

Event 351483885 Run 187340 Fri, 02 Dec 2016 20:56 29

17th conference on Flavour Physics and CP violation (FPCP) Victoria, Canada, 6-10 May 2019

Mixing and CP violation in charm at LHCb

Tommaso Pajero - Scuola Normale Superiore & INFN, Pisa on behalf of the LHCb collaboration

tommaso.pajero@cern.ch

Why charm physics?

- It is the only up-type quark forming mesons where CP violation (CPV) can be observed;
 - complementary to K and B mesons.
- In the SM, CPV is expected to be typically ≤ 10-3;
 - CKM+GIM suppression;
 - large theory uncertainties owing to low-energy strong interactions.
- First observation of CPV on 21st March 2019; arXiv:1903.08726

 $\Delta A_{CP} = (-15.4 \pm 2.9) \cdot 10^{-4}$ CPV in the decay.

Mainly a measurement of CPV in the decay

see talk by Fabio Ferrari

- More work is needed to clarify the physics picture;
- still missing observation of time-dependent CPV.

 $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

2

Outline

 Measurement of Δm of D⁰ eigenstates in D⁰ → K⁰s π⁺π⁻ with 2011 – 2012 data (3 fb⁻¹); <u>arXiv:1903.03074</u>

2) Measurement of time-dependent CP violation (Ar parameter) with 2015-2016 prompt data (2 fb⁻¹).

LHCb-CONF-2019-001

Measurement of Δm of D⁰ mass eigenstates

arXiv:1903.03074

Mixing and CPV with $D^0 \rightarrow K^{0}_{S} \pi^+\pi^-$ decays

• LHCb Run 1 sample (2011–2012, 3 fb⁻¹);

- D⁰ → K⁰_S π⁺π⁻ decays feature a rich resonance spectrum.
 - good sensitivity to mixing and timedependent CPV parameters thanks to varying strong phases;
 - difficult to model the decay dynamics and acceptance effects.

The "bin flip" method

- New approach (<u>arXiv:1811.01032</u>) to minimise dependence on:
 - amplitude model;
 - detector acceptance.
- Data are binned in Dalitz plane to keep strong phases approximately constant;
- external measurements of strong-phases from CLEO <u>arXiv:1010.2817</u> used as constraints;
- no modelling of dynamics of D⁰ decay is needed.
- Data binned also in decay time;
- measure ratio of yields in opposite bins across the bisector of the Dalitz plot;
 - acceptance effects cancel;
 - good sensitivity to x.

FPCP, 2019-05-08

T. Pajero (SNS) | Mixing and CPV in Charm at LHC

 $m_{+}^2 < m_{-}^2$ region: mixed decays are more important.

 $m_{+}^{2} > m_{-}^{2}$ region: dominated by unmixed Cabibbo-favoured $D^{0} \rightarrow K^{*}(892)^{-}\pi^{+}$ decays.

Results

- Consistent with CP symmetry;
- most precise measurement of x by a single experiment.

Parameter	Value	$95.5\%~{\rm CL}$ interval
$ \begin{array}{c} x \ [10^{-2}] \\ y \ [10^{-2}] \\ q/p \\ \phi \end{array} $	$\begin{array}{r} 0.27 \substack{+ \ 0.17 \\ - \ 0.15 } \\ 0.74 {\pm} 0.37 \\ 1.05 \substack{+ \ 0.22 \\ - \ 0.17 } \\ - 0.09 \substack{+ \ 0.11 \\ - \ 0.16 } \end{array}$	$\begin{bmatrix} -0.05, 0.60 \\ 0.00, 1.50 \\ 0.55, 2.15 \\ [-0.73, 0.29] \end{bmatrix}$

- When added to the world average of the mixing parameters, gives first evidence that x > 0 at > 3σ level (the "CP-even eigenstate" is heavier);
 - sensitivity to ϕ mainly relies on observables $\propto x \sin \phi$.

