Dark Forces at Accelerators

Steven Robertson

Institute of Particle Physics & McGill University

On behalf of the **BABAR** Collaboration

FPCP 2019 Victoria B.C. Canada May 7, 2019

Outline

Experimental overview of (selected) dark sector results

- Minimal dark photon searches
 - Visible decays
 - Invisible decays
 - Prompt & displaced vertex
- Muonic dark force Z_d
- Dark Higgs
- Higgs portal Z_d
- Future prospects

Simplest dark sector scenario: add a new U(1) gauge symmetry, with associated charge carried by dark-sector fermions

 $\frac{1}{2}\epsilon F^{Y}_{\mu\nu}F'^{\mu\nu}$

- Spin-1 gauge boson "dark photon" A' (or γ_d , or Z_d in non-minimal models) can mix with SM photon, providing a "portal" to the dark sector.

Dark photon

Kinetic mixing:

- $\ensuremath{\varepsilon}$ is the strength of the kinetic mixing
 - could be as large as 10⁻² for m_A, in the GeV range,

Lifetime $\tau_{A'} \sim 1/(\varepsilon^2 m_{A'})$

 visible decays can either be "prompt" (relative to experimental resolution) or "displaced" (relative to production vertex)

... however, dark sector could be much more extensive, with one or more Abelian or non-Abelian interactions, fermions and Higgs bosons

Dark photon

Experimentally, the important feature is a reconstructable narrow A' resonance in a clearly defined topology, i.e a "bump hunt"

- E.g. search for decay of $e^+e^- \rightarrow \gamma A'$ via $A' \rightarrow \chi \overline{\chi}$ or into SM particles
 - "visible" $A' \rightarrow l^+ l^-$, decaying promptly or with a displaced vertex
 - "Invisible" A' decays, with A' mass determined from missing energy constraints

Visible dark photon decays

- **BABAR** search for $e^+e^- \rightarrow \gamma A'$ with $A' \rightarrow l^+l^ (l = e, \mu)$ using 516 fb⁻¹ of data
 - "Continuum" production, hence can use all available CM energy data
 - Dark photon width well below detector resolution hence use simulation templates to model signal

6

Phys. Rev. Lett. 113, 201801 (2014)

arXiv:1406.2980 [hep-ex]

Require photon energy >200 MeV

- Resonant backgrounds from $J/\psi,\,\psi(2S)$ etc but otherwise smoothly varying background, i.e. low reliance on simulation

10

 $m_{\rm p} = \sqrt{m_{\rm uu}^2 - 4m_{\rm u}^2}$ (GeV)

May 7, 2019

Dark Forces at Accelerators

Visible dark photon decays

- Scan di-lepton invariant mass in the range 0.02 GeV < m_{A'} < 10.2 GeV
- Obtain 90% C.L. upper limit on mixing strength ε as a function of A' mass at level of O(10⁻³)

Phys. Rev. Lett. 113, 201801 (2014) arXiv:1406.2980 [hep-ex]

Invisible dark photon decays

B Factories provide an excellent environment for missing energy searches

- Precisely known e⁺e⁻ initial state
- Hermetic detector and good missing energy reconstruction

Phys.Rev.Lett. 119, 131804 (2017) arXiv:1702.03327 [hep-ex]

Search for invisible decay of $A' \rightarrow \chi \overline{\chi}$ via $e^+ e^- \rightarrow \gamma A'$

- Final state contains only a single isolated photon in the detector
- A' mass determined from photon energy and CM energy:

$$E_{\gamma}^* = E_{beam}^* - \frac{m_{A'}^2}{4E_{beam}^*}$$

• Single photon trigger only implemented during final running period (53 fb⁻¹)

– L1 (hardware) : 1 or more clusters with E_{lab} > 0.8 GeV

"Open trigger" intended to target higher-multiplicity BB hadronic decay events

- L3 (software): Two trigger lines: E_{γ}^* > 2 GeV or E_{γ}^* > 1 GeV and track veto

Backgrounds from $e^+e^- \rightarrow \gamma\gamma$ and $e^+e^- \rightarrow e^+e^-\gamma$ events with undetected particles

- Offline selection aims to suppress events containing additional detector activity
 - BDT: Signal cluster shape parameters
 - Additional calorimeter energy
 - Properties of the second most energetic cluster: $E^*, \theta^*, \Delta \Phi^*$
 - Properties of muon system cluster $(E^*, \theta^*, \Delta \Phi^*)$ closest to the missing momentum direction

Invisible dark photon decays

NOT what B factories were designed to do...

