Combined explanation of the B -anomalies

@ FPCP 2019, University of Victoria

Presented by Jacky Kumar
Université de Montréal
Based on JK, David London, Ryoutaro Watanabe,
Phys. Rev. D 99, 015007

B-Anomalies

- Discrepancies in $b \rightarrow s \mu^{+} \mu^{-}$data and SM: Angular Observables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$, Branching Ratio in $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$: (Combined Significance 4-5 σ.

B-Anomalies

- Discrepancies in $b \rightarrow s \mu^{+} \mu^{-}$data and SM: Angular Observables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$, Branching Ratio in $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$: (Combined Significance $4-5 \sigma$).
- Discrepancies in Lepton Flavor Universality Ratios in $b \rightarrow s \ell$:

$$
\mathbf{R}_{\mathbf{K}^{(*)}}=\frac{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{e}^{+} \mathbf{e}^{-}\right)}
$$

Both R_{K} and $R_{K^{*}}$ are measured to be below the SM value by $\sim \mathbf{2 . 5} \sigma$.

B-Anomalies

- Discrepancies in $b \rightarrow s \mu^{+} \mu^{-}$data and SM: Angular Observables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$, Branching Ratio in $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$: (Combined Significance 4-5 σ).
- Discrepancies in Lepton Flavor Universality Ratios in $b \rightarrow s \ell \ell:$

$$
\mathbf{R}_{\mathbf{K}^{(*)}}=\frac{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{e}^{+} \mathbf{e}^{-}\right)}
$$

Both R_{K} and $R_{K^{*}}$ are measured to be below the SM value by $\sim 2.5 \sigma$.

- Discrepancies in Lepton Flavor Universality Ratios in $b \rightarrow c \nmid \bar{\nu}$:

$$
\mathbf{R}_{\mathbf{D}^{(*)}}=\frac{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \ell \bar{\nu}_{\ell}\right)}
$$

$$
\mathbf{R}_{\mathbf{J} / \psi}=\frac{\mathcal{B}\left(\mathbf{B}_{\mathbf{c}} \rightarrow \mathbf{J} / \psi \tau \bar{\nu}\right)}{\mathcal{B}\left(\mathbf{B}_{\mathbf{c}} \rightarrow \mathbf{J} / \psi \mu \bar{\nu}_{\mu}\right)}
$$

Both R_{D} and $R_{D^{*}}$ are measured to be above the SM value, the combined significance is $\sim 4.0 \sigma . R_{J / \psi}$ is measured to be $\sim \mathbf{2} \sigma$ above the SM.

Individual Explanations: EFT Approach

- The NP can be parameterized in terms of the Wilson Coefficients.

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\sum C_{i} O_{i} \\
C_{X}=C_{X}(\mathrm{SM})+C_{X}(\mathrm{NP})
\end{gathered}
$$

Individual Explanations: EFT Approach

- The NP can be parameterized in terms of the Wilson Coefficients.

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\sum C_{i} O_{i} \\
C_{X}=C_{X}(\mathrm{SM})+C_{X}(\mathrm{NP})
\end{gathered}
$$

$b \rightarrow s \mu \mu:$

$$
O_{9}^{\mu \mu}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right), \quad O_{10}^{\mu \mu}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \gamma^{5} \mu\right)
$$

Individual Explanations: EFT Approach

- The NP can be parameterized in terms of the Wilson Coefficients.

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\sum C_{i} O_{i} \\
C_{X}=C_{X}(\mathrm{SM})+C_{X}(\mathrm{NP})
\end{gathered}
$$

$b \rightarrow s \mu \mu:$

$$
O_{9}^{\mu \mu}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right), \quad O_{10}^{\mu \mu}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \gamma^{5} \mu\right)
$$

$\mathbf{b} \rightarrow \mathbf{c} \tau \bar{\nu}_{\tau}:$

$$
O_{V L}^{\tau \tau}=\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{\tau L}\right)
$$

Individual Explanations: EFT Approach

- The NP can be parameterized in terms of the Wilson Coefficients.

