Holographic QCD predictions for rare B decays

Mohammad Ahmady

Department of Physics Mount Allison University

Confrence on Flavour Physics and CP violation

May 6-10, 2019

Image: Image:

3 ×

Holographic Schrödinger equation

An important equation in light-front holographic QCD is the holographic Schrödinger equation (HSE) for mesons:

$$\left(-rac{\mathrm{d}^2}{\mathrm{d}\zeta^2}-rac{1-4L^2}{4\zeta^2}+U_{\mathrm{eff}}(\zeta)
ight)\phi(\zeta)=M^2\phi(\zeta)$$

- Derived within a semiclassical approximation of light-front QCD, where quantum loops and quark masses are neglected.
- The holographic variable $\zeta = \sqrt{z\overline{z}b}$ with $\overline{z} \equiv 1 z$ where b is the transverse separation of the quark and antiquark and z is the light-front momentum fraction carried by the quark.
- *M* is the meson mass.

G. F. de Teramond and S. J. Brodsky, PRL94,201601(2005),PRL96,201601(2006),PRL102,081601(2009)

The confining potential is uniquely determined to have the form:

$$U_{eff}(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$$

Eigenvalues and eigenfunctions

$$M^{2} = (4n + 2L + 2)\kappa^{2} + 2\kappa^{2}(J - 1) = 4\kappa^{2}(n + L + \frac{S}{2})$$

$$\phi_{n,L}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} \exp\left(\frac{-\kappa^2 \zeta^2}{2}\right) L_n^L(z^2 \zeta^2)$$

• Lightest bound state (n = L = J = 0) is massless (M = 0)

• $M^2 = 4\kappa^2 L \Rightarrow \kappa = 0.54$ GeV from Regge slope

Light front Wavefunction for ρ , K^* and ϕ

The light front wavefunction is then given as

$$\Psi(\zeta,z,\phi)=e^{iL\phi}\mathcal{X}(z)rac{\phi(\zeta)}{\sqrt{2\pi\zeta}}$$

The longitudinal wavefunction $\mathcal{X}(x)$ is obtained from mapping the pion electromagnetic form factors in AdS and in physical spacetime:

$$\mathcal{X}(z) = \sqrt{z(1-z)}$$

For the vector mesons (like ρ , K^* and ϕ), we set n = 0, L = 0 to obtain

$$\Psi_{0,0}(z,\zeta) = rac{\kappa}{\sqrt{\pi}} \sqrt{z(1-z)} \exp\left[-rac{\kappa^2 \zeta^2}{2}
ight]$$

Allowing for small quark masses, the wavefunction becomes

$$\Psi_{\lambda}(z,\zeta) = \mathcal{N}_{\lambda}\sqrt{z(1-z)}\exp\left[-rac{\kappa^2\zeta^2}{2}
ight]\exp\left[-rac{(1-z)m_q^2+zm_{\overline{q}}^2}{2\kappa^2 z(1-z)}
ight]$$

 $m_{u,d} = 0.046$ GeV and $m_s = 0.357$ GeV are fixed from the y-intercepts of the Regge trajectories. Decay constant provides the first test of the wave function

Mohammad Ahmady

May 6-10, 2019 4 / 25

Predictions for leptonic decay width

$$f_V P^+ = \langle 0 | \bar{q}(0) \gamma^+ q(0) | V(P,L) \rangle$$

$$f_{V} = \sqrt{\frac{N_{c}}{\pi}} \int_{0}^{1} dz \left[1 + \frac{m_{q}m_{\bar{q}} - \nabla_{r}^{2}}{z(1-z)M_{V}^{2}} \right] \Psi_{L}(r,z)|_{r=0}$$

We can use this decay constant to predict the experimentally measured electronic decay width $\Gamma_{V \to e^+e^-}$ of the vector meson:

$$\Gamma_{V \to e^+e^-} = \frac{4\pi \alpha_{em}^2 C_V^2}{3M_V} f_V^2$$

where $C_{\phi}=1/3$ for the $C_{\rho}=1/\sqrt{2}.$

Meson	f_V [GeV]	$\Gamma_{e^+e^-}$ [KeV]	$\Gamma_{e^+e^-}$ [KeV] (PDG)
ρ	0.210, 0.211	6.355, 6.383	7.04 ± 0.06
ϕ	0.191, 0.205	0.891, 1.024	1.251 ± 0.021

Table: Predictions for the electronic decay widths of the ρ and ϕ vector mesons using the holographic wavefunction with $m_{u,d} = 0.046, 0.14 \text{ GeV}$ and $m_s = 0.357, 0.14 \text{ GeV}$.