Invisible dark photon decays

Dark photon @ LHCb

Vector portal production of visible dark photon

Same production and decay kinematics for • $A' \rightarrow \mu^+ \mu^-$ as $\gamma^* \rightarrow \mu^+ \mu^-$

If $\tau(A')$ is small $A' \rightarrow \mu^+ \mu^-$ are "prompt" and kinematically indistinguishable from $\gamma^* \rightarrow \mu^+ \mu^-$

"Bump hunt" in $\mu^+\mu^-$ spectrum:

Phys. Rev. Lett. 120, 061801 arXiv:1710.02867 [hep-ex] (13 TeV pp 1.6 fb⁻¹)

Dark photon @ LHCb

Alternatively, large $\tau_{A'} \sim 1/(\epsilon^2 m_{A'})$ can lead to observable displaced vertex:

- Require individual muons to be inconsistent with originating from primary vertex, and use detailed vertex detector (VELO) map to veto material conversions
- Use BDT to suppress background from B hadrons (based on presence of additional tracks)

Phys. Rev. Lett. 120, 061801 arXiv:1710.02867 [hep-ex] (13 TeV pp 1.6 fb⁻¹)

 Relatively small regions of parameter space ruled out by displaced vertex search, but sensitivity expected to improve substantially with addition of data

Muonic dark force

Phys. Rev. D94 011102 (2016) arXiv:1606.03501 [hep-ex]

Non-minimal dark sector models can permit additional interactions between dark boson and SM particles

 Dark boson Z' which couples only to second and third generation leptons (SM fields are directly charged under dark force)

Motivated by various anomalies observed in the muon sector

- g-2 discrepancy
- could also account for dark matter as sterile neutrinos by increasing their cosmological abundance via new interactions with SM neutrinos.

"Z'-strahlung" production of a dark sector Z' in $e^+e^- \rightarrow \mu^+\mu^-$

$$e^+e^- \rightarrow \mu^+\mu^- Z', \ Z' \rightarrow \mu^+\mu^-$$

However, no model assumptions in analysis; results are more generally applicable

10⁻¹

10⁻²

10⁻³

5

Ч

 $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$

Borexino

Muonic dark force

First direct experimental limits on Z' coupling; excludes most of region favoured by g-2 results

10⁻¹

Dark U(1) spontaneously broken by Higgs mechanism, resulting in one or more dark Higgs bosons h'

- Three possible scenarios:
 - $m_{h'} < m_{A'}$ leads to long-lived h' (decays to SM fermions)
 - $m_A' < m_{h'} < 2m_{A'}$; $h' \rightarrow A'A'^*$, with $A'^* \rightarrow I^+I^-$
 - $m_{h'} > 2m_{A'}$; $h' \rightarrow A'A'$

Belle analysis considers the third case

- Production via "Higgs-strahlung" in e⁺e⁻ → A'h' with h'→ A'A'
- A' decaying to SM or invisible particles

Previous *BABAR* study Phys. Rev. Lett. 108, 211801 (2012) arXiv:1202.1313 [hep-ex]

-60

σ_{Born} [ab]

20

Experimentally, higher multiplicity final states and additional mass constraints results in very low QED backgrounds

- Vertex constraints enforce "prompt" production •
- Require multiple pairs of oppositely charged particles •
- Use event kinematics to determine missing mass in "invisible X" channels

Search for 13 final states including missing energy channels:

Phys. Rev. Lett. 114, 211801 (2015) arXiv:1502.00084 [hep-ex]

10

Higgs portal Zd

JHEP 06 (2018) 166 arXiv:1802.03388 [hep-ex]