• Around 30 times more data has already been collected during Run 2 (2015-2018).

FPCP, 2019-05-08

Measurement of CPV parameter A_Γ in D⁰ two-body decays

LHCb-CONF-2019-001

NEW Presented in this talk for the first time

Today \rightarrow brief review. More details at tomorrow poster session.

Definition of A_r

 Measure of time-dependent CPV in the D⁰ singly Cabibbo-suppressed decays into CP eigenstates:

$$X, y < 10^{-2}$$

$$A_{CP}(t) = \frac{\Gamma(D^0 \to f, t) - \Gamma(\bar{D}^0 \to f, t)}{\Gamma(D^0 \to f, t) + \Gamma(\bar{D}^0 \to f, t)} \stackrel{\downarrow}{\approx} A_{CP}^{\text{decay}}(f) - A_{\Gamma}\left(\frac{t}{\tau_{D^0}}\right), \quad f = K^+ K^-, \quad \pi^+ \pi^-$$

 10^{-2}

Motivation and experimental status

1. Test of the SM;

- SM predictions: ≈ 3 x 10⁻⁵ arXiv:1812.07638
- <u>independent</u> of the measurement of CPV in the decay (ΔA_{CP});

2. **required input to measure CPV in the decay** from time-integrated A_{CP}(K+K-) and A_{CP}(π+π-);

$$A_{CP}(h^+h^-) = A_{CP}^{\text{decay}}(h^+h^-) - A_{\Gamma} \underbrace{\langle t \rangle_{h^+h^-}}_{\approx 2 \text{ at LHCb}}$$

 World average (-3.2 ± 2.6) x 10⁻⁴ dominated by LHCb measurement with Run 1 (2011– 2012) prompt data <u>arXiv:1702.06490</u>.

D⁰

h+

 π^+ tag

Data sample

- LHCb 2015—2016 data (2 fb⁻¹);
- D⁰ flavour at production inferred from $D^{*+} \rightarrow D^0 \pi^+_{tag}$ strong decay;
- asymmetry measured in 21 bins of decay time.

 $A_{\Gamma}^{\kappa_{\pi}} = 0$ within experimental uncertainty.

FPCP, 2019-05-08

Detector-induced asymmetries

- Time-dependent asymmetries arise due to:
 - correlation between the measured decay time and the momentum of the D⁰ induced by trigger requirements;
 - momentum-dependent detection asymmetries of the π^+_{tag} .

$$D^{*+} \rightarrow [h^+h^-]_{D^0} \pi^+_{tag}$$

self-conjugate,
no asymmetries large detection
asymmetries

- Effect removed by weighting the events to equalise the 3D momentum distributions of D^o and anti-D^o candidates;
 - weighting performed separately for different data-taking years and dipole-magnet polarities (different detector conditions lead to different asymmetries).

Secondary decays

- Measured decay time of secondary decays biased to longer decay times:
 - $\tau(\mathsf{B}^0) \approx 4\tau(\mathsf{D}^0);$
 - D⁰ flight distance is measured from the *pp* vertex.
- Fraction of secondary decays in the sample increases as a function of time.

$$A_{\text{tot}}(t) = A_{\text{prim}}(t) + f_{\text{sec}}(t) \cdot [A_{\text{sec}}(t) - A_{\text{prim}}(t)]$$

≠ 0 because of different D*+ andb hadron production asymmetries

FPCP, 2019-05-08

Fit to the TIP distribution

- TIP = IP in the plane transverse to the beam.
 - equal to zero for primary decays;
 - increasing as a function of time for secondary decays.
- Fraction of secondary decays and asymmetries from simultaneous fit of D⁰ and anti-D⁰ decays in all time bins.

Results for the control sample

- Results divided according to year and magnet polarity.
- Red: raw results before kinematic weighting and subtraction of secondary decays (just $|TIP| < 40 \ \mu m$ requirement to reduce their number);
- Black: final results after kinematic weighting and subtraction of secondary decays.

