Leptonic B decays - experimental status

Ina Carli on behalf of the ATLAS collaboration including results from CMS and LHCb

Institute of Particle and Nuclear Physics Charles University, Prague, Czechia

Conference on Flavor Physics and CP Violation (FPCP 2019) May 6-10 2019, Victoria BC, Canada

Leptonic B decays in SM and beyond

- $B \rightarrow \ell \ell$ decays not possible at tree level in the SM - also CKM and helicity suppressed \rightarrow very rare decays
- theoretically very clean QCD information only in f_q (~2% uncertainty) \rightarrow branching ratios predicted in SM with small uncertainties

$$\begin{aligned} &\mathcal{B}(B^0_s \to e^+e^-) = (8.54 \pm 0.55) \times 10^{-14} \quad \mathcal{B}(B^0 \to e^+e^-) = (2.48 \pm 0.21) \times 10^{-15} \\ &\mathcal{B}(B^0_s \to \mu^+\mu^-) = (3.57 \pm 0.17) \times 10^{-9} \quad \mathcal{B}(B^0 \to \mu^+\mu^-) = (1.06 \pm 0.09) \times 10^{-10} \\ &\mathcal{B}(B^0_s \to \tau^+\tau^-) = (7.73 \pm 0.49) \times 10^{-7} \quad \mathcal{B}(B^0 \to \tau^+\tau^-) = (2.22 \pm 0.19) \times 10^{-8} \end{aligned}$$

C. Bobeth et al., PRL 112(2014)101801, M. Beneke et al., PRL120(2018)011801

• new physics contributions could suppress/enhance $\mathsf{BR} \to \mathsf{theory}\ \mathsf{talks}$

LHC detectors

- important for $B \to \ell \ell$:
 - ▶ tracking and vertexing impact paramenter resolution, dimuon invariant mass
 - ▶ particle ID: muon fake rejection
 - trigger: $p_{\rm T}$ threshold, bandwidth

Detectors for $B \rightarrow \ell \ell$

- b and \overline{b} quarks produced in accpetance: LHCb 27%, GPD 49%
- *b* hadronisation: 40% B^0 , 40% B^+ , 10% B_s^0 , baryons 10% (Λ_b etc)

$$B^0_{(s)} o \mu^+ \mu^-$$

LHC experiments in LHC Run1 Nature 522 (2015) 68, EPJ C76(2016)513

 $B(B_s^0 \to \mu^+ \mu^-)$ [10⁻⁹]

LHCb $B^0_{(s)} o \mu^+ \mu^-$

- using 3fb^{-1} of Run1 and 1.4fb^{-1} of Run2 data (2015+2016)
- BR analysis method similar to previous one with improvements:
 - improved combinatorial background rejection (BDT for track isolation)
 - ▶ tighter PID selection (helps to reduce $B \rightarrow h^+ h'^-$ background)
 - better estimate of exclusive background yields
- main backgrounds: dimuon combinatorial events, peaking $B \to h^+ h'^-$, $\Lambda_b^0 \to p \mu^- \nu$, semileptonic $B^0_{(s)}$
- unbinned maximum likelihood fit of $m_{\mu\mu}$ simultaneously in 5 BDT bins
- normalisation channel $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$
- calibration of signal peak position with $B^0_s o K\pi$ and $B^0_s o KK$
- fragmentation probabilities f_d/f_s estimated from $B^+ \to J/\psi K^+$ to $B_s^0 \to J/\psi \phi$ ratio (assuming $f_d = f_u$)

• results compatible with SM, first single experiment observation

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \to 7.8\sigma$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.5^{+1.2+0.2}_{-0.2}) \times 10^{-10} \to 1.6\sigma$$

$$\mathcal{B}(B^{0} \rightarrow \mu^{+}\mu^{-}) < 3.4 \times 10^{-10} \text{at 95\% CL}$$

- main syst. uncertainties:
 - $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) : f_s/f_d$ • $\mathcal{B}(B^0 \to \mu^+ \mu^-) :$ exclusive backgrounds

LHCb $B^0_{(s)} o \mu^+ \mu^-$

- first measurement of effective lifetime $\tau_{\mu\mu} \equiv \frac{\int_{0}^{\infty} t \langle \Gamma(B_{s}^{0}(t) \to \mu\mu) \rangle dt}{\int_{0}^{\infty} \langle \Gamma(B_{s}^{0}(t) \to \mu\mu) \rangle dt}$
- similar selection as for BR, simplified BDT and looser PID cut
- 2 step process validated with $B^0 \to K^+ \pi^-$:
 - fit $m_{\mu\mu}$ to get weights for *sPlot* and subtract background
 - fit the weighted signal decay time distribution to measure $\tau_{\mu\mu}$

$$\tau(B_s^{U} \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$$

$$au(B^0_s o \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05$$
 ps

• SM $au = 1.510 \pm 0.005$ ps (HFAG summer 2016 average)