Dark gauge boson Z_d produced in decays of SM Higgs:

4 lepton signature, each with two opposite-sign lepton pairs:

or

 Require m₁₂ = mZ; search for di-lepton resonance in m₃₄ Require consistent di-lepton mass in both pairs, m₁₂ and m₃₄

More generally, these are model-independent searches for $H \rightarrow ZX$ and $H \rightarrow XX$, with $X \rightarrow I^{+}I^{-}$ interpreted in a dark sector context

Higgs portal

Future

Substantial new data with upgraded detectors to become available in the coming decade

- LHC Run3 ~300fb⁻¹
- Belle II ~50ab⁻¹

Belle II

arXiv: 1808.10567 [hep-ex]

Belle II will operate in a similar experimental environment to previous generation of B factories, but at considerably higher luminosity

- Active experimental effort to study dark sector (see talk by C. Hearty)
 - Development of hardware and software triggers for low multiplicity channels (e.g. single photon)
 - Detector performance studies (e.g. Calorimeter hermeticity)

Invisible dark photon anticipated to be competitive with relatively little data

- BABAR result based on ~50 fb⁻¹
- Improved calorimeter hermeticity

Visible dark photon prospects

Experimental searches are providing a unique window on the existence of a possible light dark sector

- Searches typically "bump hunts" in distinctive decay topologies, with relatively little model dependence or reliance on simulation
 - Either dedicated searches or "re-casting" of related Z' searches
- Future experiments and search techniques (e.g. LHC data scouting) promise interesting sensitivity to low mass and longlived mediators
 - Belle II (see talk by C. Hearty) and LHC run 3

Backup slides

May 7, 2019

Dark Forces at Accelerators

Steven Robertson

Dark matter

Although astronomical evidence for nonluminous dark matter is overwhelming, all measurements to date are gravitational in nature

- Clearly DM does not interact via strong or EM forces
- Not known if DM interacts via weak force or the (SM) Higgs field

WIMP-candidate searches

"WIMP miracle" suggestive of possibility that dark matter may relate to TeV-scale new physics

Dark matter candidate with weak-scale masses and couplings would yield correct relic density

