Measurement of hadronic cross sections with the BABAR detector

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0} \\
& e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \eta
\end{aligned}
$$

Phys. Rev. D 98,112015

Flavor Physics \& CP Violation
Victoria, May 06-10 2019
Marcus Ebert
University of Victoria

University of Victoria

Motivation

- calculation of $\left(g_{\mu}-2\right)$ in Standard Model depends on input from experiments
$-e^{+} e^{-}$hadronic cross section data needed to account for hadronic vacuum polarization
- most sensitive to low-energy region
- about 3.5 standard deviation difference between the Standard Model value and the measured value of $\left(g_{\mu}-2\right)$ [PDG]
- not all accessible states have been measured so far
- new measurements will improve the calculation of the Standard Model value
- initial-state radiation (ISR) process can be used to obtain results for different $\sqrt{s^{\prime}}$ in a single experiment

Motivation

- in addition: ISR events allow to study resonance spectroscopy
- energy regions from threshold up to charmonium region can be studied
- also possible to look for new physics
- dark photon to hadrons,

Previous ISR results by BABAR

- $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$
- $e^{+} e^{-} \rightarrow X_{h} \gamma$ where X_{h} is:
$-\pi^{+} \pi^{-}$
Phys. Rev. D 86,032013 (2012), Phys. Rev. Lett. 103, 231801 (2009)
- $K^{+} K^{-}$

Phys. Rev. D 88,032013 (2013)

- $p \bar{p}$

Phys. Rev. D 88,072009 (2013)
$-\pi^{+} \pi^{-} \pi^{+} \pi^{-}, \pi^{+} \pi^{-} K^{+} K^{-}, K^{+} K^{-} K^{+} K^{-}$
Phys. Rev. D 71,052001 (2005)
$-K^{+} K^{-} \pi^{0} \pi^{0}$
Phys. Rev. D 86,012008 (2012)
$-3\left(\pi^{+} \pi^{-}\right), 2\left(\pi^{+} \pi^{-} \pi^{0}\right), 2\left(\pi^{+} \pi^{-}\right) K^{+} K^{-}$
Phys. Rev. D 73,052003 (2006)

- states with $K_{S}^{0}, K_{L}^{0}, \pi^{0}, \ldots$

Previous results

- cross-section for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \pi^{0}$ reported by M3N Nucl. Phys. B 152,215 (1979) and MEA Lett. Nuovo Cim. 25, 5 (1979)
- also by BES-III Nucl.Part.Phys.Proc. 294-296,158-163

- BABAR measured before $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Phys. Rev. D 76,092005 (2007) and $\eta \rightarrow \gamma \gamma$ Phys. Rev. D 97,052007 (2018)
- here we present $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$with $\eta \rightarrow 3 \pi^{0}$
- no measurement for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \eta$ so far
- SND reported cross-sections for resonant sub-modes

The BABAR experiment

- $e^{+} e^{-}$experiment at SLAC National Accelerator Center in California
- built to study CP violation in the B-meson system
- >580 papers published so far
- 10 submitted in 2018

Data taking period: 1999-2008

$\Upsilon(4 S):$	$424 \mathrm{fb}^{-1}$
$\Upsilon(3 S):$	$28 \mathrm{fb}^{-1}$
$\Upsilon(2 S):$	$14 \mathrm{fb}^{-1}$
between $b \bar{b}$ resonances:	$48 \mathrm{fb}^{-1}$

total:
$514 \mathrm{fb}^{-1}$

ISR study of

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0} \\
& \quad \text { and } \\
& e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \eta
\end{aligned}
$$