 $m_{\mu^+\mu^-}$ [MeV/c²]

Decay time [ps]

LHCb $B^0_{(s)} ightarrow \mu^+ \mu^-$

ullet in SM only the heavy mass eigenstate decays to μ^+ μ^-

$$\begin{aligned} \tau_{\mu\mu} &\approx \tau_{B_{s}^{0}}(1+y_{s}A_{\Delta\Gamma}), \quad y_{s} = 0.062 \pm 0.006 \\ A_{\Delta\Gamma} &= \frac{\Gamma(B_{s}^{H} \to \mu^{+}\mu^{-}) - \Gamma(B_{s}^{L} \to \mu^{+}\mu^{-})}{\Gamma(B_{s}^{H} \to \mu^{+}\mu^{-}) + \Gamma(B_{s}^{L} \to \mu^{+}\mu^{-})} = +1 \text{ (SM)}, \quad [-1,1] \text{ (NP)} \end{aligned}$$

• measurement consistent with $A_{\Delta\Gamma} = 1(-1)$ at $1\sigma~(1.4\sigma)$

PRL 109(2012)041801

Ina Carli (Charles University)

- combining 2015+2016 data = 26.3 fb^{-1}
 - select $\mu^+\mu^-$ pair consistent with $B^0_{(s)}$
 - background: combinatorial, partially reconstructed, semileptonic
 - multivariate BDT to reduce combinatorial background
 - N(signal) normalised to $B^+ \rightarrow J/\psi K^+$

4800 5000 5400

5800

ATLAS $B^0_{(s)} \rightarrow \mu^+ \mu^-$

- unbinned maximum-likelihood fit in 4 bins of BDT
- ullet observed: 80 $\pm20~B_s^0$, $-12\pm20~B_d^0$ candidates
- expected in SM: 91 B_s^0 , 10 B_d^0

Ina Carli (Charles University)

ATLAS $B^0_{(s)} \rightarrow \mu^+ \mu^-$

• likelihood maximum of Run2 data:

 $\mathcal{B}(B^0_s \to \mu^+\mu^-) = (3.21^{+0.90+0.48}_{-0.83-0.31}) \times 10^{-9} \quad \mathcal{B}(B^0 \to \mu^+\mu^-) (-1.3^{+2.2+0.7}_{-1.9-0.8}) \times 10^{-10}$

• Run1 + Run2 (2015+16) combination:

 $\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \times 10^{-9} \qquad \mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10} \text{at 95\% CL}$

 \rightarrow compatible with SM at 2.4σ \rightarrow most stringent limit on $B^0 \rightarrow \mu^+\mu^-$ to date

Expected sensitivity with HL-LHC dataset

- uncertainty of $B^0_s
 ightarrow \mu^+ \mu^-$ will be dominated by f_s/f_d
- \bullet improved trackers \rightarrow better mass resolution
- add information from effective lifetime and time-dependent CP asymmetry

$$B^0_{(s)} \to \tau^+ \tau^-$$

LHCb search for $B^0_{(s)} \to \tau^+ \tau^-$

 $\bullet\,$ FCNC process similar to $B^0_{(s)} \rightarrow \mu^+\mu^-$ but much less suppressed

$$\frac{\mathcal{B}(B_{(s)}^{0} \to \tau^{+}\tau^{-})}{\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-})} = \frac{m_{\tau}^{2}}{m_{\mu}^{2}} \times \sqrt{\frac{m_{B}^{2} - 4m_{\tau}^{2}}{m_{B}^{2} - 4m_{\mu}^{2}}} \sim 210$$

- Run1 dataset, selecting $\tau^- \to a_1(1260)^- \bar{\nu}_{\tau} \to \rho(770)^0 \pi^- \bar{\nu}_{\tau} \to \pi^+ \pi^- \pi^- \bar{\nu}_{\tau} \to experimentally very challenging because of 2 neutrinos$
- B^0 and B^0_s cannot be separated by mass \rightarrow assumptions on one decay impact the limit on the other
- define regions in $m_{\pi^+\pi^-}$ for opposite-charge pion combinations:
 - signal = both τ in 5
 - control = one τ in (4,5,8), other in (4,8)
 - background = one or both τ in (1,3,7,9)

