back to back
  - We can indirectly probe the spin correlations using Δφ in the lab frame!
  - experimentally very precise because lepton angles have excellent resolution

### Direct:

- Requires full tt reconstruction
- Spin density matrix (R)  $\rightarrow$  Matrix Element:

$$|\mathcal{M}(q\bar{q}/gg \to t\bar{t} \to (\ell^+\nu b)(\ell^-\bar{\nu}\bar{b}))|^2 \sim Tr[\rho R\bar{\rho}].$$

- Can find observables sensitive to the coefficients of the decomposed matrix R.
- Measurements: **differential cross section** of  $t\overline{t}$ production:  $\frac{1}{\sigma} \frac{d\sigma}{dx} = \frac{1}{2}(1 + [\text{Coef.}]x)f(x)$



#### ATLAS: Indirect measurement

- Δφ distribution measured in eµ channel
   corrected in data for acceptance effect
- Data vs NLO discrepancy in both full and fiducial phase space is observed f<sub>SM</sub>= 1.25 ±0.08 ≈ 3.2σ
  - Due to Missmodelling of top quark kinematics
- Dominant systematics uncertainty: generator radiation and scale settings
- None of the studied MC generators are able to reproduce the normalized Δφ distribution within the experimental errors
- NNLO: reduced discrepancy
- NNLO+EW: compatible within (large) uncertainty

SUSY: search for top squarks production: Excluded top squark mass: [170 - 230 GeV]





 $|\Delta \phi|$ 

#### CMS: direct measurement

- Top quark 4-momenta is fully reconstructed
- Probe spin in 3D (15 observables):
  - related to independent coefficients of spin-dependent parts of the tt production density matrix
  - Each coefficient is extracted from a measured normalized differential tt cross section
- Fully consistent with SM

**Indirect** result using  $\Delta \varphi$ (II):  $F_{SM}(\Delta \varphi) = 1.10^{+0.14}_{-0.17}$ 

Top quark anomalous **chromomagnetic dipole moment** (**CMDM**) constrain:  $-0.07 < C_{tG} / \Lambda^2 < 0.16 \text{ TeV}^{-2}$  at 95% CL







CMS

#### CMS: direct measurement

- Measured top quark polarization: consistent with zero
- Opening angle between the leptons (in parent top rest frames) has maximal sensitivity to the alignment of the top quark spins:
  - D= -0.237± 0.007±0.009
  - **f**<sub>SM</sub> =0.97± 0.05 (most precise measurement to date)









### **Top Quark Properties - Decay**





### **Anomalous Couplings & IV<sub>tb</sub>**



- The *Wtb* vertex Lagrangian with minimum generalization in EFT includes **anomalous couplings** ( $\approx 0$  in SM at tree level)
- New physics can modify the structure of the Wtb







# Anomalous Couplings & IV<sub>tb</sub>l



### Combination of Single Top quark x-sec. @7 and 8 TeV

Single-top-quark production rate is proportional to V<sub>L</sub> in

Wtb vertex

- SM:  $V_L \rightarrow V_{tb}$  (CKM matrix element)
- Direct V<sub>tb</sub> measurement from Single-top-quark production:

$$|\mathbf{f}_{\rm LV}\mathbf{V}_{\rm tb}| = \sqrt{\frac{\sigma_{\rm meas.}}{\sigma_{\rm theo.(V_{\rm tb}=1)}}}$$

- Model independent measurement
- measurements at  $\sqrt{s}=7$  and 8 TeV by ATLAS and CMS are combined per  $\sqrt{s}$  and production modes
- Theoretical predictions:
  - NLO (t- and s-channel) and NLO+NNLL (tW)

 $|f_{VV}V_{tb}| = 1.02 \pm 0.04 \text{ (exp)} \pm 0.02 \text{ (theo)}$ 

➡ most precise direct measurement of V<sub>tb</sub> Uncertainty improved from 4.7% to 3.7% w.r.t the most precise single measurement (ATLAS @8 TeV)



### **Anomalous Couplings & IVtbl**



#### Probing *Wtb* structure in t-channel single-top-quark @ 8TeV

- Looking for single top events with:
  - one isolated electron or muon, large missing transverse momentum
  - exactly two jets (one to be b-tagged)
- The polarization observables are extracted from asymmetries in angular distributions w.r.t. spin quantization axes
- Set limits:  $Im[g_R] \in [-0.18, 0.06]$  @ 95 CL
  - assuming VL = 1 and Re[VR] = Re[gL] = Re[gR] = 0
- Dominant systematics: tt modelling, JES, MC statistics

