# Searching for leptoquarks with the ATLAS detector

Vincent Wong on behalf of the ATLAS Collaboration

Conference on Flavor Physics and CP Violation May 8<sup>th</sup>, 2019







### Introduction



#### **Motivations:**

- Leptoquarks (LQ) are predicted by many GUT models, such as SU(5) unification and Pati-Salam model.
- Interest in leptoquarks regained due to recent hints of lepton universality violation in FCNC and semi-leptonic B-meson decays
   Talk by KUMAR, MALINSKÝ



FPCP2019 - Victoria

#### • Searches for up- and down-type 3rd generation leptoquarks

Searches for 1st and 2nd generation leptoquarks in ATLAS

Leptoquark pair production search results with 36 fb<sup>-1</sup> at 13 TeV:

- Searches for up- and down-type and generation leptoquark [arXiv:1902.08103]
- Benchmark model (minimal Buchmüller-Rückl-Wyler model):
  - Scalar leptoquarks couple to quarks and leptons from the same generation→LQ1, LQ2, LQ3
  - Model parameters:
    - 1. LQ mass  $m_{LQ}$ ,

[arXiv:1902.00377]

- 2. coupling parameter  $\lambda$ =0.3 (fixed),
- 3. branching ratio B for LQ  $\rightarrow \ell^{\pm}q$  (determined by model parameter  $\beta$ )















 Searching for first and second generation LQ pair, with final states: eejj, μμjj, evjj, μvjj







| Baseline selections |                                                                                                                 |                                                                                                                                                 |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Common selections   | <b>≥ 2 jets</b> (p <sub>T</sub> > 60 GeV,  η  < 2.5)<br> η <sub>muon</sub>   < 2.5,  η <sub>elec</sub>   < 2.47 |                                                                                                                                                 |  |
| Channel             | ℓℓjj ℓvjj                                                                                                       |                                                                                                                                                 |  |
|                     | Exactly two e/μ<br>m <sub>ℓℓ</sub> > 130 GeV                                                                    | $\begin{array}{l} & \textbf{Exactly 1 e/\mu} \\ m_T(\ell, E^{miss}T) > 130 \ \text{GeV} \\ & E^{miss}T > 150 \ \text{GeV}, \ S > 3 \end{array}$ |  |



m<sub>ℓℓ</sub> > 130 GeV
 → reject Z(→ℓℓ)+jets background



- m<sub>T</sub>(ℓ,E<sup>miss</sup><sub>T</sub>) > 130 GeV
   → reject t<sub>lep</sub>t<sub>had</sub>, W(→ℓv)+jets background
- E<sup>miss</sup><sub>T</sub> > 150 GeV, S > 3
   → reject fakes from QCD events

 $E^{miss}T$  significance variable  $S = E^{miss}T / \sqrt{(p^{j1}T + p^{j2}T + p^{\ell}T)}$ 





| Baseline selections |                                                                                                                 |                                                                                                                            |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Common selections   | <b>≥ 2 jets</b> (p <sub>T</sub> > 60 GeV,  η  < 2.5)<br> η <sub>muon</sub>   < 2.5,  η <sub>elec</sub>   < 2.47 |                                                                                                                            |  |
| Channel             | ℓℓjj ℓvjj                                                                                                       |                                                                                                                            |  |
|                     | Exactly two e/μ<br>m <sub>ℓℓ</sub> > 130 GeV                                                                    | $\frac{\text{Exactly 1 e/\mu}}{m_T(\ell, E^{\text{miss}}T) > 130 \text{ GeV}}$ $E^{\text{miss}}T > 150 \text{ GeV}, S > 3$ |  |



Get m<sup>max</sup>LQ & m<sup>min</sup>LQ
 by minimizing m<sub>l1,j1</sub> - m<sub>l2,j2</sub>



Get m<sup>max</sup>LQ & m<sup>min</sup>LQ
 by minimizing m<sub>l,j1</sub> - m<sup>T</sup>MET,j2



**Analysis strategy** 

arXiv:1902.00377



• Use Boosted Decision Tree (BDT) to identify signal events from backgrounds.



