Meson-Hybrid Mixing in Vector (1) and Axial Vector (1^{++}) Charmonium

Derek Harnett

A. Palameta, J. Ho, D. Harnett, T. G. Steele, Phys. Rev. D97 (2018) 034001 [1707.00063]
A. Palameta, D. Harnett, and T. G. Steele, Phys. Rev. D98 (2018) 074014 [1806.00157]

Hybrids are outside-the-quark-model hadrons with a constituent quark, antiquark, and gluon.

- test of confinement characterization
- not yet conclusively identified
- $J^{P C}$ can be exotic, e.g., $\left\{0^{+-}, 0^{-}, 1^{+}\right\}$, or non-exotic, e.g., $\left\{0^{++}, 0^{-+}, 1^{++}, 1^{--}, 1^{+-}\right\}$.
- For non-exotic JPC, hadron mixing could be hampering hybrid detection and/or identification.

In the vector $\left(1^{-}\right)$and axial vector $\left(1^{++}\right)$charmoniumlike channels, there are a several known resonances.

- In the vector channel, densely packed resonances get clustered.
- We test each of these known resonances (or clusters) for meson-hybrid mixing using QCD Laplace sum-rules.

Some closely related problems have been studied using both QCD sum-rules and lattice QCD.

- Matheus et al., Phys. Rev D80 (2009)
- 1^{++}charmonium meson- $\overline{\mathrm{D}} \mathrm{D}^{*}$ mixing from QCD sum-rules
- Liu et al., JHEP 07 (2012)
- charmonium spectroscopy from lattice QCD
- includes meson and hybrid operators
- Chen et al., Phys. Rev. D88 (2013)
- 1^{++}charmonium hybrid- $\overline{\mathrm{D}}$ * mixing from QCD sum-rules
- Padmanath, Lang, and Prelovsek, Phys. Rev. D92 (2015)
- 1++ charmonium spectroscopy from lattice QCD
- includes meson, two-meson, and diquark-antidiquark operators

We study meson-hybrid mixing in charmonium using a two-point cross-correlator.

$$
\Pi\left(q^{2}\right)=\frac{i}{D-1}\left(\frac{q_{\mu} q_{\nu}}{q^{2}}-g_{\mu \nu}\right) \int d^{D} x e^{i q \cdot x}\langle\Omega| \tau j_{\mu}^{(m)}(x) j_{\nu}^{(h)}(0)|\Omega\rangle
$$

$D=2+2 \varepsilon$, spacetime dimension

- gluon field strength
hybrid current

$$
\xrightarrow[\wedge]{\text { current }} j_{\nu}^{(h)}=\left\{\begin{array}{l}
g_{s} \bar{c} \gamma^{\rho} \gamma_{5} \frac{\lambda^{a}}{2}\left(\frac{1}{2} \epsilon_{\nu \rho \omega \eta} G_{\omega \eta}^{a}\right) c \text { for } 1^{--} \\
g_{s} \bar{c} \gamma^{\rho} \frac{\lambda^{a}}{2}\left(\frac{1}{2} \epsilon_{\nu \rho \omega \eta} G_{\omega \eta}^{a}\right) c \text { for } 1^{++}
\end{array}\right.
$$

We compute the cross-correlator within the operator product expansion.

Perturbation theory has a nonlocal divergence eliminated through operator renormalization.

The vector and axial vector currents are renormalization-group invariant, but...

$$
\begin{gathered}
j_{\nu}^{(h)} \rightarrow j_{\nu}^{(h)}-\frac{5 g_{s}^{2} m_{c}^{2}}{18 \pi^{2} \epsilon}\left(\bar{c} \gamma_{\nu} c\right)+\frac{g_{s}^{2} m_{c}}{9 \pi^{2} \epsilon}\left(\bar{c} i D_{\nu} c\right) \text { for } 1^{--}, \\
j_{\nu}^{(h)} \rightarrow j_{\nu}^{(h)}-\frac{5 g_{s}^{2} m_{c}^{2}}{18 \pi^{2} \epsilon}\left(\bar{c} \gamma_{\nu} \gamma_{5} c\right)-\frac{g_{s}^{2} m_{c}}{9 \pi^{2} \epsilon}\left(\bar{c} i \gamma_{5} D_{\nu} c\right) \text { for } 1^{++} .
\end{gathered}
$$

Dispersion relations relate QCD to hadron physics, i.e., quark-hadron duality.

$$
\begin{aligned}
& \Pi\left(Q^{2}\right)=\frac{Q^{6}}{\pi} \int_{t_{0}}^{\infty} \frac{\operatorname{Im} \Pi(t)}{t^{3}\left(t+Q^{2}\right)} \mathrm{d} t+\cdots \text { for } Q^{2}=-q^{2}>0 \\
& \begin{array}{l}
\text { hadron } \\
\text { production } \\
\text { threshold }
\end{array} \\
& \quad \Pi\left(Q^{2}\right) \longrightarrow \Pi^{\mathrm{QCD}}\left(Q^{2}\right) \\
& \begin{array}{l}
\text { resonance } \\
\text { constantants }
\end{array} \\
& \quad \operatorname{Im} \Pi(t) \rightarrow \rho^{\mathrm{had}}(t)+\theta\left(t-s_{0}\right) \operatorname{Im} \Pi^{\mathrm{QCD}}(t)
\end{aligned}
$$

We model the resonance content as a sum of narrow and/or rectangular resonances.

$$
\begin{gathered}
\begin{array}{c}
\text { number of } \\
\text { resonances }
\end{array} \rho^{\mathrm{had}}(t)=\sum_{i=1} \rho_{i}^{\mathrm{had}}(t) \\
\rho_{i}^{\mathrm{had}}(t)= \begin{cases}\xi_{i} \delta\left(t-m_{i}^{2}\right), \Gamma_{i}=0 & \text { resonance } \\
\frac{\xi_{i}}{2 m_{i} \Gamma_{i}} \theta\left(t-m_{i}\left(m_{i}-\Gamma_{i}\right)\right) \theta\left(m_{i}\left(m_{i}+\Gamma_{i}\right)-t\right), \Gamma_{i} \neq 0\end{cases}
\end{gathered}
$$

- The mixing parameters, ξ_{i}, are products of hadronic couplings.
- A non-zero mixing parameter indicates coupling to both meson and hybrid currents.