Mohammad Ahmady

K^* decay constants

 $f_{\mathcal{K}^*}$ and "transverse decay constant" $f_{\mathcal{K}^*}^{\perp}$ defined as:

$$\langle 0|ar{q}[\gamma^{\mu},\gamma^{
u}]s|K^{*}(P,\epsilon)
angle=2f_{K^{*}}^{\perp}(\epsilon^{\mu}P^{
u}-\epsilon^{
u}P^{\mu})$$

$$f_{K^*}^{\perp}(\mu) = \sqrt{\frac{N_c}{2\pi}} \int_0^1 \mathrm{d}z (zm_{\bar{q}} + (1-z)m_s) \int \mathrm{d}b \ \mu J_1(\mu b) \frac{\Psi_T(\zeta,z)}{z(1-z)}$$

Approach	Scale μ	$m_{\bar{q}}$ [MeV]	<i>m</i> ₅[MeV]	$f_{K^*}[MeV]$	$f_{K^*}^{\perp}(\mu)$ [MeV]	$f_{K^*}^{\perp}/f_{K^*}(\mu)$
AdS/QCD	$\sim 1 \; { m GeV}$	140	280	200	118	0.59
AdS/QCD	$\sim 1 \; { m GeV}$	195	300	200	132	0.66
AdS/QCD	$\sim 1 \; { m GeV}$	250	320	200	142	0.71
Experiment				205 ± 6		
Lattice	2 GeV					0.780 ± 0.008
Lattice	2 GeV					0.74 ± 0.02

Comparison between AdS/QCD predictions for the decay constant of the K^* meson with experiment (obtained from $\Gamma(\tau^- \rightarrow K^{*-}\nu_{\tau})$), and the ratio of couplings with lattice data.

< ロト < 同ト < ヨト < ヨト

Light cone distribution amplitudes

Light cone coordinates: $x^{\mu} = (x^+, x^-, x_{\perp})$, where $x^{\pm} = x^0 \pm x^3$ and x_{\perp} any combinations of x_1 and x_2 .

At equal light-front time $x^+ = 0$ and in the light-front gauge $A^+ = 0$,

$$\begin{aligned} \langle 0|\bar{q}(0)\gamma^{\mu}q(x^{-})|\rho(P,\epsilon)\rangle &= f_{\rho}M_{\rho}\frac{\epsilon\cdot x}{P^{+}x^{-}}P^{\mu}\int_{0}^{1}\mathrm{d}u\;e^{-iuP^{+}x^{-}}\phi_{\rho}^{\parallel}(u,\mu) \\ &+ f_{\rho}M_{\rho}\left(\epsilon^{\mu}-P^{\mu}\frac{\epsilon\cdot x}{P^{+}x^{-}}\right)\int_{0}^{1}\mathrm{d}u\;e^{-iuP^{+}x^{-}}g_{\rho}^{\perp}(v)(u,\mu) \end{aligned}$$

$$\langle 0|\bar{q}(0)[\gamma^{\mu},\gamma^{\nu}]q(x^{-})|\rho(P,\epsilon)\rangle = 2f_{\rho}^{\perp}(\epsilon^{\mu}P^{\nu}-\epsilon^{\nu}P^{\mu})\int_{0}^{1}\mathrm{d}u\;e^{-iuP^{+}x^{-}}\phi_{\rho}^{\perp}(u,\mu)$$

$$\langle 0|\bar{q}(0)\gamma^{\mu}\gamma^{5}q(x^{-})|\rho(P,\epsilon)\rangle = -\frac{1}{4}\epsilon^{\mu}_{\nu\rho\sigma}\epsilon^{\nu}P^{\rho}x^{\sigma}f_{\rho}M_{\rho}\int_{0}^{1}\mathrm{d}u\;e^{-iuP^{+}x^{-}}g_{\rho}^{\perp(a)}(u,\mu)$$