• Train separate BDT's for each channel & each LQ mass.



# **Background estimations**

arXiv:1902.00377

 $70 < m_{\ell\ell} < 110 \text{ GeV}$ 

**Control Regions (CR) for main background process** 

 $40 < m_T < 130 \text{ GeV}$ 



0 b-jets

 Poor Z+jets and W+jets (Sherpa 2.2.1) modelling of data

→Reweighing of Z+jets and W+jets w/ weights=fcn(m<sub>jj</sub>) using Z CR and W CR



Z CR for *ll*jj

W CR for *lvjj* 

 Simultaneous fit of 3 single-bin CRs to constraint the normalization of major backgrounds from data



Good agreement between data and background estimation in CR's

# Combined Results of *lljj* and *lvjj*

arXiv:1902.00377





UBC





- Particle-level cross-sections measurement in some extreme measurement regions
- For MC development, e.g. generators tuning

| MR                  | Dominant process (purity)          | Required leptons and jets | $m_{\ell\ell}$ selection              | $S_{\rm T}$ selection      | Remark            |
|---------------------|------------------------------------|---------------------------|---------------------------------------|----------------------------|-------------------|
| eejj                | $Z \rightarrow ee \ (93\%)$        | $= 2e$ ; $\geq 2jets$     | $70 < m_{\ell\ell} < 110  \text{GeV}$ | -                          | Identical to Z CR |
| μμjj                | $Z \rightarrow \mu \mu$ (93%)      | $=2\mu$ ; $\geq$ 2jets    | $70 < m_{\ell\ell} < 110  \text{GeV}$ | -                          | Identical to Z CR |
| еµjj                | $t\bar{t} \rightarrow e\mu (93\%)$ | $= 1\mu, 1e; \geq 2$ jets | -                                     | -                          | -                 |
| Extreme <i>eejj</i> | $Z \rightarrow ee \ (94\%)$        | $= 2e$ ; $\geq 2jets$     | $70 < m_{\ell\ell} < 110  \text{GeV}$ | $S_{\rm T} > 600 { m GeV}$ | -                 |
| Extreme $\mu\mu jj$ | $Z \rightarrow \mu \mu (94\%)$     | $=2\mu$ ; $\geq$ 2jets    | $70 < m_{\ell\ell} < 110  \text{GeV}$ | $S_{\rm T} > 600 { m GeV}$ | -                 |
| Extreme <i>eµjj</i> | $t\bar{t} \rightarrow e\mu$ (86%)  | $= 1\mu, 1e; \geq 2$ jets | -                                     | $S_{\rm T} > 600 { m GeV}$ | -                 |

• Mis-modelling found in variables involving jet energies in Z measurement regions





**3rd generation LQ search** 

arXiv:1902.08103

 Searching for 3rd generation LQ pair production with 36 fb-1 data at √s = 13 TeV



possible decays:
 LQ<sup>u</sup>LQ<sup>u</sup>→bbττ / ttvv / btτv
 LQ<sup>d</sup>LQ<sup>d</sup>→bbvv / ttττ / btτv



## **3rd generation LQ search**



Searching for 3rd generation LQ pair production, with final states:
 (i) tt+E<sup>miss</sup><sub>T</sub>, (ii) bb+E<sup>miss</sup><sub>T</sub>, (iii) ττb+E<sup>miss</sup><sub>T</sub> and (iv) bbττ



#### t

#### **Dedicated analysis for LQLQ→bbττ**

 Optimized based on HH→bbττ search method <u>Phys. Rev. Lett. 121 (2018) 191801</u>





#### • Four signal regions: ( $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$ channels) x (1 and 2 b-tag categories)



- bt pairing is chosen by minimizing  $|m(j_1, \tau_{had,1}) m(j_2, \tau_{had,2})|$  or  $|m(j_1, \tau_{had,1}) m(j_2, \ell)|$
- Major backgrounds with real taus are ttbar and  $Z(\rightarrow \tau \tau)$  + heavy flavour jets
- Fake tau contribution is estimated with data-driven method