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\sum C_{i} O_{i} \\
C_{X}=C_{X}(\mathrm{SM})+C_{X}(\mathrm{NP})
\end{gathered}
$$

$b \rightarrow s \mu \mu:$

$$
O_{9}^{\mu \mu}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right), \quad O_{10}^{\mu \mu}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \gamma^{5} \mu\right)
$$

$\mathbf{b} \rightarrow \mathbf{c} \tau \bar{\nu}_{\tau}:$

$$
O_{V L}^{\tau \tau}=\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{\tau L}\right)
$$

(Global Fits):

- $\mathrm{b} \rightarrow \mathrm{s} \mu \mu$:

$$
C_{9}^{\mu \mu}(N P)=-C_{10}^{\mu \mu}(N P) \simeq-0.53 .
$$

- $\mathrm{b} \rightarrow \mathrm{c} \tau \bar{\nu}$:

$$
C_{V}^{\tau \tau}(N P) \simeq 0.10
$$

See e.g. Phys. Rev. D 96, 095009, JHEP 1809 (2018) 152

Combined Explanation: EFT Approach

$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ Gauge Invariant Operators

Combined Explanation: EFT Approach

$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ Gauge Invariant Operators

There are two such Semi-Leptonic Operators relevant for $b \rightarrow s \ell \ell$ and $b \rightarrow c \ell \bar{\nu}$ with (V-A) structure

Combined Explanation: EFT Approach

$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ Gauge Invariant Operators

There are two such Semi-Leptonic Operators relevant for $b \rightarrow s \ell \ell$ and $b \rightarrow c \ell \bar{\nu}$ with (V-A) structure

$$
\left(\bar{Q}_{i L} \gamma_{\mu} Q_{j L}\right)\left(\bar{L}_{k L} \gamma^{\mu} L_{l L}\right), \quad\left(\bar{Q}_{i L} \gamma_{\mu} \sigma^{I} Q_{j L}\right)\left(\bar{L}_{k L} \gamma^{\mu} \sigma^{I} L_{l L}\right)
$$

Combined Explanation: EFT Approach

$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ Gauge Invariant Operators

There are two such Semi-Leptonic Operators relevant for $b \rightarrow s \ell \ell$ and $b \rightarrow c l \bar{\nu}$ with (V-A) structure

$$
\left(\bar{Q}_{i L} \gamma_{\mu} Q_{j L}\right)\left(\bar{L}_{k L} \gamma^{\mu} L_{l L}\right), \quad\left(\bar{Q}_{i L} \gamma_{\mu} \sigma^{I} Q_{j L}\right)\left(\bar{L}_{k L} \gamma^{\mu} \sigma^{I} L_{l L}\right)
$$

Operator $\left(\bar{Q}_{i L} \gamma_{\mu} \sigma^{I} Q_{j L}\right)\left(\bar{L}_{k L} \gamma^{\mu} \sigma^{I} L_{l L}\right)$ relates $b \rightarrow s \ell$ to $b \rightarrow c \ell \bar{\nu}$ transitions.
[Phys.Lett. B742 (2015) 370-374]

EFT to Models: Leptoquarks

Scalar Triplet: $S_{3}(\mathbf{3}, \mathbf{3},-\mathbf{2} / \mathbf{3})$
Vector Triplet: $U_{3}(\mathbf{3}, \mathbf{3}, \mathbf{4} / \mathbf{3})$
Vector Singlet: $U_{1}(\mathbf{3}, \mathbf{1}, \mathbf{4} / \mathbf{3})$