ATLAS S May 2017 Model	USY Searches	s*-9 5γ.μe	95% sts 1		Lov_ (Latite	r Limits	8 TeV	ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$ Beference
MSUGRACMS 87, 7-47 97, 7-47 97, 7-47 98, 8-477 98, 8-477 98, 8-477 98, 8-477 98, 8-477 99 97, 7-471 98, 8-477 98, 8-477 99 97, 7-471 98, 8-477 98, 8-477 99 99 99 90 91, 7-471 92 93, 8-477 94 95 97 98, 8-471 98, 8-471 99 99 99 99 99 99 99 90 90 91 91 92 93 93 94 95 95 96 97 97	$\begin{array}{c c} & 0 & 3 & e_{\mu} \mu^{*} \\ \hline & & 0 \\ mpressed \\ mono \\ mono$	2τ 2-10 2-ξ -jet 1-3 2-ξ 2-ξ 4 7-1 0-1 ℓ 0-2 (Ζ) 2 mod	jets/3 b 5 jets 3 jets 5 jets 5 jets 1 jets 2 jets - 1 b i jets i jets no-jet	T Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	2 1.45 TeV 608 GeV 1.57 TeV 608 GeV 2.02 TeV 2.01 TeV 1.825 TeV 1.825 TeV 1.825 TeV 1.37 TeV 1.37 TeV 1.37 TeV 1.8 TeV 1.8 TeV 1.8 TeV	m(2)=m(3) m(2)=200GeV, m(1 ⁽⁴⁾ gcm, 4)=m(2 ⁴⁴ gcm, 4) m(2)=200GeV m(2)=200GeV m(2)=200GeV m(2)=200GeV cr(1)=200GeV cr(1)=250GeV, cr(1)=59:-0.1 mm, μ=0 m(2)=250GeV, cr(1)=59:-0.1 mm, μ=0 m(2)=250GeV, cr(1)=59:-0.1 mm, μ=0	1507.03025 ATU-S-COVE-3017-022 150-0017-032 ATU-S-COVE-3017-022 ATU-S-COVE-3017-022 ATU-S-COVE-3017-020 ATU-S-COVE-3016-025 1507.05405 1507.05405 1507.05405 1507.05405 1507.05405 1507.05405
$\begin{array}{c} \overline{g} \overline{g}, \overline{g} \rightarrow b \overline{b} \overline{\chi}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow b \overline{b} \overline{\chi}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow b \overline{b} \overline{\chi}_{1}^{0} \end{array}$	0 0-1 e, 0-1 e,	.μ .μ 3	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	1.92 TeV 1.97 TeV 1.37 TeV	m(k ⁰)⊷300 GeV m(k ⁰)⊷200 GeV m(k ⁰)≪300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
$\begin{array}{c} b_1 \dot{b}_1 , b_1 \rightarrow b \ddot{k}_1^0 \\ \dot{b}_1 \dot{b}_1 , \dot{b}_1 \rightarrow b \ddot{k}_1^0 \\ \dot{b}_1 \dot{b}_1 , \dot{b}_1 \rightarrow b \ddot{k}_1^0 \\ \dot{f}_1 \ddot{f}_1 , \dot{f}_1 \rightarrow b \ddot{k}_1^0 \\ \dot{f}_1 \ddot{f}_1 , \dot{f}_1 \rightarrow b \ddot{k}_1^0 \\ \dot{f}_1 \dot{f}_1 , \dot{f}_1 \rightarrow W \dot{k}_1^0 \\ \dot{f}_1 \dot{f}_1 , \dot{f}_1 \rightarrow W \ddot{k}_1^0 \\ \dot{f}_1 \dot{f}_1 , \dot{f}_1 \rightarrow W \dot{f}_1^0 \\ \dot{f}_1 \dot{f}_1 \dot{f}_1 \rightarrow W \dot{f}_1 \dot{f}_1 \end{pmatrix} \\ \dot{f}_1 \dot{f}_1 \dot{f}_1 \dot{f}_1 \dot{f}_1 \rightarrow W \dot{f}_1 \dot{f}_1 \end{pmatrix} \\ \dot{f}_1 $	0 2 ε,μ (0·2 ε, 0·2 ε, 1:8B) 2 ε,μ 3 ε,μ 1-2 ε,	2 ,μ 1- ,μ 0-2 je (Z) (,μ 4	2 b 1 b -2 b hts/1-2 b no-jet 1 b 1 b 4 b	Yes Yes 4 Yes 2 Yes Yes Yes Yes	36.1 36.1 .7/13.3 0.3/36.1 3.2 20.3 36.1 36.1	90 GeV 117-170 GeV 20-520 GeV 90-193 GeV 20-540 GeV 90-323 GeV 150-600 GeV 120-790 GeV 220-790 GeV	m(?(*)~423 GeV m(?(*)~200 GeV, m(?*)=m(?(*)+100 GeV m(?(*)=2m(?), m(?)=55 GeV m(?)== GeV m(?)==56 GeV m(?)==50 GeV m(?)==0 GeV m(?)==0 GeV	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1308 2108 ATLAS-CONF-2016-077 1506.06616. ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