QCD Laplace sum-rules are transformed dispersion relations.

Hadron parameters extracted as best-fit parameters between QCD and hadron physics.

Using QCD sum-rules, we input masses (and cluster widths) and extract mixing parameters.

Model
$[\mathrm{GeV}]$
m_{1}
$[\mathrm{GeV}]$
m_{2}

$[\mathrm{GeV}]$$\underset{[\mathrm{GeV}]}{\mathrm{m}_{3}}$| Γ_{3} |
| :---: |

V1	3.10	-	-	-
V2	3.10	3.73	-	-
V3	3.10	3.73	4.30	-
V4	3.10	3.73	4.30	0.30
V5	3.10	-	4.30	-
V6	3.10	-	4.30	0.30

Model $\quad m_{1} \quad m_{2} \quad m_{3} \quad m_{4}$ [GeV] [GeV] [GeV] [GeV]

A1	3.51	-	-	-
A2	3.51	3.87	-	-
A3	3.51	3.87	4.15	-
A4	3.51	3.87	4.15	4.27

In the vector channel, our results favour a tworesonance scenario.

Model $\mathrm{s}_{0}\left[\mathrm{GeV}^{2}\right] \frac{x^{2}}{x^{2}\left[V_{1}\right]} \zeta\left[\mathrm{GeV}^{6}\right]$

$\stackrel{\xi_{3}}{\zeta}$

V1	12.5	1	$0.51(2)$	1	-	-
V2	13.9	0.73	$0.73(4)$	$0.72(3)$	$0.27(3)$	-
V3	24.1	0.038	$2.9(3)$	$0.22(1)$	$-0.02(5)$	$0.76(3)$
V4	24.2	0.038	$3.0(3)$	$0.21(1)$	$-0.03(5)$	$0.76(3)$
V5	23.7	0.042	$2.7(3)$	$0.23(2)$	-	$0.77(2)$
V6	23.6	0.047	$2.7(3)$	$0.23(2)$	-	$0.77(2)$

In the axial vector channel, our results favour a fourresonance scenario.

Model $\mathrm{s}_{0}\left[\mathrm{GeV}^{2}\right] \quad \frac{x^{2}}{x^{2}[\mathrm{~A} 1]} \quad \zeta\left[\mathrm{GeV}^{6}\right] \quad \frac{\xi_{1}}{\zeta} \quad \underset{\zeta}{\zeta} \quad \frac{\xi_{2}}{\zeta} \quad \frac{\xi_{3}}{\zeta}$

A1	18.8	1	$0.18(1)$	1	-	-	-
A2	28.8	0.0095	$0.83(7)$	$0.47(2)$	$-0.53(2)$	-	-
A3	18.8	0.0034	$2.6(4)$	$0.21(2)$	$-0.45(1)$	$0.34(2)$	
A4	31.7	7.3×10^{-6}	$44(6)$	$0.03(1)$	$-0.16(1)$	$0.46(1)$	$-0.35(1)$

In both channels, plots of relative residuals provide additional support for the favoured models.

Relative residuals vs. the Borel scale for Models V1—V3 in the vector channel.

Relative residuals vs. the Borel scale for Models A2-A4 in the axial vector channel.

We can draw some mainly qualitative conclusions about meson-hybrid mixing in charmonium.

Fits significantly improved by the inclusion of heavier states.

- small hybrid component of the J / Ψ
- no evidence for a hybrid component of the $\psi(2 S)$ or $\psi(3770)$
- significant mixing around 4.3 GeV
- no evidence for a hybrid component of the $X_{c 1}(1 P)$
- weak mixing in the X(3872)
- significant mixing in the $X(4140)$ and $X(4274)$

Acknowledgements

UNIVERSITY о т не FRASER VALLEY

(if) $\begin{gathered}\text { CSERSC } \\ \text { CRSNG }\end{gathered}$

The correlator has QCD inputs: the strong coupling, charm quark mass, and condensates.

We use one-loop, $\overline{\mathrm{MS}}$ running coupling and charm quark mass at four flavours.

$$
\begin{array}{cl}
\alpha_{s}\left(M_{\tau}\right)=0.330 \pm 0.014 & \\
\bar{m}_{c}=(1.275 \pm 0.025) \mathrm{GeV} & \begin{array}{l}
\text { 4d gluon } \\
\text { condensate }
\end{array} \\
\left\langle\alpha G^{2}\right\rangle=(0.075 \pm 0.020) \mathrm{GeV}^{4} & \begin{array}{l}
\text { 6d gluon } \\
\text { condensate }
\end{array} \\
\left\langle g^{3} G^{3}\right\rangle=\left((8.2 \pm 1.0) \mathrm{GeV}^{2}\right)\left\langle\alpha G^{2}\right\rangle & \begin{array}{l}
\text { 3d quark } \\
\text { condensate? }
\end{array} \\
\langle\bar{\psi} \psi\rangle=-(0.23 \pm 0.03)^{3} \mathrm{GeV}^{3} &
\end{array}
$$