EFT to Models: Leptoquarks

$$
\begin{array}{lc}
\text { Scalar Triplet: } & S_{3}(\mathbf{3}, \mathbf{3}, \mathbf{- 2} / \mathbf{3}) \\
\text { Vector Triplet: } & U_{3}(\mathbf{3}, \mathbf{3}, \mathbf{4} / \mathbf{3}) \\
\text { Vector Singlet: } & U_{1}(\mathbf{3}, \mathbf{1}, \mathbf{4} / \mathbf{3})
\end{array}
$$

$$
\begin{aligned}
\Delta \mathcal{L}_{S_{3}} & =h_{i j}^{S_{3}}\left(\bar{Q}_{i L} \sigma^{I} i \sigma^{2} L_{j L}^{c}\right) S_{3}^{I}+\text { h.c., } \quad \text { (We allow General Couplings) } \\
\Delta \mathcal{L}_{U_{3}} & =h_{i j}^{U_{3}}\left(\bar{Q}_{i L} \gamma^{\mu} \sigma^{I} L_{j L}\right) U_{3 \mu}^{I}+\text { h.c. }, \\
\Delta \mathcal{L}_{U_{1}} & =h_{i j}^{U_{1}}\left(\bar{Q}_{i L} \gamma^{\mu} L_{j L}\right) U_{1 \mu}+\text { h.c. }
\end{aligned}
$$

EFT to Models: Leptoquarks

$$
\begin{array}{lc}
\text { Scalar Triplet: } & S_{3}(\mathbf{3}, \mathbf{3}, \mathbf{- 2} / \mathbf{3}) \\
\text { Vector Triplet: } & U_{3}(\mathbf{3}, \mathbf{3}, \mathbf{4} / \mathbf{3}) \\
\text { Vector Singlet: } & U_{1}(\mathbf{3}, \mathbf{1}, \mathbf{4} / \mathbf{3})
\end{array}
$$

$$
\begin{aligned}
\Delta \mathcal{L}_{S_{3}} & =h_{i j}^{S_{3}}\left(\bar{Q}_{i L} \sigma^{I} i \sigma^{2} L_{j L}^{c}\right) S_{3}^{I}+\text { h.c., } \quad \text { (We allow General Couplings) } \\
\Delta \mathcal{L}_{U_{3}} & =h_{i j}^{U_{3}}\left(\bar{Q}_{i L} \gamma^{\mu} \sigma^{I} L_{j L}\right) U_{3 \mu}^{I}+\text { h.c. } \\
\Delta \mathcal{L}_{U_{1}} & =h_{i j}^{U_{1}}\left(\bar{Q}_{i L} \gamma^{\mu} L_{j L}\right) U_{1 \mu}+\text { h.c. }
\end{aligned}
$$

Under the assumption that NP Couples to only II and III Generations we have 4 Free(Real) parameters for each Model:

$$
h_{22}, h_{33}, h_{23}, h_{32}
$$

Observables

Six Minimal + Five Lelpton Flavor Violating (LFV) constraints.