Selection criteria

- 2 well reconstructed tracks fitted to common vertex close to collision point
- inconsistent with kaon or muon
- photon with highest energy considered ISR photon, $E\left(\gamma_{I S R}\right)>3 \mathrm{GeV}$
- 6 additional photons required, combined into 3 pairs (15 combinations)
- at least for 2 pairs $\left\|m_{\pi_{\text {cand }}^{0}}-m_{\pi^{0}}\right\|<35 \mathrm{MeV} / c^{2}$
- no constraints on 3rd pair \rightarrow allows π^{0} and η reconstruction
- kinematic fit for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 2 \pi^{0} \gamma \gamma \gamma_{I S R}$
- $m_{\pi_{\text {cand }}^{0}}$ constrained to m_{π}^{0}
- combination with smallest χ^{2} used
- signal region: $\chi_{\pi^{+} \pi^{-} \pi^{0} \pi^{0} \gamma \gamma}^{2}<60$
- control region: $60<\chi_{\pi^{+} \pi^{-} \pi^{0} \pi^{0}{ }_{\gamma \gamma}}^{2}<120$

Background reduction

- no charged track close to ISR photon
- suppresses background from $\tau^{+} \tau^{-}$decays
- fit candidates for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \gamma_{I S R}$
- larger cross-section than the studied decay mode
- together with 2 background photons it can look like signal
- reject if $\chi^{2}<30$
- study non-ISR $u d s$ background
- dominated by $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0} \pi^{0}$ with one very high energetic photon from a π^{0} decay

Signal extraction

- signal extraction: $\sqrt{s^{\prime}}$ scanned in $0.05 \mathrm{GeV} / c^{2}$ intervals
- distribution for control region subtracted from signal distribution
- $m(\gamma \gamma)$ fitted and $N\left(\pi^{0}\right)$ or $N(\eta)$ used as signal yield for each interval
- signal shape fixed to the shape obtained from signal MC
- efficiency nearly independent of $\sqrt{s^{\prime}}, \sim 4 \%$
- signal extraction for resonant sub-modes similar:
- for $\eta \pi^{+} \pi^{-}$events: signal extraction in $m\left(\pi^{0} \pi^{0} \pi^{0}\right)$
- for $\omega \pi^{0} \pi^{0}$ events: signal extraction in $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$
- for $\rho^{ \pm} \pi^{\mp} \pi^{0} \pi^{0}$ events: signal extraction in $m\left(\pi^{ \pm} \pi^{0}\right)$

Results for $\pi^{+} \pi^{-} 3 \pi^{0}$

red dashed: bg from χ^{2} control region green dotted: bg from $\pi^{+} \pi^{-} \pi^{0} \pi^{\delta}$

red dotted: background from non-ISR $u d s$ events

$$
m\left(\pi^{+} \pi^{-} 3 \pi^{0}\right)=E_{\mathrm{c} . \mathrm{m} .},=\sqrt{s^{\prime}}
$$

Results for $\pi^{+} \pi^{-} \eta / \omega 2 \pi^{0}$

Sum of intermediate states

black: total number of events for $\pi^{+} \pi^{-} 3 \pi^{0}$ final state red: number of events for resonant sub-modes $\left(\pi^{+} \pi^{-} \eta, \omega 2 \pi^{0}, \rho^{ \pm} \pi^{\mp} 2 \pi^{0}, \rho^{+} \rho^{-} \pi^{0}\right)$

Results for $\pi^{+} \pi^{-} 2 \pi^{0} \eta$

red: background from non-ISR uds events

Results for $\omega \pi^{0} \eta / \phi \pi^{0} \eta$

Phys. Rev. D 94,032010 (2016)