$\begin{array}{c} \tilde{\ell}_{1,R}\tilde{\ell}_{1,R}, \tilde{\ell} \rightarrow \mathcal{O}' \\ \tilde{\chi}^{\dagger}_{1,R}\tilde{\chi}^{\dagger}_{1,R}, \tilde{\chi}^{\dagger}_{2,R} \rightarrow \tilde{\mathcal{O}}_{1} \\ \tilde{\chi}^{\dagger}_{1,R}\tilde{\chi}^{\dagger}_{1,R}, \tilde{\chi}^{\dagger}_{2,R} \rightarrow \tilde{\mathcal{O}}_{1} \\ \tilde{\chi}^{\dagger}_{1,R}\tilde{\chi}^{\dagger}_{2,R} \rightarrow \tilde{\mathcal{W}}^{\dagger}_{1,R} \\ \tilde{\chi}^{\dagger}_{1,R}\tilde{\chi}^{\dagger}_{2,R} \rightarrow \tilde{\mathcal{W}}^{\dagger}_{1,R} \\ \tilde{\chi}^{\dagger}_{2,R}\tilde{\chi}^{\dagger}_{2,R} \rightarrow \tilde{\mathcal{W}}^{\dagger}_{1,R} \\ \tilde{\chi}^{\dagger}_{2,R}\tilde{\chi}^{\dagger}_{2,R} \rightarrow \tilde{\mathcal{W}}^{\dagger}_{1,R} \\ \tilde{\mathcal{G}}_{2,R} \\ \tilde{\mathcal{G}}_{2,R} \\ \tilde{\mathcal{G}}_{2,R} \\ \tilde{\mathcal{G}}_{2,R} \\ \tilde{\mathcal{O}}_{1,R} \\ \tilde{\mathcal{O}}_{1,R$	$\begin{array}{c} 2 e_{i} \\ \overline{\gamma} & 2 e_{i} \\ \overline{\gamma} & 2 e_{i} \\ \gamma & 2 \\$	μ μ .μ 0-2 γ 0-2 γ 0- μ	0 0 2 jets -2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 20.3	90-440 GeV 710 GeV 760 GeV 1,16 TeV 1,16	$\begin{array}{l} m(\vec{t}^{2})\!=\!\!0 \\ m(\vec{t}^{2})\!=\!0, \ m(\vec{t}, \partial)\!=\!0.5(m(\vec{t}^{2})\!+\!m(\vec{t}^{2})\!) \\ m(\vec{t}^{2})\!=\!0, \ m(\vec{t}, \partial)\!=\!0.5(m(\vec{t}^{2})\!+\!m(\vec{t}^{2})\!) \\ m(\vec{t}^{2})\!=\!m(\vec{t}^{2}), \ m(\vec{t}^{2})\!=\!0.5(m(\vec{t}^{2})\!+\!m(\vec{t}^{2})\!) \\ m(\vec{t}^{2})\!=\!m(\vec{t}^{2}), \ m(\vec{t}^{2})\!=\!0.5(m(\vec{t}^{2})\!+\!m(\vec{t}^{2})\!) \\ m(\vec{t}^{2})\!=\!m(\vec{t}^{2}), \ m(\vec{t}^{2})\!=\!0.5(m(\vec{t}^{2})\!+\!m(\vec{t}^{2})\!) \\ m(\vec{t}^{2}), \ m(\vec{t}^{2})\!=\!0.5(m(\vec{t}^{2})\!+\!m(\vec{t}^{2})\!) \\ cr <\!1mm \\ cr <\!1mm \\ \end{array}$	ATU-S-CONF-2017-039 ATU-S-CONF-2017-039 ATU-S-CONF-2017-039 ATU-S-CONF-2017-039 ATU-S-CONF-2017-039 1501.07110 1405.5086 1507.05488
Direct $\mathcal{K}_{1}^{+}\mathcal{K}_{1}^{-}$ produces the support of the sup	d., long-lived $\tilde{\chi}_1^{\pm}$ Disapp d., long-lived $\tilde{\chi}_1^{\pm}$ dEdx is R-hadron 0 from trik hadron dEdx $\tilde{\chi}_1^{\pm} \rightarrow t(\tilde{c}, \tilde{\mu}) + \tau(c, \mu)$ 1-2 , long-lived $\tilde{\chi}_1^{\pm}$ 2 γ // $\mu\mu\gamma$ displ. ec/ kG displ. vtx	trk 1 trk 1-5 trk μ ieμ/μμ i+jets	i jet 5 jets - - - - - -	Yes Yes - - Yes - Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	