Rare strange particle decays

Michal Zamkovsky

Charles University, Prague

May 6, 2019

イロト イヨト イヨト イヨト

Outline

- Theoretical motivation for $K\to\pi\nu\bar\nu$ decays
- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Experiment NA62 @CERN
 - Experiment description
 - Results of 2016 data
 - Analysis of 2017 sample
 - Prospects for 2018 sample and future
- $K_L \rightarrow \pi^0 \nu \bar{\nu}$: Experiment KOTO @J-PARC
 - Experiment description
 - Results of 2013 data
 - Results of 2015 data
 - Current status and future

• Other Kaon decays at NA62 experiment

||◆ 同 ト || 臣 ト || | 臣 ト

Theoretical motivation - Standard Model

• FCNC loop process

• s ightarrow d coupling and highest CKM suppression (BR \sim $|V_{ts} imes V_{td}|^2$)

• Very clean theoretically

- Short distance contribution and no hadronic uncertainties
- Hadronic matrix element extracted from well-known decay ${\rm K}^+ \to \pi^0 e^+ \nu$
- Theoretical error budget dominated by CKM parameters

• SM predictions [Buras et al., JHEP 1511 (2015) 033]

$$BR(\mathbf{K}^{+} \to \pi^{+} \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}$$

$$BR(\mathbf{K}_{\mathrm{L}}^{0} \to \pi^{0} \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2}\right)^{2} = (3.4 \pm 0.6) \cdot 10^{-11} = 0.000$$

$$Michal Zankovsku = FPCP 2019 = 0.000$$

Theoretical motivation - Beyond the Standard Model

- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP 1511 (2015) 166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, EPJ C76 (2016) no.4 182]
- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM non-MFV [Blazek, Matak Int.J.Mod.Phys.A29 (2014) 1450162; Tanimoto, Yamamoto PTEP (2015) 053B07; Isidori et al. JHEP 0608 (2006) 064]
- LFU violation models [Isidori et. al., Eur. Phys. J. C (2017) 77]
- Constraints from existing measurements (correlations model dependent): Kaon mixing and CPV, CKM fit, K,B rare meson decays, NP limits from direct searches

• $K \to \pi \nu \bar{\nu}$ can discriminate among different new physics scenarios

$K \to \pi \nu \bar{\nu}$: Experimental status

イロト イヨト イヨト イヨト

臣

• Main goal:

- Collect O(100) signal events $\Rightarrow 10^{13}$ Kaon decays
- Measure ${\sf BR}({
 m K}^+ o \pi^+
 u ar
 u)$ with 10% precision

• Other program and future plans:

- Measure $|V_{td}|$ with ${\sim}10\%$ accuracy
- Probe several NP scenarios in ${\rm K}^+ \to \pi^+ \nu \bar{\nu}$
- Probe NP in similar processes (e.g. ${
 m K}^+ o \pi^+ X$)

• Beyond the baseline:

- LFV/LNV decays with 3 tracks in the final state
 - Di-muon trigger stream: $~~\sim 2 \times 10^{12} \ {\rm K^+}$ decays; SES $\sim 10^{-11}$
 - Decays to μe and ee pairs: $~\sim5\times10^{11}~{\rm K^{+}}$ decays; SES $\sim10^{-10}$
 - $\bullet\,$ Other 3-track decays: $~~\sim5\times10^{10}~{\rm K^{+}}$ decays; SES $\sim10^{-9}$
- Heavy neutrino searches
- π^0 decays
- Dark photon searches

▲圖▶ ▲屋▶ ▲屋▶

NA62 Detector layout

 $\bullet\,\sim 5 MHz$ of nominal ${\rm K}^+$ decay rate

Michal Zamkovsky F.