# USE LQLQ→bbττ search: Analysis strategy arXiv:1902.08103

BDT is trained for each of the four SR's & each LQ mass (for LQ<sup>u</sup> only)
 1 b-tag
 2 b-tag



Single combined fit of these BDT output score profiles in all SRs and CRs



# Full Results of LQ<sup>3</sup> search

arXiv:1902.08103





- Masses below 800 GeV excluded for both up- and down-type LQs
- Masses below ~1 TeV excluded for BR(LQ $\rightarrow \ell \pm q$ ) = 0/1

Summary

**UBC** 



- (Scalar) LQ pair production searched with 36 fb<sup>-1</sup> data
  - LQ<sup>1,2</sup>: mass limits up to mLQ  $\approx$  1.5 TeV
  - LQ<sup>3</sup>: mass limits up to mLQ  $\approx$  1.0 TeV



- Let's explore the full Run 2 dataset of 139 fb<sup>-1</sup>!
  - Scalar and vector LQ
  - Cross-generational LQ decays
  - Pair and single LQ production
  - Non-resonant LQ search in dilepton mass/angular spectra











#### Maybe a leptoquark is also just at our front yard!

Backup Slides





#### • 1st & 2nd generation LQ:

| Channel        | lljj                                                                                         | ℓvjj                                                                                                |
|----------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Input variable | • $m_{LQ}^{min}$<br>• $m_{\ell\ell}$<br>• $p_T^{j2}$<br>• $p_T^{\ell 2}$<br>• $m_{LQ}^{max}$ | • $m_{LQ}$<br>• $m_{LQ}^{T}$<br>• $m_{T}$<br>• $E_{T}^{miss}$<br>• $p_{T}^{j2}$<br>• $p_{T}^{\ell}$ |

#### • 3rd generation LQ:

| Channel        | ThadThad                                                                                                                                                                                  | TlepThad                                                                                                                                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input variable | <ul> <li>S<sub>T</sub></li> <li>m(τ<sub>h1</sub>,jet)</li> <li>Δφ(τ<sub>h</sub>,jet)</li> <li>E<sub>T</sub><sup>miss</sup>-φ centrality</li> <li>p<sub>T</sub>(τ<sub>h1</sub>)</li> </ul> | • $S_T$<br>• $m(\tau_{h},jet)$<br>• $m(\ell,jet)$<br>• $\Delta \phi(\ell,jet)$<br>• $E_T^{miss}-\phi$ centrality<br>• $p_T(\tau_h)$<br>• $\Delta \phi(\ell,E_T^{miss})$ |



# **Event-based MET significance**









Limitations:

- Proxy for the MET resolution
- Event based quantity, neglecting the nature of the objects.
- Do not take into account directional correlations



# LQ<sub>1</sub> & LQ<sub>2</sub>: Input Variables to BDT





FPCP2019 - Victoria

# LQ<sub>1</sub> & LQ<sub>2</sub>: Variables in differential-σ measurements



p<sub>T</sub>(ℓℓ), Δφ(ℓℓ), Min Δφ(ℓ,j1), Min Δφ(ℓ,j2), S<sub>T</sub>, p<sub>T</sub>(j1), p<sub>T</sub>(j2), Δφ(j1,j2), Δη(j1,j2), |pT(j1)| + |pT(j2)|, m(j1,j2)