Observable	Measurement or Constraint
minimal	
$\begin{gathered} b \rightarrow s \mu^{+} \mu^{-}(\text {all }) \\ R_{D}^{\tau *} /\left(R_{D^{*}}^{\tau / \ell}\right)_{\mathrm{SM}} \\ R_{D}^{\tau / \ell} /\left(R_{D}^{\tau / \ell}\right)_{\mathrm{SM}} \\ R_{D}^{e / \mu} /\left(R_{D^{*}}^{e / \mu}\right)_{\mathrm{SM}} \\ R_{J / \psi}^{\tau / \mu} /\left(R_{J / \psi}^{\tau / \mu}\right)_{\mathrm{SM}} \\ \mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right) / \mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\mathrm{SM}} \end{gathered}$	$\begin{aligned} & C_{9}^{\mu \mu}(\mathrm{LQ})=-C_{10}^{\mu \mu}(\mathrm{LQ})=-0.68 \pm 0.12[17] \\ & 1.18 \pm 0.06[18-21] \\ & 1.36 \pm 0.15[18-21] \\ & 1.04 \pm 0.05[68] \\ & 2.51 \pm 0.97[22] \\ &-13 \sum_{i=1}^{3} \operatorname{Re}\left[C_{L}^{i i}(\mathrm{LQ})\right]+\sum_{i, j=1}^{3}\left\|C_{L}^{i j}(\mathrm{LQ})\right\|^{2} \leq 248[69] \end{aligned}$
LFV	
$\begin{gathered} \hline \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{-} \mu^{+}\right) \\ \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \mu^{-}\right) \\ \mathcal{B}\left(\Upsilon(2 S) \rightarrow \mu^{ \pm} \tau^{\mp}\right) \\ \mathcal{B}(\tau \rightarrow \mu \phi) \\ \mathcal{B}\left(J / \psi \rightarrow \mu^{ \pm} \tau^{\mp}\right) \\ \hline \end{gathered}$	$\begin{array}{\|c} (0.8 \pm 1.7) \times 10^{-5} ; \end{array} \quad<4.5 \times 10^{-5}(90 \% \text { C.L. })[70] ~\left[\begin{array}{rl} \hline(-0.4 \pm 1.2) \times 10^{-5} ; & <2.8 \times 10^{-5}(90 \% \text { C.L. })[70] \\ (0.2 \pm 1.5 \pm 1.3) \times 10^{-6} ; & <3.3 \times 10^{-6}(90 \% \text { C.L. })[71] \\ <8.4 \times 10^{-8}(90 \% \text { C.L. })[72] \\ <2.0 \times 10^{-6}(90 \% \text { C.L. })[73] \\ \hline \end{array}\right.$

S_{3} and U_{3} Leptoquarks Models

The Fit of S_{3} and U_{3} to the Minimal set of Constraints yields:

$$
\chi^{2} / \text { dof }=7.5\left(S_{3}\right), \quad 10\left(U_{3}\right),
$$

Implying that simultaneous explanation is not possible within S_{3} or U_{3}.

S_{3} and U_{3} Leptoquarks Models

The Fit of S_{3} and U_{3} to the Minimal set of Constraints yields:

$$
\chi^{2} / \text { dof }=7.5\left(S_{3}\right), \quad 10\left(U_{3}\right),
$$

Implying that simultaneous explanation is not possible within S_{3} or U_{3}.

- The constraint from $B \rightarrow K^{(*)} \nu \bar{\nu}:-0.047 \leq\left(g_{1}-g_{3}\right) h_{33} h_{23} \leq 0.026$.

S_{3} and U_{3} Leptoquarks Models

The Fit of S_{3} and U_{3} to the Minimal set of Constraints yields:

$$
\chi^{2} / \text { dof }=7.5\left(S_{3}\right), \quad 10\left(U_{3}\right),
$$

Implying that simultaneous explanation is not possible within S_{3} or U_{3}.

- The constraint from $B \rightarrow K^{(*)} \nu \bar{\nu}:-0.047 \leq\left(g_{1}-g_{3}\right) h_{33} h_{23} \leq 0.026$.
- For the S_{3} LQ, we have

$$
\begin{gathered}
h_{33} h_{23}=-0.28 \pm 0.08\left(R_{D^{(*)}}\right) \\
h_{33} h_{23} \geq-0.094\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)
\end{gathered}
$$

S_{3} and U_{3} Leptoquarks Models

The Fit of S_{3} and U_{3} to the Minimal set of Constraints yields:

$$
\chi^{2} / \mathrm{dof}=7.5\left(S_{3}\right), \quad 10\left(U_{3}\right),
$$

Implying that simultaneous explanation is not possible within S_{3} or U_{3}.