### In agreement with SM predictions

| $ec{q}\left( \hat{z} ight) $                                                                                    | Asymmetry                          | Angular observable                 | Polarisation observable                                                  | SM prediction |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------------------------------------------|---------------|
|                                                                                                                 | $A_{ m FB}^\ell$                   | $\cos	heta_\ell$                   | $\frac{1}{2} \alpha_{\ell} P$                                            | 0.45          |
| e de la companya de l | $A_{ m FB}^{tW}$                   | $\cos \theta_W \cos \theta_\ell^*$ | $\frac{3}{8}P(F_{\rm R}+F_{\rm L})$                                      | 0.10          |
| $\hat{s}_t$                                                                                                     | $A_{ m FB}$                        | $\cos	heta_\ell^*$                 | $\frac{3}{4}\langle S_3\rangle = \frac{3}{4}(F_{\rm R} - F_{\rm L})$     | -0.23         |
| $\theta_{\ell}^*$ $\vec{p_{\ell}}$                                                                              | $A_{ m EC}$                        | $\cos	heta_\ell^*$                 | $\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0\rangle = \frac{3}{16}(1-3F_0)$ | -0.20         |
| $\theta_{\ell}^{N}$                                                                                             | $A_{\rm FB}^T$                     | $\cos 	heta_\ell^T$                | $rac{3}{4}\langle S_1 angle$                                            | 0.34          |
|                                                                                                                 | $A_{ m FB}^N$                      | $\cos	heta_\ell^N$                 | $-rac{3}{4}\langle S_2  angle$                                          | 0             |
| $\phi_N^*$                                                                                                      | $A_{\rm FB}^{T,\phi}$              | $\cos\theta_\ell^*\cos\phi_T^*$    | $-\frac{2}{\pi}\langle A_1 \rangle$                                      | -0.14         |
| $\phi^*_{\ell(T)}$                                                                                              | $A_{ m FB}^{N,\phi}$               | $\cos\theta_\ell^*\cos\phi_N^*$    | $\frac{2}{\pi}\langle A_2 \rangle$                                       | 0             |
| ${}^{\psi}\ell(T)$                                                                                              | $A_{\mathrm{FB}}^{\ldots,\varphi}$ | $\cos\theta_\ell^*\cos\phi_N^*$    | $\frac{\pi}{\pi}\langle A_2 \rangle$                                     | 0             |





 $\vec{N}(-\hat{y})$ 

 $\vec{T}(\hat{x})$ 

### **Top Quark Properties - Decay**





# **W Helicity Fraction Measurements**



### W helicity fraction measurements @ LHC

- Multiple measurements performed by ATLAS and CMS in Run 1
- Using top pair and singe top events
- The lepton angular distribution in W rest frame is sensitive to the W helicity
- All measurements so far are compatible with SM prediction at NNLO QCD





### **Top Quark Properties - Decay**







#### Flavour changing neutral current in top qauark

- Top quark couples to an up-type quark (u or c) and a neutral boson (γ,Z,H,g)
- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression (rate is not observable with current dataset)
- BSM can enhance FCNC up to ~ 10<sup>-4</sup>
  - Any observation of FCNC can indicate new physics
- FCNC probe can be done in both top quark production, and decay





#### **Top quark in SM**



#### [K. Agashe et al., arXiv:1311.2028]

| Process            | $\operatorname{SM}$ | 2HDM(FV)           | 2HDM(FC)        | MSSM           | RPV            | RS              |
|--------------------|---------------------|--------------------|-----------------|----------------|----------------|-----------------|
| $t \rightarrow Zu$ | $7 \times 10^{-17}$ | _                  | _               | $\leq 10^{-7}$ | $\leq 10^{-6}$ | _               |
| $t \to Zc$         | $1 \times 10^{-14}$ | $\leq 10^{-6}$     | $\leq 10^{-10}$ | $\leq 10^{-7}$ | $\leq 10^{-6}$ | $\leq 10^{-5}$  |
| $t \to g u$        | $4\times 10^{-14}$  | —                  | —               | $\leq 10^{-7}$ | $\leq 10^{-6}$ | —               |
| $t \to gc$         | $5 \times 10^{-12}$ | $\leq 10^{-4}$     | $\leq 10^{-8}$  | $\leq 10^{-7}$ | $\leq 10^{-6}$ | $\leq 10^{-10}$ |
| $t \to \gamma u$   | $4 \times 10^{-16}$ | —                  | —               | $\leq 10^{-8}$ | $\leq 10^{-9}$ | —               |
| $t\to \gamma c$    | $5 \times 10^{-14}$ | $\leq 10^{-7}$     | $\leq 10^{-9}$  | $\leq 10^{-8}$ | $\leq 10^{-9}$ | $\leq 10^{-9}$  |
| $t \to h u$        | $2\times 10^{-17}$  | $6 \times 10^{-6}$ | —               | $\leq 10^{-5}$ | $\leq 10^{-9}$ | —               |
| $t \rightarrow hc$ | $3 \times 10^{-15}$ | $2 \times 10^{-3}$ | $\leq 10^{-5}$  | $\leq 10^{-5}$ | $\leq 10^{-9}$ | $\leq 10^{-4}$  |