J / ψ and $\psi(2 S)$ branching fractions

J / ψ and $\psi(2 S)$ branching fractions

Measured	Measured	J / ψ or $\psi(2 S)$ Branching Fraction $\left(10^{-3}\right)$	
Quantity	Value (eV)	Calculated, this work	PDG
$\Gamma_{e e}^{J / \psi} \cdot \mathcal{B}_{J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0}}$	$150.0 \pm 4.0 \pm 15.0$	$27.0 \pm 0.7 \pm 2.7$	no entry
$\Gamma_{e e}^{J / \psi} \cdot \mathcal{B}_{J / \psi \rightarrow \omega \pi^{0} \pi^{0}} \cdot \mathcal{B}_{\omega \rightarrow 3 \pi}$	$24.8 \pm 1.8 \pm 2.5$	$5.04 \pm 0.37 \pm 0.50$	3.4 ± 0.8
$\Gamma_{e e}^{J / \psi} \cdot \mathcal{B}_{J / \psi \rightarrow \rho^{ \pm} \pi^{\mp} \pi^{0} \pi^{0}}$	$78.0 \pm 9.0 \pm 8.0$	$14.0 \pm 1.2 \pm 1.4$	no entry
$\Gamma_{e e}^{J / \psi} \cdot \mathcal{B}_{J / \psi \rightarrow \rho^{+} \rho^{-} \pi^{0}}$	$33.0 \pm 5.0 \pm 3.3$	$6.0 \pm 0.9 \pm 0.6$	no entry
$\Gamma_{e e}^{J / \psi} \cdot \mathcal{B}_{J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \eta}$	$12.8 \pm 1.8 \pm 2.0$	$2.30 \pm 0.33 \pm 0.35$	no entry
$\Gamma_{e e}^{J / \psi} \cdot \mathcal{B}_{J / \psi \rightarrow \omega \pi^{0} \eta} \cdot \mathcal{B}_{\omega \rightarrow 3 \pi}$	$1.7 \pm 0.8 \pm 0.3$	$0.34 \pm 0.16 \pm 0.06$	no entry
$\Gamma_{e e}^{J / \psi} \cdot \mathcal{B}_{J / \psi \rightarrow \rho^{ \pm} \pi^{\mp} \pi^{0} \eta}^{\Gamma_{e e}(2 S)} \cdot \mathcal{B}_{\psi(2 S) \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0}}$	$10.5 \pm 4.1 \pm 1.6$	$1.7 \pm 0.7 \pm 0.3$	no entry
$\Gamma_{e e}^{\psi(2 S)} \cdot \mathcal{B}_{\psi(2 S) \rightarrow J / \psi \pi^{0} \pi^{0} \cdot \mathcal{B}_{J / \psi \rightarrow 3 \pi}}^{\Gamma_{e e}^{\psi(2 S)} \cdot \mathcal{B}_{\psi(2 S) \rightarrow \omega \pi^{0} \pi^{0}} \cdot \mathcal{B}_{\omega \rightarrow 3 \pi}} \quad 12.4 \pm 1.8 \pm 1.2$	$5.2 \pm 0.8 \pm 0.5$	no entry	
$\Gamma_{e e}^{\psi(2 S)} \cdot \mathcal{B}_{\psi(2 S) \rightarrow \rho^{ \pm} \pi^{\mp} \pi^{0} \pi^{0}}$	$10.1 \pm 1.5 \pm 1.1$	$22.9 \pm 2.8 \pm 2.3$	21.1 ± 0.7
$\Gamma_{e e}^{\psi(2 S)} \cdot \mathcal{B}_{\psi(2 S) \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \eta}$	$2.3 \pm 0.7 \pm 0.2$	$1.1 \pm 0.3 \pm 0.1$	no entry

Summary

- determined hadronic cross-sections for different final states and large $\sqrt{s^{\prime}}$ region Phys. Rev. D 98,112015
- increased precision for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \pi^{0}$ cross-sections and for resonant sub-modes
- cross-sections for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 2 \pi^{0} \eta$ measured for the first time and increased precision for measurements on resonant sub-modes
- both modes are dominated by resonant sub-modes
- 12 different J / ψ and $\psi(2 S)$ branching fractions measured
- for 10 modes first-time measurement

Summary

- determined hadronic cross-sections for different final states and large $\sqrt{s^{\prime}}$ region Phys. Rev. D 98,112015
- increased precision for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \pi^{0}$ cross-sections and for resonant sub-modes
- cross-sections for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 2 \pi^{0} \eta$ measured for the first time and increased precision for measurements on resonant sub-modes
- both modes are dominated by resonant sub-modes
- 12 different J / ψ and $\psi(2 S)$ branching fractions measured
- for 10 modes first-time measurement

Analyses based on the BABAR dataset still very fruitful even 11 years after data taking!