2

 χ^2 /ndf = 9/19

4

0.3

0.2

0.1

-0.2 -0.3 <u>E</u>0

 $A_{\rm prim}(t)$ [%]

Systematic uncertainties

knowledge of TIP resolution and PDF of secondary decays

Source	KK (10 ⁻⁴)	ππ (10-4)
Subtraction of secondary decays	0.4	0.4
Binning of the kinematic weighing	0.3	0.3
m(h+h-) bkg. from partially-reconstructed and misidentified D-meson multi-body decays	0.3	0.2 _ dominated by
Subtraction of Δm bkg. from random π^+_{tag}	0.3	0.5 stat. fluctuations
Total sys.	0.7	0.8
Statistical	3.5	6.9

- Systematic uncertainty:
 - **reduced by 30%** with respect to previous LHCb result <u>arXiv:1702.06490</u>;
 - a factor of 3 under the stat. unc. of the world average.

Results

 Average between the two decay channels and with LHCb Run 1 results (2011-2012) with D*+ tagging <u>arXiv:1702.06490</u>:

$$A_{\Gamma}(KK + \pi\pi) = (0.9 \pm 2.1 \pm 0.7) \times 10^{-4}$$

- Consistent with CP symmetry;
- dominated by statistical uncertainty.

FPCP, 2019-05-08

Conclusions

- LHCb measurements of CPV in charm still limited by statistical uncertainty:
 - even in $D^0 \rightarrow K^{0}_{S} \pi^+\pi^-$ three-body decays (first 3 σ evidence of x>0);
- Presented for the first time the measurement of the CPV parameter A_Γ with LHCb 2015-2016 data:
 - compatible with zero within 2.2 x 10⁻⁴ (improves by 22% the world average);
 - still need to improve to compare with SM expectations ($\approx 3 \times 10^{-5}$);
 - other 4 fb⁻¹ of data collected in 2017 2018.
- LHCb upgrade II will be fundamental if we want to reach the SM predictions for CPV (<u>talk by Silvia Gambetta</u>).

Conclusions

- LHCb measurements of CPV in charm still limited by statistical uncertainty:
 - even in $D^0 \rightarrow K^{0}_{S} \pi^+\pi^-$ three-body decays (first 3 σ evidence of x>0);
- Presented for the first time the measurement of the CPV parameter A_Γ with LHCb 2015-2016 data:
 - compatible with zero within 2.2 x 10⁻⁴ (improves by 22% the world average);
 - still need to improve to compare with SM expectations ($\approx 3 \times 10^{-5}$);
 - other 4 fb⁻¹ of data collected in 2017 2018.
- LHCb upgrade II will be fundamental if we want to reach the SM predictions for CPV (<u>talk by Silvia Gambetta</u>).

Thanks for you attention. Any questions?

Backup slides

FPCP, 2019-05-08

Time-dependent CPV in Charm at LHCb upgrade II

Physics case for an LHCb Upgrade II, arXiv:1808.08865

Sample (\mathcal{L})	Yield $(\times 10^6)$	$\sigma(x_{K\pi}^{\prime 2})$	$\sigma(y'_{K\pi})$	$\sigma(A_D)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9fb^{-1})	1.8	1.5×10^{-5}	2.9×10^{-4}	0.51%	0.12	10°
Run 1–3 (23fb^{-1})	10	6.4×10^{-6}	1.2×10^{-4}	0.22%	0.05	4°
Run 1–4 (50fb^{-1})	25	3.9×10^{-6}	$7.6 imes 10^{-5}$	0.14%	0.03	3°
Run 1–5 (300fb^{-1})	170	1.5×10^{-6}	2.9×10^{-5}	0.05%	0.01	1°
Sample (\mathcal{L})	Tag Yiel	$\operatorname{Id} K^+ K^- = \sigma(A)$	$(4_{\Gamma}) \mid \text{Yield } \tau$	$\sigma^+\pi^ \sigma($	(A_{Γ})	
Run 1–2 (9 fb ^{-1})	Prompt	60M 0.02	13% 18N	M 0.0	$\overline{)24\%}$	