Analysis strategy for $K^+ \to \pi^+ \nu \bar{\nu}$

Kaon decays in flight

- Signal: Time and space $K^+ \pi^+$ matching
- Regions defined by: $m_{miss}^2 = (P_K P_\pi)^2$
- The analysis is mostly cut based
- Blind analysis: Signal and background ctrl regions are kept blind throughout the analysis

Main background sources

Decay mode	BR	Main rejection tools
$\mathrm{K}^+ \to \mu^+ \nu(\gamma)$	63%	μ -ID + kinematics
$\mathrm{K}^+ \to \pi^+ \pi^0(\gamma)$	21%	γ -veto $+$ kinematics
$\mathrm{K}^+ \to \pi^+ \pi^+ \pi^-$	6%	multi + kinematics
$\mathrm{K}^+ \to \pi^+ \pi^0 \pi^0$	2%	γ -veto $+$ kinematics
$\mathrm{K}^+ \to \pi^0 e^+ \nu_e$	5%	$e-ID + \gamma$ -veto
$\mathrm{K}^+ \to \pi^0 \mu^+ \nu_\mu$	3%	$\mu - ID + \gamma$ -veto

Requirements

- O(100ps) timing between sub-detectors
- $\mathcal{O}(10^4)$ background suppression with kinematics
- $\mathcal{O}(10^7)$ μ -suppression $(K^+ \rightarrow \mu^+ \nu)$
- $\mathcal{O}(10^7) \gamma$ -suppression $(K^+ \rightarrow \pi^+ \pi^0 , \pi^0 \rightarrow \gamma \gamma)$

Event selection

Signal regions

• Three different ways to calculate *m_{miss}* to avoid mis-reconstruction:

•
$$m_{miss}^2 = (STRAW, GTK)$$

• $m_{miss}^2 = (RICH, GTK)$
• $m_{miss}^2 = (STRAW, Beam)$

Selection

- Single track in final state topology
- π^+ identification
- Photon rejection
- Multi-track rejection
- $105 < Z_{vertex} < 165 \text{ m}$
- $15 < P_{\pi^+} < 35 \text{ GeV}/c$ (best μ/π discrimination in RICH & to leave at least 40 GeV of E_{miss})

Performance

< A > < 3

ε(μ) = 1 ⋅ 10⁻⁸ (64% π⁺ efficiency)
 ε(π⁰) = 1 ⋅ 10⁻⁸

•
$$\sigma(m_{miss}) = 1 \cdot 10^{-3} \text{ GeV}^2/c^4$$

• $\sigma(t)\sim \mathcal{O}(100)$ ps

3

イロト イヨト イヨト イヨト

Single event sensitivity - 2016 Data

SES ingredients

- N_K from $K^+ \rightarrow \pi^+ \pi^0$ control trigger: (1.21 ± 0.02) × 10¹¹
- ${
 m K}^+
 ightarrow \pi^+
 u ar{
 u}$ acceptance: (4.0 \pm 0.1) imes 10 $^{-2}$
- Random Veto Efficiency: 0.76 ± 0.04
- Trigger Efficiency: 0.87 ± 0.2

Source	δ SES (10^{-10})
Random veto	±0.17
Definition of $\pi^+\pi^0$ region	± 0.10
Simulation of π^+ interactions	± 0.09
Nĸ	± 0.05
Trigger efficiency	±0.04
Extra activity	± 0.02
GTK pileup simulation	±0.02
Momentum spectrum	± 0.01
Total	±0.24

- 4 同下 4 三下 4 三下

Michal Zamkovsky F

12/30

Validation - 2016 Data

Expected background in control regions

	$\pi^+\pi^0$		$\mu^+ u$
CR1	$0.52\pm0.08_{\textit{stat}}\pm0.03_{\textit{syst}}$	CR	$1.02\pm0.16_{\textit{stat}}$
CR2	$0.94\pm0.14_{\textit{stat}}\pm0.05_{\textit{syst}}$		

Michal Zamkovsky FPCP 2019

Result - 2016 Data

Result - 2016 Data

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10}$ @ 90% CL $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10}$ @ 95% CL [Phys. Lett. B 791 (2019) 156-166]