Vector meson's polarization vectors ϵ are chosen as

$$\epsilon_L = \left(\frac{P^+}{M_{
ho}}, -\frac{M_{
ho}}{P^+}, 0_{\perp}\right)$$
 and $\epsilon_{T(\pm)} = \frac{1}{\sqrt{2}} \left(0, 0, 1, \pm i\right)$

(

Light cone DAs in terms of LFWF

R. Sandapen, MA, PRD87.054013(2013)

$$\begin{split} \phi_{\rho}^{\parallel}(z,\mu) &= \frac{N_c}{\pi f_{\rho} M_{\rho}} \int \mathrm{d}r \; \mu J_1(\mu r) [M_{\rho}^2 z(1-z) + m_f^2 - \nabla_r^2] \frac{\Psi_L(r,z)}{z(1-z)} \,, \\ \phi_{\rho}^{\perp}(z,\mu) &= \frac{N_c m_f}{\pi f_{\rho}^{\perp}} \int \mathrm{d}r \; \mu J_1(\mu r) \frac{\Psi_T(r,z)}{z(1-z)} \,, \\ g_{\rho}^{\perp(v)}(z,\mu) &= \frac{N_c}{2\pi f_{\rho} M_{\rho}} \int \mathrm{d}r \; \mu J_1(\mu r) \left[m_f^2 - (z^2 + (1-z)^2) \nabla_r^2 \right] \frac{\Psi_T(r,z)}{z^2(1-z)^2} \\ &= \frac{\mathrm{d}g_{\rho}^{\perp(a)}}{\mathrm{d}z}(z,\mu) = \frac{\sqrt{2}N_c}{\pi f_{\rho} M_{\rho}} \int \mathrm{d}r \; \mu J_1(\mu r) (1-2z) [m_f^2 - \nabla_r^2] \frac{\Psi_T(r,z)}{z^2(1-z)^2} \,. \end{split}$$

Distribution amplitudes are normalized:

$$\int_0^1 \mathrm{d} u \ \phi_\rho^{\perp,\parallel}(u,\mu) = \int_0^1 \mathrm{d} u \ g_\rho^{\perp(a,\nu)}(u,\mu) = 1$$

AdS/QCD DAs for ρ :comparison to Sum Rules

(a) Twist-2 DA for the longitudi- (b) Twist-2 DA for the transversely nally polarized ρ meson polarized ρ meson

Figure: Twist-2 DAs for the ρ meson. Solid Red: AdS/QCD DA at $\mu \sim 1$ GeV; Dashed Blue: Sum Rules DA at $\mu = 2$ GeV.

DAs for K^* :comparison to Sum Rules

Figure: Twist-2 DAs predicted by AdS/QCD (graphs on the left) and SR (graphs on the right). The uncertainty band is due to the variation of the quark masses for AdS/QCD and the error bar on Gegenbauer coefficients for SR.

Isospin asymmetry defined as:

$$\Delta_{0-} = \frac{\Gamma(\bar{B}^{\circ} \to \bar{K^{*}}\gamma) - \Gamma(B^{-} \to K^{*-}\gamma)}{\Gamma(\bar{B}^{\circ} \to \bar{K^{*}}\gamma) + \Gamma(B^{-} \to K^{*-}\gamma)} \ .$$

Branching ratio	BABAR	BELLE	CLEO	PDG
${\cal B}(B^0 o {K^*}^0 \gamma) imes 10^6$	$44.7 \pm 1.0 \pm 1.6$	$45.5^{+7.2}_{-6.8}\pm 3.4$	$40.1 \pm 2.1 \pm 1.7$	43.3 ± 1.5
${\cal B}(B^+ o K^{*+}\gamma) imes 10^6$	$42.2 \pm 1.4 \pm 1.6$	$42.5\pm3.1\pm2.4$	$37.6^{+8.9}_{-8.3}\pm2.8$	42.1 ± 1.8
Δ_{0-}	$6.6 \pm 2.1 \pm 2.2$	$1.2\pm4.4\pm2.6$		5.2 ± 2.6

(日) (同) (三) (三)