LHCb $B^0_{(s)} \to \tau^+ \tau^-$

- normalisation channels $B^0 \rightarrow D^-(K^+\pi^-\pi^+)D^+_s(K^+K^-\pi^+)$
- after preselection, build NN from 7 kinematic variables: τ masses and decay times, π and B isolation from tracks
- $m_{\tau\tau}$ gives a weak discrimination \rightarrow build second NN from kinematic and geometric variables
- fit its output with binned ML fit in signal region $B_{\rm s}^0 \to \tau^+ \tau^-$ fit \to

LHCb $B^0_{(s)} ightarrow au^+ au^-$

- $\mathcal{B}(B^0_s o au^+ au^-) < 5.2 (6.8) imes 10^{-3}$ at 90 (95)% CL
- assuming signal dominated by B^0 : $\mathcal{B}(B^0\to\tau^+\tau^-)<1.6(2.1)\times10^{-3} \text{ at } 90 \text{ (95)\% CL}$
- 2.6-times better wrt previous result form BaBar but still far from SM $(\mathcal{B}(B_s^0 \to \tau^+ \tau^-) \sim 7 \times 10^{-7}, \mathcal{B}(B^0 \to \tau^+ \tau^-) \sim 2 \times 10^{-8})$

$$B^0_{(s)}
ightarrow e^+ e^-$$

$B^0_{(s)} ightarrow e^+ e^-$ decays

- last measurement published by CDF in 2009: $\mathcal{B} < 2.8 \times 10^7$ PRL 102(2009)201801
- no measurement from Belle or LHC experiments yet
- problems with electrons: brems, low- p_{T} trigger, selection, identification

R. Fleischer et al., arXiv:1703.10160

Search for LFV decays

LHCb search for $B^0_{(s)} \rightarrow e^{\pm} \mu^{\mp}$

JHEP 1803 (2018) 078

Candidates / (10 MeV/c² Data Total $B^0_{(s)} \rightarrow h^+ h^-$ Combinatorial $B^0 \rightarrow \pi^- e^+ v$ LHCb 10 Pull 5000 5400 5200 5600 $m_{\mu^+\mu^-}$ [MeV/c²]

• Run1 dataset - $3 fb^{-1}$

- primary background: $B \rightarrow h^+ h'^$ estimated by data-driven method to N<6
- electron bremsstrahlung
 - \rightarrow different efficiency and mass shape
- fit of m_{eu} separately in brems categories

Ina Carli (Charles University)

5800

• fit results:

$$\begin{split} \mathcal{B}(B^0 &\to e^{\pm} \mu^{\mp}) < 1.3(1.0) \times 10^{-9} \text{at 95 (90)\% CL} \\ \mathcal{B}(B^0_s &\to e^{\pm} \mu^{\mp}) < 6.3(5.4) \times 10^{-9} \text{at 95 (90)\% CL for heavy eigenstate} \\ \mathcal{B}(B^0_s &\to e^{\pm} \mu^{\mp}) < 7.2(6.0) \times 10^{-9} \text{at 95 (90)\% CL for light eigenstate} \end{split}$$

• LHCb search for $B^0 \rightarrow 4\mu$ (JHEP 03(2017)001, Run1 data):

$$\mathcal{B}(B^0_s o \mu^+ \mu^- \mu^+ \mu^-) < 2.5 imes 10^{-9}$$

 $\mathcal{B}(B^0 o \mu^+ \mu^- \mu^+ \mu^-) < 6.9 imes 10^{-10}$ at 95% CL

• LHCb search for
$$B^+
ightarrow \mu^+ \mu^- \mu^+
u_\mu$$
 (arXiv:1812.06004)

 $\mathcal{B} < 1.6 \times 10^{-8}$ at 95% CL

• updated results from Belle search for $B^0 \rightarrow \mu \nu_{\mu}$ \rightarrow talk by Eiasha Waheed (Wed at 10:15AM)

- updated measurements of leptonic B decays are consistent with SM
- but there is still room for NP
 - $B^0
 ightarrow \mu^+ \mu^-$ ATLAS and LHCb dataset up to 2016, CMS Run1
 - $B^{0} \rightarrow \tau^{+} \tau^{-}$ LHCb with Run1 data
 - LFV $B^0_{(s)} \rightarrow e^{\pm} \mu^{\mp}$ LHCb Run1
- bigger datasets and improved techniques promise smaller uncertainties
- analyses of whole Run2 dataset ongoing, Belle2 starting

 \rightarrow Stay tuned for updates!