### Search for $t \rightarrow qZ$

- Two channels are considered:
  - single top quark **FCNC production** (pp  $\rightarrow$  tZ)
  - top quark pair production with **FCNC decay** (t  $\rightarrow$  qZ)
- Looking for events with:
  - exactly 3 leptons= one opposite sign + same flavour pair
  - $1 \le jet(s) \le 3 \& W$  transverse mass < 300 GeV
- Dedicated BDT discriminants for each of 3 signal regions
- Set observed (expected) limits on the branching ratio  $t \rightarrow qZ$ :
  - 𝔅(t → uZ) < 0.024% (0.015%)

• 𝔅(t → cZ) < 0.045% (0.037%)















#### JHEP 07 (2018) 176 Ge ATLAS Data tīΖ $60 - \sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}$ Events / 10 WZ Signal Region Other 50 Non-prompt $\overline{t} \rightarrow bWuZ$ (B = 0.1%)Bkg uncertainty-30 20 10 Data / Bkg 140 150 160 170 180 190 200 210 milui [GeV] Events / 10 GeV ATLAS 70 √s = 13 TeV, 36.1 fb W7 Signal Region Othe 60 lon-promp $\rightarrow$ bWuZ 50 (B = 0.1%)Bkg uncertainty 40 30 20 Data / Bkg 1.5 0. 140 150 160 170 180 190 200 210

 $m_{ill}^{\text{reco}}$  [GeV]

#### Search for $t \rightarrow qZ$

- Looking in top-quark pair events for one FCNC and one SM top quark decay:
  - three isolated leptons (e,  $\mu$ )
  - at least two jets, (one b-tagged) and MET
- Only Z boson decays into charged leptons and leptonic W
   boson decays are considered as signal
- Events are reconstructed via  $\chi^2$  minimization of the kinematic properties of the to quarks
- The data are consistent with SM background contributions

Set observed (expected) limits on the branching ratio t  $\rightarrow$  qZ:

 $\mathcal{E}(t \rightarrow uZ) < 0.017\% (0.024\%)$  $\mathcal{E}(t \rightarrow cZ) < 0.024\% (0.032\%)$ 



### Search for t $\rightarrow$ qH(bb)

- Two channels are considered:
  - single top quark FCNC production (pp  $\rightarrow$  tH)
  - top quark pair production with FCNC decay (t  $\rightarrow$  qH)
- Looking for events with:
  - one isolated lepton (e, μ) and at least 3 jets (at least 2 of which are b-tagged)
- Dedicated BDT discriminants for 5 signal regions
- Set observed (expected) limits on the branching ratio  $t \rightarrow qH$ :
  - 𝔅(t → uH) < 0.47% (0.34%)
  - 𝔅(t → cH) < 0.47% (0.44%)











### Search for t $\rightarrow$ qH (H $\rightarrow bb^{-}$ , $\tau + \tau^{-}$ )

- Looking in top-quark pair events for one FCNC and one SM top quark decay:
  - tqH(bb): one isolated electron or muon, multiple jets (several b-tagged jets)
  - $tqH(\tau + \tau)$ : events with two  $\tau$ -lepton candidates (at least one

decays hadronically), multiple jets

- Background is dominated by top-quark pair production
- **likelihood discriminant** (**Multivariate technique**) used to separate signal from background  $H \rightarrow bb^{-}(H \rightarrow \tau^{+}\tau^{-})$
- The data are consistent with SM background contributions
- combined with searches in diphoton and multilepton final states (same dataset)

Set observed (expected) limits on the branching ratio  $t \rightarrow qH$ :

*ɛ*(t → uH) < 0.11% (0.083%) *ɛ*(t → cH) < 0.12% (0.083%)







LHCtopWG

#### FCNC @LHC in summary

ATLAS and CMS limits

on: t  $\rightarrow$  q(H/ $\gamma$ /g/Z) branching rations comparison to **BSM** physics

- The full Run 2 dataset is still to be analyzed
- More interesting results to come, stay tuned!