310M

793M

5.3G

0.0056%

0.0035%

0.0014%

92M

236M

1.6G

Assumptions:

Run 1–3 (23 fb⁻¹)

Run 1–4 (50 fb⁻¹)

Run 1–5 (300 fb⁻¹)

 x2 of hadron trigger efficiency (no hardware trigger + new magnet stations);

Prompt

Prompt

Prompt

- current LHCb performance is maintained in Upgrade II conditions;
- statistical uncertainty only (with 1/√N scaling).

22

0.0104~%

0.0065~%

0.0025~%

Tagging strategies

To identify the flavour at production of the D⁰ meson:

- **Prompt tag**: strong decay $D^{*+} \rightarrow D^0 \pi_s^+$
 - larger production cross section;
 - tight trigger cut on D⁰ flight distance and h⁺, h⁻ impact parameters to improve S/B;
 - low trigger efficiency at low decay times;
 - D⁰ points at the primary vertex (PV).
- Semileptonic tag: weak decay $\bar{B} \to D^0 \mu^- \bar{\nu}_\mu X$
 - lower production cross section;
 - no need to cut on D⁰ flight distance;
 - all D⁰ decay times collected by the trigger;
 - total yield $\approx 25\%$ of prompt one;
 - D⁰ does not necessarily point at PV.
- Double-tag: $\bar{B} \to [D^0 \pi_{\mathsf{S}}^+]_{D^{*+}} \mu^- \bar{\nu}_{\mu} X$
 - highest purity;
 - lowest yield.

р

р

arXiv:1903.03074

Fit to ratios

Offset between prompt and semileptonic data due to efficiency variations along the Dalitz plot.

Slopes are sensitive to mixing and CPV.

FPCP, 2019-05-08

$D^0 \rightarrow K^{0}_{S} \pi^+\pi^-$ results

arXiv:1903.03074

Parameter	Value	Value Stat. correlations		Syst. correlations			
	$[10^{-3}]$	y_{CP}	Δx	Δy	y_{CP}	Δx	Δy
x_{CP}	$2.7 \pm 1.6 \pm 0.4$	-0.17	0.04	-0.02	0.15	0.01	-0.02
y_{CP}	$7.4 \pm 3.6 \pm 1.1$		-0.03	0.01		-0.05	-0.03
Δx	$-0.53 \pm 0.70 \pm 0.22$			-0.13			0.14
Δy	$0.6 \pm 1.6 \pm 0.3$						

 Dominant sys. uncertainties from: secondary decays and combinatorial bkg. (x_{CP}), neglecting decay time and m_±² resolution (y_{CP}); non-symmetric efficiencies across the symmetry line of the Dalitz plot (Δx, Δy).

$$z \equiv -(y + ix)$$

$$z_{CP} \pm \Delta z \equiv (q/p)^{\pm 1}z$$

$$x_{CP} = -\operatorname{Im}(z_{CP}) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$

$$\Delta x = -\operatorname{Im}(\Delta z) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

$$y_{CP} = -\operatorname{Re}(z_{CP}) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$

$$\Delta y = -\operatorname{Re}(\Delta z) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