UBC

FPCP2019 - Victoria











| Sample                                   | Post-fit yield   |                 |                    |                   |  |  |
|------------------------------------------|------------------|-----------------|--------------------|-------------------|--|--|
|                                          | $	au_{t}$        | $	au_{ m had}$  | had $	au_{ m had}$ |                   |  |  |
|                                          | 1-tag            | 2-tag           | 1-tag              | 2-tag             |  |  |
| $t\bar{t}$                               | $17800 \pm 1500$ | $14460 \pm 980$ | $285 \pm 83$       | $238 \pm 69$      |  |  |
| Single top                               | $2500 \pm 180$   | 863 ± 73        | $63 \pm 8$         | $27 \pm 3$        |  |  |
| QCD fake- $\tau$                         | -                | -               | $1860 \pm 110$     | $173 \pm 34$      |  |  |
| $t\bar{t}$ fake- $	au$                   | -                | -               | $200 \pm 110$      | $142 \pm 79$      |  |  |
| Fake- $	au$                              | $13900 \pm 1700$ | $6400 \pm 1000$ | -                  | -                 |  |  |
| $Z \rightarrow \tau \tau + (bb, bc, cc)$ | $520 \pm 160$    | $285 \pm 83$    | $258 \pm 64$       | $156 \pm 36$      |  |  |
| Other                                    | $2785 \pm 270$   | $158 \pm 26$    | $817 \pm 95$       | $21 \pm 4$        |  |  |
| Total Background                         | $37510 \pm 220$  | $22120 \pm 160$ | $3482 \pm 59$      | $756 \pm 27$      |  |  |
| Data                                     | 37527            | 22117           | 3469               | 768               |  |  |
| $m(LQ_3^u) = 400 \text{ GeV}$            | $2140 \pm 140$   | $1950 \pm 160$  | $1430 \pm 190$     | $1430 \pm 200$    |  |  |
| $m(LQ_3^{d}) = 400 \text{ GeV}$          | $1420 \pm 170$   | $1096 \pm 82$   | $850 \pm 110$      | $672 \pm 88$      |  |  |
| $m(LQ_3^{u}) = 800 \text{ GeV}$          | $39.1 \pm 2.8$   | $25.2 \pm 2.3$  | $25.6 \pm 3.9$     | $16.8 \pm 2.7$    |  |  |
| $m(LQ_3^{d}) = 800 \text{ GeV}$          | $23 \pm 2.3$     | $16.6 \pm 1.4$  | $17.8 \pm 2.8$     | $12.4 \pm 2.2$    |  |  |
| $m(LQ_3^{\tilde{u}}) = 1500 \text{ GeV}$ | $0.25 \pm 0.02$  | $0.08 \pm 0.01$ | $0.16 \pm 0.03$    | $0.05 ~\pm~ 0.01$ |  |  |



















| SR |                                                  | TT            | TW            | T0             | low             | high            |
|----|--------------------------------------------------|---------------|---------------|----------------|-----------------|-----------------|
|    | Observed                                         | 11            | 9             | 18             |                 |                 |
| Λ  | SM Total                                         | 8.6 ± 2.1     | $9.3 \pm 2.2$ | $18.7 \pm 2.7$ |                 |                 |
| A  | $m(LQ_3^u) = 1000 \text{ GeV}, B = 0$            | $8.5 \pm 0.7$ | $4.8 \pm 0.6$ | $5.0 \pm 0.7$  | -               | -               |
|    | $m(LQ_3^d) = 800 \text{ GeV}, B = 0$             | $3.1 \pm 1.1$ | $3.7 \pm 1.2$ | $15.5\pm2.5$   |                 |                 |
|    | Observed                                         | 38            | 53            | 206            |                 |                 |
| R  | SM Total                                         | $39 \pm 8$    | $52 \pm 7$    | $179 \pm 26$   |                 |                 |
| D  | $m(LQ_3^u) = 400 \text{ GeV}, B = 0.7$           | $26 \pm 7$    | $18 \pm 8$    | $27 \pm 9$     | -               | -               |
|    | $m(LQ_3^{\tilde{d}}) = 400 \text{ GeV}, B = 0.9$ | $9 \pm 4$     | $18 \pm 9$    | $63 \pm 9$     |                 |                 |
|    | Observed                                         |               | -             |                | 27              | 11              |
| D  | SM Total                                         |               | -             |                | $25 \pm 6$      | $8.5 \pm 1.5$   |
|    | $m(LQ_3^d) = 800 \text{ GeV}, B = 0.9$           |               | -             |                | $2.87 \pm 0.35$ | $1.45 \pm 0.23$ |