430 GeV 495 GeV 850 GeV 1.58 TeV 1.57 TeV 440 GeV 440 GeV 1.0 TeV 1.0 TeV	$\begin{array}{l} m(\hat{t}_1^1) - m(\hat{t}_1^1) - 160 \ MeV, \tau(\hat{t}_1^1) = 0.2 \ ns \\ m(\hat{t}_1^1) - m(\hat{t}_1^1) - 160 \ MeV, \tau(\hat{t}_1^1) - 15 \ ns \\ m(\hat{t}_1^1) = 100 \ GeV, \tau_0 \mu_{0} s - \tau(\hat{g}) - 100 \ s \\ m(\hat{t}_1^1) = 100 \ GeV, \tau_0 - 10 \ ns \\ m(\hat{t}_1^1) = 100 \ GeV, \tau_0 - 10 \ ns \\ m(\hat{t}_1^1) - 100 \ s - 100 \ s \\ m(\hat{t}_1^1) - 100 \ s \\ m(\hat{t}_1^1)$	ATLAS-CONF-2017-017 1506.05082 1310.0564 1606.05159 1601.04250 1411.0795 1409.0542 1504.05162
$ \begin{array}{c} LFV pp \rightarrow \mathfrak{F}_{\tau} + :\\ Biinear \; RFV \; C \\ K_{1}^{\dagger} K_{1}^{-}, K_{1}^{\dagger} \rightarrow W K \\ K_{1}^{\dagger} K_{1}^{-}, K_{1}^{\dagger} \rightarrow W K \\ K_{1}^{\dagger} K_{1}^{-}, K_{1}^{\dagger} \rightarrow W K \\ S_{5}^{\dagger} S_{5}^{-} \rightarrow q q K_{1}^{0}, K_{1} \\ S_{5}^{\dagger} S_{5}^{-} \rightarrow q K_{1}^{0}, K_{1} \\ S_{5}^{\dagger} S_{5}^{-} M K_{1}^{0}, K_{1} \\ K_{5}^{\dagger} K_{5}^{-} K_{5}^{-} K_{5}^{\dagger} K_{5}^{-} K_{$	$\langle X_{7} \rightarrow q\mu/ett/\mu t$ quet, $\langle X_{7} \rightarrow q\mu/ett/\mu t$ quet, $\langle X_{1} \rightarrow ett, qn, \mu \mu t$ 4 c, $\langle X_{1} \rightarrow ttree qn, \mu \mu t$ 4 c, $\langle X_{1} \rightarrow ttree qn, \eta \mu t$ 3 c, $\mu \rightarrow qqq$ 0 $\rightarrow qqq$ 1 c, δs 1 c, 0 2 c.	μπ SS) 0 + τ 4-5 lan 4-5 lan μ 8-10 ju μ 8-10 ju 2 jeb	- 	Yes Yes Yes S - S - S -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	430 GeV 440 GeV 450 GeV 1.06 ToV 1.55 ToV 1.55 ToV 1.55 ToV 1.55 ToV 1.55 ToV 0.41 TeV 1.65 ToV 0.41 K ToV	$\lambda_{3(1)}^{c}=0.11, \lambda_{122/126,22}=0.07$ $m(g)=m(g), c_{12,22}<1 mm$ $m(f)=b=0.025, \lambda_{322}=0.12$ $m(f)=b=0.2m(f), \lambda_{322}=0.2$ $m(f)=b=0.2m(f), \lambda_{322}=0.2$ $m(f)=b=0.2m(f), \lambda_{322}=0.2$ m(f)=b=0.2m(f)=0.2 m(f)=b=0.2m(f)=0.2m(1607.08079 1404.2500 ATLAS_20NF-2016.075 1405.5086 ATLAS_CONF-2016.067 ATLAS_CONF-2016.067 ATLAS_CONF-2016.067 ATLAS_CONF-2017-013 ATLAS_CONF-2016.023 ATLAS_CONF-2016.0

...but no convincing evidence of TeV-scale new physics which would provide stable dark matter candidates

May 7, 2019

WIMP "direct" searches

Similarly, no indication so far of WIMP dark matter in dark matter direct search experiments

Dark sectors

Maybe dark matter is not specifically related to solution to problems of the SM and is, in effect, a distinct "sector"

- Dark sector fermions which carry charges for non-SM gauge interactions, possibly acquiring mass via dark sector Higgs etc.
- EFT provides a number of "portals" to access this dark sector

Dark sector can be probed via mixing of the portal mediators with SM bosons