Backup slides

Effective field theory

• model independent Hamiltonian for $|\Delta B| = |\Delta S| = 1$ transitions

$$\mathcal{H}_{eff} = -rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{lpha}{4\pi}\sum_i [C_i\mathcal{O}_i + C_i'\mathcal{O}_i']$$

 $\begin{array}{ll} i=1,2 \ tree, & i=9, \ 10 \ EW \ penguin \\ i=3-6,8 \ gluon \ penguin, & i=S \ scalar \ penguin \ (H) \\ i=P \ pseudoscalar \ penguin \end{array}$

- heavy fields (t, Z, W[±], H, Z') are integrated out in perturbative short-distance couplings → Wilson coefficients C_i, C'_i
- $\bullet\,$ non-perturbative long-distance physics $\rightarrow\,$ operators
- in SM only C_{10} contributes to $B \rightarrow \ell \ell$
- sensitivity to NP is larger for C_S and C_P (no helicity suppression)

EFT operators relevant for rare B decays

$$\begin{array}{rcl} \mathcal{O}_{7} &=& \frac{m_{b}}{e} (\bar{s} \sigma^{\mu\nu} \mathcal{P}_{R} b) \mathcal{F}_{\mu\nu} \\ \mathcal{O}_{8} &=& g_{s} \frac{m_{b}}{e^{2}} (\bar{s} \sigma^{\mu\nu} \mathcal{P}_{R} T^{a} b) \mathcal{G}_{\mu\nu}^{a} \\ \mathcal{O}_{9} &=& (\bar{s} \gamma_{\mu} \mathcal{P}_{L} b) (\bar{\ell} \gamma^{\mu} \ell) \\ \mathcal{O}_{10} &=& (\bar{s} \gamma_{\mu} \mathcal{P}_{L} b) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \\ \mathcal{O}_{5} &=& (\bar{s} \mathcal{P}_{R} b) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \\ \mathcal{O}_{7} &=& (\bar{s} \mathcal{P}_{R} b) (\bar{\ell} \gamma^{\mu} \ell) \\ \mathcal{O}_{1} &=& (\bar{s} \sigma_{\mu\nu} b) (\bar{\ell} \sigma^{\mu\nu} \ell) \\ \mathcal{O}_{1} &=& (\mathcal{O}_{9} - \mathcal{O}_{10})/2 \\ \mathcal{O}_{1} &=& (\mathcal{O}_{9}' - \mathcal{O}_{10}')/2 \end{array}$$

$$\begin{array}{rcl} \mathcal{O}'_{7} &=& \frac{m_{b}}{e} (\bar{s} \sigma^{\mu\nu} P_{L} b) F_{\mu\nu} \\ \mathcal{O}'_{8} &=& g_{s} \frac{m_{b}}{e^{2}} (\bar{s} \sigma^{\mu\nu} P_{L} T^{a} b) G^{a}_{\mu\nu} \\ \mathcal{O}'_{9} &=& (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\ell} \gamma^{\mu} \ell) \\ \mathcal{O}'_{10} &=& (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \\ \mathcal{O}'_{c} &=& (\bar{s} P_{L} b) \bar{\ell} \ell \end{array}$$

$$\mathcal{O}_{\mathsf{S}} = (\mathbf{s}\mathcal{P}_{\mathsf{L}}\mathbf{b})\ell\ell$$
$$\mathcal{O}_{\mathsf{P}} = (\mathbf{s}\mathcal{P}_{\mathsf{L}}\mathbf{b})(\bar{\ell}\gamma_{5}\ell)$$
$$\mathcal{O}_{\mathsf{T5}} = (\mathbf{s}\sigma_{\mu\nu}\mathbf{b})(\bar{\ell}\sigma^{\mu\nu}\gamma_{5}\ell)$$

$$\begin{array}{rcl} \mathcal{O}_{\mathsf{LR}} &=& (\mathcal{O}_{\mathsf{9}} + \mathcal{O}_{\mathsf{10}})/2 \\ \mathcal{O}_{\mathsf{RR}} &=& (\mathcal{O}_{\mathsf{9}}' + \mathcal{O}_{\mathsf{10}}')/2 \end{array}$$

Ć

(

LHCb $B^0_{(s)} ightarrow \mu^+ \mu^-$

Ina Carli (Charles University)

Leptonic B decays

6.5.2019 30

Analysis strategy:

- opposite sign muon pair in $m_{\mu\mu}$ = [4900, 6000] MeV
- BDT: kinematics, geometrical, isolation variables
- S/B classification in $m_{\mu\mu}$ vs. BDT score plane
- background estimation: data driven, MC samples, theory inputs
- yields: $1.9 \times 10^6 \ B^+ \rightarrow J/\psi \, K^+$, $6.2 \times 10^3 \ B^0 \rightarrow K \pi$