Measurement of hadronic cross sections with the BABAR detector

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$

Phys. Rev. D 98,112015

University of Victoria

Flavor Physics & CP Violation Victoria, May 06-10 2019

Marcus Ebert University of Victoria on behalf of the *BABAR* collaboration

Motivation

- calculation of $(g_{\mu}-2)$ in Standard Model depends on input from experiments
 - $-e^+e^-$ hadronic cross section data needed to account for hadronic vacuum polarization
 - most sensitive to low-energy region
- about 3.5 standard deviation difference between the Standard Model value and the measured value of $(g_{\mu} 2)$ [PDG]
 - not all accessible states have been measured so far
 - new measurements will improve the calculation of the Standard Model value
 - initial-state radiation (ISR) process can be used to obtain results for different $\sqrt{s'}$ in a single experiment

Motivation

- in addition: ISR events allow to study resonance spectroscopy
 - energy regions from threshold up to charmonium region can be studied
- also possible to look for new physics
 - dark photon to hadrons,

Previous ISR results by BABAR

• $e^+e^- \rightarrow \mu^+\mu^-\gamma$

 $-\pi^{+}\pi^{-}$

Phys. Rev. D 69,011103 (2004)

Phys. Rev. D 71,052001 (2005)

• $e^+e^- \to X_h \gamma$ where X_h is:

Phys. Rev. D 86,032013 (2012), Phys. Rev. Lett. 103, 231801 (2009)

- K⁺ K⁻ Phys. Rev. D **88**,032013 (2013)
- $p \ \overline{p}$ Phys. Rev. D **88**,072009 (2013)
- $-\pi^+\pi^-\pi^+\pi^-$, $\pi^+\pi^-K^+K^-$, $K^+K^-K^+K^-$
- $K^+ K^- \pi^0 \pi^0$ Phys. Rev. D **86**,012008 (2012)
- $3(\pi^+\pi^-)$, $2(\pi^+\pi^-\pi^0)$, $2(\pi^+\pi^-)K^+K^-$ Phys. Rev. D **73**,052003 (2006)
- states with K_S^0 , K_L^0 , π^0 ,....

FPCP 2019, Victoria, 05/07/2019

Marcus Ebert, mebert@uvic.ca

(2004 - 2018)

Previous results

- cross-section for $e^+e^- \rightarrow \pi^+\pi^- 3\pi^0$ reported by M3N Nucl. Phys. B **152**,215 (1979) and MEA Lett. Nuovo Cim. **25**, 5 (1979)
- also by BES-III Nucl.Part.Phys.Proc. 294-296,158-163

- BABAR measured before $e^+e^- \rightarrow \eta \pi^+\pi^-$ with $\eta \rightarrow \pi^+\pi^-\pi^0$ Phys. Rev. D **76**,092005 (2007) and
 - $\eta
 ightarrow \gamma \gamma$ Phys. Rev. D ${f 97}$,052007 (2018)
 - here we present $e^+e^- \rightarrow \eta\pi^+\pi^-$ with $\eta \rightarrow 3\pi^0$
- no measurement for $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ so far
 - SND reported cross-sections for resonant sub-modes

The BABAR experiment

• e^+e^- experiment at SLAC National Accelerator Center in California

 $\bullet\,$ built to study CP violation in the B-meson system

Selection criteria

- 2 well reconstructed tracks fitted to common vertex close to collision point

 inconsistent with kaon or muon
- photon with highest energy considered ISR photon, $E(\gamma_{ISR}) > 3 \text{ GeV}$
- 6 additional photons required, combined into 3 pairs (15 combinations)
 - at least for 2 pairs $\|m_{\pi_{\rm cand}^0} m_{\pi^0}\| < 35\,{\rm MeV}/c^2$
 - no constraints on 3rd pair \rightarrow allows π^0 and η reconstruction
- kinematic fit for $e^+e^- \rightarrow \pi^+\pi^- 2\pi^0 \gamma \gamma \gamma_{ISR}$
 - $m_{\pi_{\mathrm{cand}}^{\mathrm{O}}}$ constrained to m_{π}^{O}
 - combination with smallest χ^2 used

- signal region:
$$\chi^2_{\pi^+\pi^-\pi^0\pi^0\gamma\gamma} < 60$$

- control region: $60 < \chi^2_{\pi^+\pi^-\pi^0\pi^0\gamma\gamma} < 120$

Background reduction

- no charged track close to ISR photon
 - suppresses background from $\tau^+\tau^-$ decays
- fit candidates for $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma_{ISR}$
 - larger cross-section than the studied decay mode
 - together with 2 background photons it can look like signal
 - reject if $\chi^2 < 30$
- $\bullet\,$ study non-ISR uds background
 - dominated by $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0$ with one very high energetic photon from a π^0 decay

Signal extraction

- signal extraction: $\sqrt{s'}$ scanned in 0.05 GeV/ c^2 intervals
- distribution for control region subtracted from signal distribution
 - $m(\gamma\gamma)$ fitted and $N(\pi^0)$ or $N(\eta)$ used as signal yield for each interval
 - signal shape fixed to the shape obtained from signal MC
 - efficiency nearly independent of $\sqrt{s'}$, $\sim 4\%$
- signal extraction for resonant sub-modes similar:
 - for $\eta \pi^+ \pi^-$ events: signal extraction in $m(\pi^0 \pi^0 \pi^0)$
 - for $\omega \pi^0 \pi^0$ events: signal extraction in $m(\pi^+\pi^-\pi^0)$
 - for $\rho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$ events: signal extraction in $m(\pi^{\pm}\pi^{0})$