### **Top Quark Properties - Decay**





## **Charged Lepton Flavour Violation**



### Search for cLFV in top quark decays

- cLFV: local interactions that change the flavour of charged leptons
- Heavily suppressed in SM, e.g.  $\mathcal{B}(\mu \rightarrow e\gamma) \approx 10^{-55}$
- Analyzed data: 2015-2017 (79.8 fb<sup>-1</sup>) @13TeV
- Model-independent direct search
- Looking for  $t\overline{t}$  events with:
  - three charged leptons
  - one light jet and one b-tagged jet
- cLFV top quark reconstruction:
  - Iooking for  $(\ell \ell q)$  system of mass close to  $m_t$
- **BDT discriminant** used to separate sig. and bkg.
- Dominant background: non-prompt leptons

$$\mathcal{B}(t \to \ell \ell' q) < 1.36^{+0.61}_{-0.37} \times 10^{-5} \quad \text{(expected)}$$
$$\mathcal{B}(t \to \ell \ell' q) < 1.86 \times 10^{-5} \quad \text{(observed)}$$







- ATLAS and CMS performed a large number of analyses with top quarks in LHC run 2 Not enough time to cover them all in any detail
  - More ATLAS top results: <u>#TopPublicResults</u>, <u>#TopSummaryPlots</u>
  - More CMS top results: <u>#TopPhysicsPublications</u>, <u>#TopPhysicsPreliminaryResults</u>
- Large data volume enables us to do precise measurements with top quarks, and probe rare processes
- Single top-quark measurements have entered the precision era at the LHC!
- most results used  $\approx 25\%$  of available data
- All measurements are so far consistent with the SM predictions
- Measurements dominated by systematic uncertainties
- No sign of new physics has been found yet, but...

### The full Run 2 dataset is still to be analyzed, stay tuned!







# Backup

### **Lepton Flavour Violation**



### **Used Variables in the Multivariate Analysis**

Table 2: Variables used in the multivariate analysis, sorted according to the method-specific ranking.

| Variable                                                    | Separation (%) |
|-------------------------------------------------------------|----------------|
| OSSF lepton pair invariant mass                             | 11             |
| cLFV top mass                                               | 10             |
| $p_{\rm T}$ of the electron associated to the cLFV decay    | 9.1            |
| $p_{\rm T}$ of the muon associated to the cLFV decay        | 8.5            |
| $p_{\rm T}$ of the lepton associated to the SM decay        | 8.3            |
| Scalar mass of all jets and leptons in the event            | 7.6            |
| Same-sign electron pair invariant mass                      | 6.9            |
| Missing transverse momentum                                 | 6.8            |
| Number of <i>b</i> -jets                                    | 6.7            |
| W transverse mass associated to the SM top lepton           | 6.6            |
| $\Delta R$ between the cLFV electron and the cLFV light jet | 6.5            |
| SM top mass                                                 | 6.4            |
| $\Delta R$ between the cLFV muon and the cLFV light jet     | 6.3            |
| BDT discriminant                                            | 44             |



ATLAS-CONF-2018-044

Table 3: Pre- and post-fit yields for the background-only fit in the signal region. The post-fit uncertainties account for correlations among the nuisance parameters.

| Category            | Non-prompt<br>leptons            | WZ                                                       | ZZ                           | tĪV                                                     | Other<br>prompt SM         | Number of events                |
|---------------------|----------------------------------|----------------------------------------------------------|------------------------------|---------------------------------------------------------|----------------------------|---------------------------------|
| Pre-fit<br>Post-fit | $1190 \pm 180$<br>$1220 \pm 100$ | $\begin{array}{c} 350 \pm 140 \\ 278 \pm 86 \end{array}$ | $140 \pm 52$<br>$170 \pm 52$ | $\begin{array}{c} 108 \pm 10 \\ 108 \pm 10 \end{array}$ | $76 \pm 10$<br>$78 \pm 10$ | $1860 \pm 230$<br>$1854 \pm 46$ |
| Data                |                                  |                                                          |                              |                                                         |                            | 1857                            |







#### CMS-PAS-TOP-18-006





### Diagonal elements of $\mathbb C$ matrix



### **Off-diagonal elements of \mathbb{C} matrix**



# ATLAS and CMS measurements of the single top production cross-sections



#### ATL-PHYS-PUB-2018-034