(日) (圖) (E) (E) (E)

2017 Data sample

Selection and SES

- 2016-like selection
- Comparable to 2016 analysis performance
 - Better treatment of pileup in IRC and SAC
 - 40% lower π^0 rejection inefficiency compared to 2016
 - Slightly improved usage of RICH variables

PRELIMINARY

N _K	$(13 \pm 1) imes 10^{11}$
SES	$(0.34 \pm 0.04) imes 10^{-10}$
Expected SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$	2.5 ± 0.4

2017 Data sample

Background summary

- 2017 data allows detailed comparison between data and background models
 - Shape differs between signal regions, and changes with pion momentum
- Good agreement between modeled m_{miss} and data confirms validity of estimated background from kaon decays

Process	Expected events in signal regions	
$K^+ \to \pi^+ \nu \bar{\nu}$	2.5 ± 0.4 (Preliminary)	
$\mathrm{K^+} ightarrow \pi^+ \pi^0(\gamma) \ IB$	$0.35\pm0.02_{\textit{stat}}\pm0.03_{\textit{syst}}$	
$\mathrm{K}^+ ightarrow \mu^+ \nu(\gamma) \ IB$	$0.16\pm0.01_{\textit{stat}}\pm0.05_{\textit{syst}}$	
$\mathrm{K^+} \rightarrow \pi^+\pi^-\mathrm{e^+}\nu$	$0.22\pm0.08_{stat}$	
${\rm K}^+ \to \pi^+ \pi^+ \pi^-$	$0.015 \pm 0.008_{stat} \pm 0.015_{syst}$	
$K^+ \to \pi^+ \gamma \gamma$	$0.005\pm0.005_{syst}$	
$\mathrm{K^+} ightarrow \ell^+ \pi^0 \nu_\ell$	$0.012\pm0.012_{syst}$	
Upstream background	Analysis on-going	

The KOTO Experiment

Study of $K_L \rightarrow \pi^0 \nu \bar{\nu}$ @JPARC 30GeV Main Ring Goal is to search for New Physics at $BR \sim 10^{-11}$

- Primary 30 GeV/c protons on gold target
- Secondary neutral beam (K_L, neutrons, photons)
- P = 1.4 GeV/c peak
- Transverse size: $80 \times 80 \text{ mm}^2$
- Fiducial decay region $\sim 2~\text{m}$

Arizona, Chicago, Chonbuk, Hanyang, Jeju, JINR, KEK, Kyoto, Michigan, NDA, NTU, Okayama, Osaka, Pusan, Saga & Yamagata

 $\mathrm{K_L} \to \pi^0 \nu \bar{\nu}$

• 2γ with high $P_T = \text{signal}$

Hermetic Detector

• no signal in veto detectors

/□▶ 《 三 ▶

Main background sources

Decay mode	BR [%]	Rejection tools
$K_L \rightarrow \pi^{\pm} e^{\mp} \nu$	40.6	charged, non-EM
$K_L \to \pi^{\pm} \mu^{\mp} \nu$	27.0	charged, non-EM
${ m K_L} ightarrow \pi^+\pi^-\pi^0$	12.5	charged, low $\pi^0 P_T$
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.5	extra γ
$K_L \rightarrow \gamma \gamma$	$5.5 \cdot 10^{-4}$	low P_T , symmetry
$K_L \rightarrow \pi^+ \pi^-$	$2.0 \cdot 10^{-3}$	charged, non-EM
$\mathrm{K_L} \to \pi^0 \pi^0$	$8.6 \cdot 10^{-4}$	extra γ

2013 Data Results and Improvements

2013 Data sample

- $N(K_L) \sim 2.4 \times 10^{11} (SES1.3 \times 10^{-8})$
- Upper limit on BR($K_L \to \pi^0 \nu \bar{\nu}$) < 5.1 × 10⁻⁸ @90% CL [PTEP 2017, 021C01]