Results for $\pi^+\pi^-3\pi^0$

Results for $\pi^+\pi^-\eta/\omega 2\pi^0$

Sum of intermediate states

black: total number of events for $\pi^+\pi^-3\pi^0$ final state

red: number of events for resonant sub-modes ($\pi^+\pi^-\eta, \omega 2\pi^0, \rho^\pm\pi^\mp 2\pi^0, \rho^+\rho^-\pi^0$)

FPCP 2019, Victoria, 05/07/2019

Results for $\pi^+\pi^-2\pi^0\eta$

red: background from non-ISR uds events

FPCP 2019, Victoria, 05/07/2019

Marcus Ebert, mebert@uvic.ca

Results for $\omega \pi^0 \eta / \phi \pi^0 \eta$

J/ψ and $\psi(2S)$ branching fractions

J/ψ and $\psi(2S)$ branching fractions

Measured	Measured	J/ψ or $\psi(2S)$ Branching Fraction (10 ⁻³)	
Quantity	Value (eV)	Calculated, this work	PDG
$\Gamma^{J/\psi}_{ee} {\cdot} {\cal B}_{J/\psi ightarrow \pi^+\pi^-\pi^0\pi^0\pi^0}$	$150.0{\pm}4.0{\pm}15.0$	$27.0 \pm 0.7 \pm 2.7$	no entry
$\Gamma^{J/\psi}_{ee} {\cdot} \mathcal{B}_{J/\psi ightarrow \omega \pi^{0} \pi^{0}} {\cdot} \mathcal{B}_{\omega ightarrow 3\pi}$	$24.8 \pm 1.8 \pm 2.5$	$5.04{\pm}0.37{\pm}0.50$	3.4±0.8
$\Gamma^{J/\psi}_{ee} \cdot \mathcal{B}_{J/\psi ightarrow ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}}$	$78.0 \pm 9.0 \pm 8.0$	$14.0 \ \pm 1.2 \ \pm 1.4$	no entry
$\Gamma^{J/\psi}_{ee} {\cdot} {\cal B}_{J/\psi ightarrow ho^+ ho^- \pi^0}$	$33.0 \pm 5.0 \pm 3.3$	$6.0 \pm 0.9 \pm 0.6$	no entry
$\Gamma^{J/\psi}_{ee} {\cdot} {\cal B}_{J/\psi ightarrow \pi^+\pi^-\pi^0\pi^0\eta}$	$12.8 \pm 1.8 \pm 2.0$	$2.30{\pm}0.33{\pm}0.35$	no entry
$\Gamma^{J/\psi}_{ee} {\cdot} \mathcal{B}_{J/\psi ightarrow \omega \pi^{0} \eta} {\cdot} \mathcal{B}_{\omega ightarrow 3\pi}$	$1.7{\pm}0.8{\pm}0.3$	$0.34{\pm}0.16{\pm}0.06$	no entry
$\Gamma^{J/\psi}_{ee} \cdot {\cal B}_{J/\psi o ho^{\pm}\pi^{\mp}\pi^{0}\eta}$	$10.5 \pm 4.1 \pm 1.6$	$1.7 \pm 0.7 \pm 0.3$	no entry
$\Gamma^{\psi(2S)}_{ee} \cdot \mathcal{B}_{\psi(2S) ightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0}$	$12.4 \pm 1.8 \pm 1.2$	$5.2 \pm 0.8 \pm 0.5$	no entry
$\Gamma^{\psi(2S)}_{ee} \cdot \mathcal{B}_{\psi(2S) o J/\psi \pi^0 \pi^0} \cdot \mathcal{B}_{J/\psi o 3\pi}$	$10.1{\pm}1.5{\pm}1.1$	$22.9 \pm 2.8 \pm 2.3$	21.1 ± 0.7
$\Gamma^{\psi(2S)}_{ee} \cdot \mathcal{B}_{\psi(2S) o \omega \pi^0 \pi^0} \cdot \mathcal{B}_{\omega o \Im \pi}$	$2.3 \pm 0.7 \pm 0.2$	$1.1 \ \pm 0.3 \ \pm 0.1$	no entry
$\Gamma^{\psi(2S)}_{ee} \cdot \mathcal{B}_{\psi(2S) o ho^{\pm} \pi^{\mp} \pi^{0} \pi^{0}}$	<6. 2 at 90% C.L.	<2. 6 at 90% C.L.	no entry
$\Gamma^{\psi(2S)}_{ee} {\cdot} \mathcal{B}_{\psi(2S) ightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta}$	<0. 85 at 90% C.L.	<0. 35 at 90% C.L.	no entry

Summary

- determined hadronic cross-sections for different final states and large $\sqrt{s'}$ region Phys. Rev. D **98**,112015
- increased precision for $e^+e^- \rightarrow \pi^+\pi^- 3\pi^0$ cross-sections and for resonant sub-modes
- cross-sections for $e^+e^- \rightarrow \pi^+\pi^- 2\pi^0\eta$ measured for the first time and increased precision for measurements on resonant sub-modes
- both modes are dominated by resonant sub-modes
- 12 different $J\!/\!\psi$ and $\psi(2S)$ branching fractions measured
 - for 10 modes first-time measurement

Summary

- determined hadronic cross-sections for different final states and large $\sqrt{s'}$ region Phys. Rev. D **98**,112015
- increased precision for $e^+e^- \rightarrow \pi^+\pi^- 3\pi^0$ cross-sections and for resonant sub-modes
- cross-sections for $e^+e^- \rightarrow \pi^+\pi^- 2\pi^0\eta$ measured for the first time and increased precision for measurements on resonant sub-modes
- both modes are dominated by resonant sub-modes
- 12 different $J\!/\psi$ and $\psi(2S)$ branching fractions measured
 - for 10 modes first-time measurement

Analyses based on the BABAR dataset still very fruitful even 11 years after data taking!

FPCP 2019, Victoria, 05/07/2019