SRA & SRB: two R=1.2 jets SRA: EmissT>600GeV SRB: 250GeV < EmissT<600GeV

TT: m1jet,R=1.2>120GeV TW: 60<m1jet,R=1.2<120GeV T0: m1jet,R=1.2<60GeV SRD: >4 jets && two b-tagged low: 300GeV < HT(bj1,bj2) < 400GeVhigh: HT(bj1,bj2) > 400GeV

















# Both signal regions require at least four jets, at least oneb-tagged jet, exactly one isolated electron or muon, and highEmiss SR tN\_high for >1TeV LQ

| <u>SR tN_med</u>                                                                                                                  |                                                        |                                                        |                                                                    |                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--|
| $E_{\mathrm{T}}^{\mathrm{miss}}$                                                                                                  | [250, 350] GeV                                         | [350, 450] GeV                                         | [450, 600] GeV                                                     | >600 GeV                                                           |  |
| Observed events<br>Total SM                                                                                                       | $\begin{array}{c} 21\\ 14.6\pm2.8\end{array}$          | 17<br>11.2 ± 2.2                                       | 8<br>7.3 ± 1.7                                                     | $\begin{array}{c} 4\\ 3.16\pm0.74\end{array}$                      |  |
| $m(LQ_3^u) = 400 \text{ GeV}$<br>$m(LQ_3^u) = 600 \text{ GeV}$<br>$m(LQ_3^u) = 800 \text{ GeV}$<br>$m(LQ_3^u) = 1000 \text{ GeV}$ | $166 \pm 44$<br>21.0 ± 5.6<br>5.0 ± 1.5<br>0.46 ± 0.14 | $58 \pm 32$<br>49.6 ± 8.8<br>10.6 ± 1.7<br>1.18 ± 0.24 | $11 \pm 11$<br>$31.8 \pm 5.5$<br>$11.2 \pm 2.0$<br>$2.92 \pm 0.49$ | $5.7 \pm 5.7$<br>$1.4 \pm 2.1$<br>$6.3 \pm 1.4$<br>$4.61 \pm 0.64$ |  |

| <u>SR tN_hig</u>                                      | <u>h</u>       |
|-------------------------------------------------------|----------------|
| Observed events                                       | 8              |
| Total SM                                              | $3.8 \pm 1.0$  |
| $m(\mathrm{LQ}_3^{\mathrm{u}}) = 800 \; \mathrm{GeV}$ | $11.9 \pm 1.8$ |
| $m(LQ_3^{u}) = 900 \text{ GeV}$                       | $9.5 \pm 1.2$  |
| $m(LQ_3^{u}) = 1000 \text{ GeV}$                      | $6.7 \pm 0.7$  |
| $m(LQ_3^{\tilde{u}}) = 1100 \text{ GeV}$              | $3.7\pm0.3$    |

















| SR selection                                   | b0L_SRA350      | b0L_SRA450     | b0L_SRA550     | b1L_SRA600     | b1L_SRA750     |
|------------------------------------------------|-----------------|----------------|----------------|----------------|----------------|
| Observed events                                | 81              | 24             | 10             | 21             | 13             |
| Fitted bkg events                              | $70.1 \pm 13.0$ | $21.4\pm4.5$   | $7.2 \pm 1.5$  | $23.0 \pm 5.4$ | $14.4 \pm 3.6$ |
| $m_{\rm LQ} = 750  {\rm GeV}$                  |                 |                |                |                |                |
| $\overline{B(LQ_3^d \to t\tau)} = 1.0$         | < 0.1           | < 0.1          | < 0.1          | $0.4 \pm 0.2$  | $0.4 \pm 0.2$  |
| $B(LQ_3^{d} \rightarrow t\tau) = 0.5$          | $28.4 \pm 1.7$  | $18.1 \pm 1.5$ | $7.6 \pm 0.9$  | $5.1 \pm 0.8$  | $5.0 \pm 0.9$  |
| $B(LQ_3^{d} \rightarrow t\tau) = 0.0$          | $107.1 \pm 6.7$ | $68.3 \pm 5.8$ | $29.6 \pm 3.7$ | $0.3 \pm 0.2$  | $0.3 \pm 0.2$  |
| $\overline{B(LQ_3^u \rightarrow b\tau)} = 1.0$ | $1.3 \pm 0.6$   | $0.8 \pm 0.5$  | $0.2 \pm 0.2$  | $0.6 \pm 0.4$  | $0.6 \pm 0.3$  |
| $B(LQ_3^{u} \rightarrow b\tau) = 0.5$          | $2.4 \pm 0.4$   | $1.5 \pm 0.3$  | $0.3 \pm 0.1$  | $10.2 \pm 1.1$ | $9.6 \pm 0.1$  |
| $B(LQ_3^{u} \rightarrow b\tau) = 0.0$          | $2.6 \pm 1.0$   | $1.7 \pm 0.6$  | $0.4 \pm 0.3$  | $16.7 \pm 3.3$ | $14.7\pm0.3$   |