э

Isospin calculation

Based on original work by Kagan and Neubert: Phys.Lett. B539, 227 (2002)

$$F_{\perp}(\mu_{h}) = \int_{0}^{1} dz \; \frac{\phi_{K^{*}}^{\perp}(z,\mu_{h})}{3(1-z)}$$
$$G_{\perp}(s_{c},\mu_{h}) = \int_{0}^{1} dz \; \frac{\phi_{K^{*}}^{\perp}(z,\mu_{h})}{3(1-z)} G(s_{c},\bar{z})$$
$$X_{\perp}(\mu_{h}) = \int_{0}^{1} dz \; \phi_{K^{*}}^{\perp}(z,\mu_{h}) \left(\frac{1+\bar{z}}{3\bar{z}^{2}}\right)$$

and

$$H_{\perp}(s_{c},\mu_{h}) = \int_{0}^{1} dz \, \left(g_{K^{*}}^{\perp(v)}(z,\mu_{h}) - \frac{1}{4} \frac{\mathrm{d}g_{K^{*}}^{\perp(a)}}{dz}(z,\mu_{h})\right) \, G(s_{c},\bar{z})$$

3

∃ > <</p>

Image: A matrix and a matrix

R. Sandapen, MA, PRD88.014042(2013)

Integral	SR	AdS/QCD
X_{\perp}	∞	26.9
F_{\perp}	1.14	1.38
G_{\perp}	2.55 + 0.43i	2.89 + 0.30i
H_{\perp}	2.48 + 0.50 <i>i</i>	2.12 + 0.21i

Branching ratio for $B \to K^* \gamma$: 44.3 × 10⁻⁶ from AdS/QCD compared with 45.9 × 10⁻⁶ from Sum Rules Δ_{0-} = 3.3% from AdS/QCD

$B \rightarrow \rho$ transition form factors

Form factors are defined as:

$$\begin{split} \langle \rho(k,\varepsilon) | \bar{q} \gamma^{\mu} (1-\gamma^5) b | B(p) \rangle &= \frac{2iV(q^2)}{m_B + m_\rho} \epsilon^{\mu\nu\rho\sigma} \varepsilon^*_{\nu} k_\rho p_\sigma - 2m_\rho A_0(q^2) \frac{\varepsilon^* \cdot q}{q^2} q^{\mu} \\ &- (m_B + m_\rho) A_1(q^2) \left(\varepsilon^{\mu*} - \frac{\varepsilon^* \cdot q q^{\mu}}{q^2} \right) \\ &+ A_2(q^2) \frac{\varepsilon^* \cdot q}{m_B + m_\rho} \left[(p+k)^{\mu} - \frac{m_B^2 - m_\rho^2}{q^2} q^{\mu} \right] \end{split}$$

$$egin{aligned} q_
u \langle
ho(k,arepsilon) | ar{d} \sigma^{\mu
u} (1-\gamma^5) b | B(p)
angle &= 2 T_1(q^2) \epsilon^{\mu
u
ho\sigma} arepsilon_
u^* p_
ho k_\sigma \ &- i T_2(q^2) [(arepsilon^* \cdot q)(p+k)_\mu - arepsilon_\mu^* (m_B^2 - m_
ho^2)] \ &- i T_3(q^2) (arepsilon^* \cdot q) \left[rac{q^2}{m_B^2 - m_
ho^2} (p+k)_\mu - q_\mu
ight] \end{aligned}$$

Image: Image:

AdS/QCD prediction for $B \rightarrow \rho$ transition form factors

R. Campbell, S. Lord, R. Sandapen, MA, PRD88.074031(2013) Using light-cone sum rules with holographic DAs

Mohammad Ahmady

FPCP 2019

May 6-10, 2019 15 / 25

Differential decay rate for semileptonic $B ightarrow ho \ell u$

(a) Differential decay rate for the semileptonic $B \rightarrow \rho \ell \bar{\nu}$ decay. The lattice data points are from UKQCD Collaboration.

Mohammad Ahmady

May 6-10, 2019 16 / 25

Numerical predictions

BaBar collaboration has measured partial branching fractions in q^2 bins:PRD83, 032007 (2011)

$$\Delta B_{
m low} = \int_0^8 {{
m d} B\over {
m d} q^2} {
m d} q^2 = (0.564\pm 0.166) imes 10^{-4}$$

$$\Delta B_{\rm mid} = \int_8^{16} \frac{\mathrm{d}B}{\mathrm{d}q^2} \mathrm{d}q^2 = (0.912 \pm 0.147) \times 10^{-4}$$

$$\Delta B_{
m high} = \int_{16}^{20.3} rac{{
m d}B}{{
m d}q^2} {
m d}q^2 = (0.268 \pm 0.062) imes 10^{-4}$$

$$R_{
m low} = rac{\Delta B_{
m low}}{\Delta B_{
m mid}} = 0.618 \pm 0.207$$

$$R_{ ext{high}} = rac{\Delta B_{ ext{high}}}{\Delta B_{ ext{mid}}} = 0.294 \pm 0.083$$