FPCP, 2019-05-08

A_{Γ} definition

$$|D_{1,2}\rangle \equiv p|D^{0}\rangle \pm q|\bar{D}^{0}\rangle \quad R_{m} \equiv \left|\frac{q}{p}\right|$$

$$R_{f} \equiv \left|\frac{\mathscr{A}(\bar{D}^{0} \to f)}{\mathscr{A}(D^{0} \to f)}\right| \qquad \phi_{f} \equiv \arg\left(\frac{q\bar{A}_{f}}{pA_{f}}\right) \approx \arg\left(\frac{q}{p}\right)$$

$$A_{CP}^{\text{decay}} \equiv \frac{1 - R_{f}^{2}}{1 + R_{f}^{2}} \qquad \text{Du 2006, Grossman, Kagan, Nir 2007}$$

$$x, y < 10^{-2}$$

$$x, y < 10^{-2}$$

$$A_{CP}(t) = \frac{\Gamma(D^0 \to f, t) - \Gamma(\bar{D}^0 \to f, t)}{\Gamma(D^0 \to f, t) + \Gamma(\bar{D}^0 \to f, t)} \approx A_{CP}^{\text{decay}}(f) - A_{\Gamma}(f) \left(\frac{t}{\tau_{D^0}}\right), \quad f = K^+ K^-, \ \pi^+ \pi^-$$

$$A_{\Gamma}(f) = -\frac{2R_f^2}{(1+R_f^2)^2} \left[(R_m R_f + R_m^{-1} R_f^{-1}) x \sin \phi_f - (R_m R_f - R_m^{-1} R_f^{-1}) y \cos \phi_f \right]$$

Expanding A_{Γ} up to first order in CPV parameters gives:

CPV in the interference

$$A_{\Gamma}(f) \approx y \left(\left| \frac{q}{p} \right| - 1 \right) - x \phi_{f} - y A_{CP}^{\text{decay}}(f)$$
CPV in the mixing $\approx 1 \times 10^{-5} \rightarrow \text{negligible at}$
the current exp. precision (3 x 10⁻⁴) $\frac{\text{arXiv:1903.08726,}}{\text{arXiv:1610.09476}}$

 $p_{x(y)}$

Detector-induced asymmetries

Detector-induced asymmetries

Time-dependent asymmetries

Kinematic weighting: dilution of measured Ar

- The correction comes at a price:
 - owing to the correlations between the measured t(D⁰) and p(D⁰), <u>a physical time-dependent asymmetry would reflect in a momentum-dependent asymmetry;</u>
 - it would be partially cancelled by the kinematic weighting.

Size of dilution evaluated as follows:

1.assign randomly the flavour of the D⁰ for each event (\rightarrow no initial asymmetries);

- inject an artificial A_Γ by selecting the events with a time-dependent efficiency (opposite slope for D⁰ and anti-D⁰);
- 3.apply the kinematic weighing and measure A_Γ.

Dilution: (87.7 ± 0.8)%

La Thuile, 2019-03-12

T. Pajero (SNS) | Mixing and CPV in Charm

Results by year/magnet polarity

Backgrounds under m(D⁰) peak

- Small contamination under the D⁰ mass peak from multi-body partially and misreconstructed D-meson decays.
 - estimated from template fits to m(h+h-) distributions;
 - systematic uncertainties equal to 0.3 x 10⁻⁴ (0.2 x 10⁻⁴) for the K+K⁻ (π + π -) sample.

Backgrounds under m(D⁰) peak

- Small contamination under the D⁰ mass peak from multi-body partially and misreconstructed D-meson decays.
 - estimated from template fits to m(h+h-) distributions;
 - systematic uncertainties equal to 0.3 x 10⁻⁴ (0.2 x 10⁻⁴) for the K+K⁻ (π + π -) sample.

Secondary decays: systematics

- At low decay times it is difficult to distinguish secondary decays from the resolution tails of primary decays in the fit to the TIP distributions;
 - fix the TIP resolution to the results of simulation, in each bin of decay time (model (ii));
- uncertainty on the choice of the PDF of secondary decays (*exponential*);
 - fix the fraction of secondary decays to that obtained in simulation (model (iii));
 - take the PDF of secondary decays from a sample that combines D^{*-} candidates with μ⁺, used as a proxy for secondary B⁰ → D^{*-} μ⁺X decays (model (iv)).

Sys. unc. 0.4 x 10⁻⁴ (sum in quadrature of the two uncertainties)