Improvements

- Thinner vacuum window: 125ightarrow12 μ m
- Beam Profile Monitor for better beam alignment
- Beam Pipe Charged Veto added
- 1/10 reduction of ${\rm K_L} \to \pi^+\pi^-\pi^0$ background
- Special run with Al target to collect neutron enriched events
- Better photon-neutron ID in Csl

20 / 30

FPCP 2019

2015 Data sample

- Based on 40% data collected before major upgrades
- SES = 1.3×10^{-9}
- BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) < 3.0 × 10⁻⁹ [PRL.122.021802]

3

イロト イ理ト イヨト イヨト

Analysis Status: 2016-2018 Data sample

- SES = 8.2×10^{-10} (without new veto window)
- Background under control
- Results coming soon in summer 2019

NP searches in kaon decays @NA62

• Search for Majorana neutrinos in LNV ${\rm K}^+ \to \pi^- \ell^+ \ell^+$ decays

[Asaka-Shaposhnikov model (ν MSM) [PLB 620 (2005) 17]]

- DM + Baryon Asymmetry + low mass of SM ν can be explained by adding three sterile Majorana neutrinos to the SM
- Current limits [[PLB 769 (2017) 67-76] for μμ set by NA48/2]

$$\begin{split} & \text{BR}(\mathcal{K}^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11} \ \, \mathfrak{O} \ \, 90\% \ \, \text{CL} \\ & \text{BR}(\mathcal{K}^{+} \to \pi^{-} e^{+} e^{+}) \ \, < 6.4 \times 10^{-10} \end{split}$$

 $\bullet\,$ Search for resonances (N, X, etc.) in the opposite-sign leptons sample

[Shaposhnikov-Tkachev model [PLB 639 (2006) 414]]

- ν MSM + real scalar field (inflaton X) with scale invariant couplings
- Explains universe homogeneity and isotropy on large scales/structures on smaller scales
- Current limits in opposite sign muons:
 - HN peak search in $\mathrm{K}^+ o \mu^+(\pi^+\mu^-)$ Limits set at $\sim 10^{-9}$ (90% CL)
 - Inflatons peak search in ${
 m K}^+ o \pi^+(\mu^-\mu^+)$ by NA48/2
- Searches in ${\rm K}^+ \rightarrow \pi^+ {\rm X}$, ${\rm X}^+ \rightarrow e^+ e^-$

イロト イ部ト イヨト イヨト 三日

Lepton Flavour Violation

NP searches in kaon decays @NA62

- $\bullet\,$ Search for HNL in ${\rm K}^+ \to {\it I}^+ {\rm N}$ with undecayed N
 - ${
 m K}^+
 ightarrow {
 m I}^+ {
 m N}$ events would appear as peaks in the ${
 m K}^+
 ightarrow {
 m I}^+
 u \ m_{miss}^2$
 - Searches are model independent
- Searches for LNV/LFV decays ${
 m K}^+ o \pi \mu e$, including $\pi^0 o \mu e$

$$\begin{split} & \text{BR}(\pi^{-}\mu^{+}e^{+}) < 5.0 \times 10^{-10} & \text{Limits set by} \\ & \text{BR}(\pi^{+}\mu^{-}e^{+}) < 5.2 \times 10^{-10} & \text{BNL E865, E777} \\ & \text{BR}(\pi^{+}\mu^{+}e^{-}) < 1.3 \times 10^{-11} & \text{BR}(\pi^{0} \to \mu^{\pm}e^{\mp}) < 3.6 \times 10^{-10}, \text{ kTeV @ FNAL} \end{split}$$

• Searches for ${\rm K}^+ \to \mu^- \nu e^+ e^+$ and ${\rm K}^+ \to e^- \nu \mu^+ \mu^+$ decays