Our predictions for $m_f = 0.14, 0.35$:

$$R_{
m low} = 0.580, 0.424$$

 $R_{
m high} = 0.427, 0.503$

AdS/QCD prediction for $B \rightarrow K^*$ transition form factors

R. Campbell, S. Lord, R. Sandapen, MA, PRD89.074021(2014)

Isospin asymmetry in dileptonic $B \rightarrow K^* \mu^+ \mu^-$

S. Lord, R. Sandapen, MA, PRD90.074010(2014)

(b) Isospin asymmetry in $B \to K^* \mu^+ \mu^-$ decay vs dileptonic invariant mass. The data points are from LHCb. The dashed red curve is the prediction of the QCD sum rules.

Differential decay rate for $B \to K^* \nu \bar{\nu}$

A. Leger, Z. McIntyre, A. Morrison, R. Sandapen, MA, PRD98.053002(2018)

(c) The AdS/QCD (Solid line) and SR (Dashed line) predictions for the differential Branching Ratio for $B \rightarrow K^* \nu \bar{\nu}$. The shaded band represents the uncertainty coming from the form factors.

Differential decay rate for $B_s \rightarrow \phi \mu^+ \mu^-$ (Preliminary)

(d) The AdS/QCD (red line) and SR (blue line) predictions for the differential Branching Ratio $B_s \rightarrow \phi \mu^+ \mu^-$.

- AdS/QCD LFWF is used to obtain ρ and K^* DAs.
- DAs are essential ingredients for the calculation of the $B \rightarrow \rho, K^*$ transition form factors via LCSR.
- We are in the process of calculating the form factors directly from LFWF.
- We have looked into the proper LFWF for pseudoscalar mesons and working to predict $B \rightarrow \pi, K$ transition form factors. (F. Chishtie, R. Sandapen, MA PRD95,074008(2017); C. Mondal, R. Sandapen, MA, PRD98, 034010(2018))

3 mechanisms to break conformal symmetry

- Spontaneous
- 2 Explicit
- ③ de Alfaro, Fubini, Furlan (dAFF)√ V. Alfaro, S. Fubini and G. Furlan. Nuovo. Cim. A34 (1976) 569

in conformal QM, changing the evolution parameter allows the introduction of a mass scale in the Hamiltonian while preserving the conformal invariance of the underlying action.

$$H_{\rm scQCD}^{\rm LF} = \left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right)$$

with
$$U(\zeta) = \kappa^4 \zeta^2$$

Confining potential $U_{\rm eff}$

A remarkable feature in light-front holography is that the form of the confinement potential is uniquely determined to be that of a harmonic oscillator, i.e. $U_{\text{eff}} = \kappa^4 \zeta^2$ where κ is the fundamental of the model. S. J. Brodsky, G. F. De Tramond, and H. G. Dosch, Phys. Lett. B729, 3 (2014), 1302.4105.

 $\zeta \rightarrow z$ (the fifth dimension of anti-de Sitter (AdS) space), the HSE also described the propagation of weakly-coupled spin-*J* modes in a modified AdS space with the confining QCD potential then determined by the form of the dilaton field, $\varphi(z)$, which modifies the pure AdS geometry.

$$U_{\mathrm{eff}}(\zeta) = rac{1}{2}arphi''(z) + rac{1}{4}arphi'(z)^2 + rac{2J-3}{2z}arphi'(z)$$

To recover this harmonic potential, the dilaton field has to be quadratic, i.e. $\varphi(z) = \kappa^2 z^2$

$$U_{\rm eff}(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$$

where J = L + S.

Diffractive vector meson production

•
$$ep
ightarrow epV$$
 or $\gamma^* p
ightarrow pV$

- Sensitivity to non-perturbative physics
- Can be used to fine tune the vector meson wavefunction

N. Sharma, R. Sandapen, MA, PhysRevD.94.074018(2016)