b0L:

- zero-leptons, two b-tagged jets and large MET
- contransverse mass mCT>350, 450, and 550 GeV b1L:
- one-lepton, two b-tagged jets and large MET
- scalar sum of the pT of the jets and EmissT>600 or 750 GeV







#### zero-lepton SR (b0L\_SRA350)

#### one-lepton SR (b1L\_SRA600)

















|                                                       |         | SR HH          | SR LH          |
|-------------------------------------------------------|---------|----------------|----------------|
| Observed events                                       |         | 2              | 3              |
| Total SM                                              |         | $1.9 \pm 1.0$  | $2.2 \pm 0.6$  |
| $m(\mathrm{LQ}_3^{\mathrm{u}}) = 500 \; \mathrm{GeV}$ | B = 0.5 | $10.8 \pm 3.4$ | 27 ± 7         |
| $m(LQ_3^{u}) = 750 \text{ GeV}$                       | B = 0   | < 0.1          | $1.0 \pm 0.3$  |
| $m(LQ_3^{\check{u}}) = 750 \text{ GeV}$               | B = 0.5 | $2.6 \pm 0.8$  | $7.3 \pm 1.5$  |
| $m(LQ_3^{\tilde{u}}) = 750 \text{ GeV}$               | B = 1   | $2.6 \pm 0.9$  | $0.33 \pm 0.1$ |
| $m(LQ_{3}^{u}) = 1000 \text{ GeV}$                    | B = 0.5 | $0.3 \pm 0.09$ | $1.1 \pm 0.3$  |
| $m(LQ_3^d) = 500 \text{ GeV}$                         | B = 0.5 | $25 \pm 7$     | 49 ±11         |
| $m(LQ_3^d) = 750 \text{ GeV}$                         | B = 0   | < 0.1          | < 0.1          |
| $m(LQ_3^d) = 750 \text{ GeV}$                         | B = 0.5 | $1.9 \pm 0.5$  | $6.2 \pm 1.5$  |
| $m(LQ_3^{d}) = 750 \text{ GeV}$                       | B = 1   | $2.4 \pm 1.1$  | $2.5 \pm 1.0$  |
| $m(LQ_3^{d}) = 1000 \text{ GeV}$                      | B = 0.5 | $0.53\pm0.16$  | $1.6 \pm 0.4$  |











| Channel/Signatures | Main systematic uncertinties                                                                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | LQ1 & LQ2                                                                                                                                                                |
| electron           | <ul> <li>top and fakes background modelling</li> </ul>                                                                                                                   |
| muon               | <ul> <li>top background modelling and muon uncertainties</li> </ul>                                                                                                      |
|                    | LQ3                                                                                                                                                                      |
| tt+MET             | <ul> <li>1-lepton Stop: ttV modelling and renormalization</li> <li>0-lepton Stop: jet energy resolution, ttbar modeling, Z+jet scale factor and MC statistics</li> </ul> |
| bb+MET             | <ul> <li>top (b1L) and Z(b0L) background modelling and<br/>renormalization</li> </ul>                                                                                    |
| ττb+MET            | <ul> <li>lep-had channel: fake estimation</li> <li>had-had channel: jet- and MET-related uncertainties</li> </ul>                                                        |
| bbtt               | <ul> <li>Z+jets modelling</li> </ul>                                                                                                                                     |