HIDDEN SECTORS & LOW-ENERGY EXPERIMENTS

Brian Shuve FPCP 2019

WHY HIDDEN SECTORS?

• For dark matter masses below a few GeV, the "weak"/Higgs portals can't give large enough annihilation rate

Lee, Weinberg 1977 [PRL]

• For dark matter masses below a few GeV, the "weak"/Higgs portals can't give large enough annihilation rate

Lee, Weinberg 1977 [PRL]

• For dark matter masses below a few GeV, the "weak"/Higgs portals can't give large enough annihilation rate

WHERE CAN WE LOOK?

MODEL ORGANIZATION increasing particle multiplicity "Simplified Complete Single particle model" model

MODEL ORGANIZATION

increasing particle multiplicity

Single particle

"Simplified model"

Dark photon Singlet Higgs Sterile Neutrino Dark U(1)+Higgs Z' + sterile neutrino Dark photon + DM Complete model

Dark-sector SUSY nuMSM LR-symmetric model Twin Higgs, dark QCD

MODEL ORGANIZATION ("model-("generic") specific") Complete "Simplified Single

particle

Simplified model"

Dark photon Singlet Higgs Sterile Neutrino Dark U(1)+Higgs Z' + sterile neutrino Dark photon + DM Complete model

Dark-sector SUSY nuMSM LR-symmetric model Twin Higgs, dark QCD

MODEL ORGANIZATION ("model-("generic") specific") "Simplified Complete Single particle model" model Dark-sector SUSY Dark photon Dark U(1)+Higgs nuMSM Singlet Higgs Z' + sterile neutrino LR-symmetric model Sterile Neutrino Dark photon + DM Twin Higgs, dark QCD

SIMPLEST CASE: PORTALS

• Single mediator couples to SM via **renormalizable portal**

SIMPLEST CASE: PORTALS

• Portal models give straightforward, predictive phenomenology

• See next talk by S. Robertson!

CONSTRAINTS ON PORTALS

Vector portal

Scalar portal

• Expected improvements from Belle II and LHCb

CONSTRAINTS ON PORTALS

• Many planned or proposed new experiments, especially to take advantage of long lifetime of hidden particles

PORTALS: FUTURE POTENTIAL

Vector portal

Ψ

• Improvements in coverage based on PBC proposal

Scalar portal

 FASER experiment approved & funded for installation in LHC LS2!

HIDDEN SM STATES

• Standard Model particle that has not yet been discovered! True muonium (in spin-1 state) kinetically mixes with photon

13

 Due to displacement & known mass/coupling, can be discovered using upgraded triggerless readout at LHCb (15/fb)

(also potentially RedTop, HPS: Ji, Lamm, 1810.00233 [PRD]; Banburski, Schuster, 1206.3961 [PRD])

OTHER PORTALS?

- Non-renormalizable portals can have comparable rates if UV completion is not far above the weak scale
- Example: the axion portal
- Pseudoscalar can naturally be much lighter than other UV states due to approximate global symmetry

 Also can have coupling to fermions, but pheno similar to scalar portal

AXION PORTAL: PHOTON

 \boldsymbol{a}

ALP produced via photon fusion or in association with real photon

Physics Beyond Colliders: J Beacham et al., arXiv:1901.09966

AXION PORTAL: WEAK

• Weak couplings can lead to FCNC production of axions

- Channels: $B^{\pm} \to K^{\pm} a$, $K^{\pm} \to \pi^{\pm} a$
- Possibility of several orders of magnitude improvement in sensitivity

also production in h/Z decays: M. Bauer, M. Neubert, A.Thamm, arXiv:1704.08207 [PRL]; ...

AXION PORTAL: GLUON

- More like the QCD axion!
- Need to match onto low-energy effective QCD; still have large diphoton decay rate

OTHER PORTALS?

- We can also have models with **non-universal couplings**
- Dramatically different phenomenology if suppressed coupling to electrons and quarks

- Leptophilic gauge boson (gauged $L_{\mu} L_{\tau}$ or RH muon)
 - He *et al.*, 1991 [PRD]; Batell, McKeen, Pospelov, 1103.0721 [PRL] Leptophilic scalar
 - Chen et al., 1511.04715 [PRD]; Batell et al., 1606.04943 [PRD]

LEPTONIC FORCES

• Flavour experiments can be great place to look for these leptonic forces

LEPTONIC FORCES

• Flavour experiments can be great place to look for these leptonic forces

LEPTONIC FORCES

• Cosmology, parameters for dark matter different in these models BS, I. Yavin, arXiv:1403.2727 [PRD]; Krnjaic *et al.*, arXiv:1902.07715

MODEL ORGANIZATION ("model-("generic") specific") "Simplified Complete Single particle model" model Dark-sector SUSY Dark photon Dark U(1)+Higgs nuMSM Singlet Higgs Z' + sterile neutrino LR-symmetric model Sterile Neutrino Dark photon + DM Twin Higgs, dark QCD

MODEL ORGANIZATION ("model-("generic") specific") Simplified Complete Single model" particle model Dark-sector SUSY Dark U(1)+Higgs Dark photon nuMSM + sterile neutrino Singlet Higgs LR-symmetric model Sterile Neutrino Dark photon + DM Twin Higgs, dark QCD

SIMPLIFIED HIDDEN SECTORS

- In single-particle model, decays happen through tiny coupling
- Easily overwhelmed by decays into **other** hidden sector particles (if they exist)
- To capture these effects, consider 1-2 extra states

INVISIBLE MEDIATORS

• Search for missing momentum or energy

Physics Beyond Colliders: arXiv:1901.09966

(SEMI-)VISIBLE DECAYS

- Many current searches may not apply! Need comprehensive search strategies akin to LHC
- One approach: more inclusive searches
- Example: BABAR search for long-lived particles BABAR, arXiv:1502.02580 [PRL]
 - Model-independent limits set as function of detector efficiencies
 - Moderate backgrounds because only looking for 2 tracks
 - Sensitive to particular exclusive decays

(SEMI-)VISIBLE DECAYS

see also: Berlin et al., 1801.05805 [PRD]; Ballett et al., 1903.07590; ...

Belle II projection, 10 evts, 25% eff, 50/ab

 $\epsilon = 3 \times 10$

- What could we be missing?
- Want to make sure of **comprehensive** coverage example: recent LHC long-lived particles white paper, ed. J. Beacham and BS, arXiv:1903.04497
- Illustrative example:

HIDDEN SECTORS WRAP-UP

- Lots of ongoing theory, pheno, and experimental work to look for hidden sectors wherever they may be lurking
- Impressive progress, but only now moving beyond the simplest examples of hidden sectors! What new ideas do you have?