 $\mathrm{BR}(\mu^-\nu e^+e^+) < 1.9 \times 10^{-8}$ @ Geneva – Saclay, 1976

NA62 is competitive for most of these decay modes

Results of HNL search - 2015 data

- Local signal significance never exceeds 3σ : no HNL signal is observed
- Reached $10^{-6} 10^{-7}$ limits for $|U_{e4}|^2$ in the 170-448 MeV/ c^2 mass range
- Improved limits for $|U_{\mu4}|^2$ for $300 \le m_N \le 373 \text{ MeV}/c^2$
- Major improvement foreseen with high intensity NA62 data

HNLs: prospects with full data set

- Data sample 2016-18 in comparison to data sample 2015:
 - Beam tracker (GTK) in operation:
 - a factor \sim 2 improved HNL mass resolution σ_m
 - lower background and broader mass range accessible
 - a factor ~ 3 lower background in the $K^+ \rightarrow e^+ N$ mode
 - $(K^+ \rightarrow \mu^+ \nu, \ \mu^+ \rightarrow e^+ \nu \nu$: muon decays in flight rejected geometrically)
 - $\bullet\,$ lower background from upstream decays in the $K^+ \to \mu^+ N$ mode
 - Much larger data sets:
 - K⁺ → e⁺N mode: the main K⁺ → π⁺νν trigger is used with reduced signal acceptance - max calorimetric energy = 30 GeV: expect O(10⁶) K⁺ → e⁺ν events, a factor ~ 1000 improvement
 - $K^+ \rightarrow \mu^+ N$ mode: down scaled control trigger (D=400): expect $O(10^9) K^+ \rightarrow \mu^+ \nu$ events, a factor ~ 100 improvement
 - Expected sensitivities to $|U_{\ell 4}|^2$ with 2016-18 data:
 - better than 10^{-8} for both $|U_{e4}|^2$ and $|U_{\mu4}|^2$

Large data sets already collected; analysis is in progress

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ

Conclusions for $K \to \pi \nu \bar{\nu}$ decays

• NA62 BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) measurement:

- Decay in flight technique works!
- 1 event observed in 2016 data
- BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) < 14 × 10⁻¹⁰ @95% CL [Phys. Lett. B 791 (2019) 156-166]
- Analysis of 2017 data is ongoing Results expected in 2019
- Precise evaluation of the total statistics collected in 2018 is under study
- BR measurement expected in the next few years
- KOTO BR($K_1 \rightarrow \pi^0 \nu \bar{\nu}$) measurement:
 - UL on BR(${\rm K_L} \to \pi^0 \nu \bar{\nu}) = 3.0 \cdot 10^{-9}$ @90% CL based on 2015 Data sample
 - 2016-2018 Data Analysis with better Detector, DAQ & Analysis Methods ongoing
 - New results expected in Summer 2019
 - Future Run toward SES (10^{-11}) with 100kW Beam Power.

Conclusions for other NA62 decays

• Searches for LFV/LNV in 3-track decays:

- 3 months of 2017 data of 2 LNV/LFV decays improving over PDG limits
- $BR(K^+ \rightarrow \pi^- e^+ e^+) < 2.2 \times 10^{-10}$ @90% CL
- BR(${
 m K}^+ o \pi^- \mu^+ \mu^+$) < 4.2 imes 10⁻¹¹ @90% CL
- $\bullet~\sim$ 3 times more data still to analyze
- HNL result from the 2015 run:
 - Search for HNL production in $K^+ \rightarrow \ell^+ N$ decays with minimum bias data:

 $10^{-6} - 10^{-7}$ limits on $|U_{e4}|^2$ in mass range 170-448 MeV/ c^2 Improved limits for $|U_{\mu4}|^2$ for $300 \le m_N \le 373$ MeV/ c^2 [Phys. Lett. B 778 (2018) 137-145]

• Major improvement in HNLs foreseen with new data.

・ロト ・聞 ト ・ ヨト ・ ヨト …