- The constraint from $B \rightarrow K^{(*)} \nu \bar{\nu}:-0.047 \leq\left(g_{1}-g_{3}\right) h_{33} h_{23} \leq 0.026$.
- For the $S_{3} \mathrm{LQ}$, we have

$$
\begin{gathered}
h_{33} h_{23}=-0.28 \pm 0.08\left(R_{D^{(*)}}\right) \\
h_{33} h_{23} \geq-0.094\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)
\end{gathered}
$$

- Similarly, the U_{3} LQ has

$$
\begin{aligned}
& h_{33} h_{23}=-0.14 \pm 0.04\left(R_{D^{(*)}}\right) \\
& h_{33} h_{23} \geq-0.013\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)
\end{aligned}
$$

S_{3} and U_{3} Leptoquarks Models

The Fit of S_{3} and U_{3} to the Minimal set of Constraints yields:

$$
\chi^{2} / \mathrm{dof}=7.5\left(S_{3}\right), \quad 10\left(U_{3}\right),
$$

Implying that simultaneous explanation is not possible within S_{3} or U_{3}.

- The constraint from $B \rightarrow K^{(*)} \nu \bar{\nu}:-0.047 \leq\left(g_{1}-g_{3}\right) h_{33} h_{23} \leq 0.026$.
- For the S_{3} LQ, we have

$$
\begin{gathered}
h_{33} h_{23}=-0.28 \pm 0.08\left(R_{D^{(*)}}\right) \\
h_{33} h_{23} \geq-0.094\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)
\end{gathered}
$$

- Similarly, the U_{3} LQ has

$$
\begin{gathered}
h_{33} h_{23}=-0.14 \pm 0.04\left(R_{D^{(*)}}\right) \\
h_{33} h_{23} \geq-0.013\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)
\end{gathered}
$$

The constraint from $B \rightarrow K^{(*)} \nu \bar{\nu}$ is not compatible with the $R_{D^{(*)}}$.

U_{1} Leptoquark Model

- No contributions to $b \rightarrow s \nu \bar{\nu}$ (at Tree Level) since

$$
\left(g_{1}-g_{2}\right)=0 .
$$

U_{1} Leptoquark Model

- No contributions to $b \rightarrow s \nu \bar{\nu}$ (at Tree Level) since

$$
\left(g_{1}-g_{2}\right)=0 .
$$

- Combined Fit of U_{1} Model:

9 Observables:

$$
\begin{aligned}
\text { Minimal : } & b \rightarrow s \mu \mu, R_{D}^{\tau / / \ell}, R_{D^{*}}^{\tau / \ell}, R_{D^{*}}^{e / \mu}, R_{J / \psi}^{\tau / \mu} \\
\text { LFV : } & \mathcal{B}\left(B \rightarrow K \tau^{ \pm} \mu^{\mp}\right), \mathcal{B}(\tau \rightarrow \phi \mu), \mathcal{B}\left(\Upsilon \rightarrow \mu^{ \pm} \tau^{\mp}\right) .
\end{aligned}
$$

U_{1} Leptoquark Model

- No contributions to $b \rightarrow s \nu \bar{\nu}$ (at Tree Level) since

$$
\left(g_{1}-g_{2}\right)=0 .
$$

- Combined Fit of U_{1} Model:

9 Observables:

$$
\begin{aligned}
\text { Minimal : } & b \rightarrow s \mu \mu, R_{D}^{\tau / / \ell}, R_{D^{*}}^{\tau / \ell}, R_{D^{*}}^{e / \mu}, R_{J / \psi^{*}}^{\tau / \mu} \\
\text { LFV : } & \mathcal{B}\left(B \rightarrow K \tau^{ \pm} \mu^{\mp}\right), \mathcal{B}(\tau \rightarrow \phi \mu), \mathcal{B}\left(\Upsilon \rightarrow \mu^{ \pm} \tau^{\mp}\right) .
\end{aligned}
$$

4 Free Parameters:

$$
\begin{gathered}
h_{22}, h_{33}, h_{23}, h_{32} \Longrightarrow \text { d.o.f }=5 . \\
\chi_{\min }^{2} / \operatorname{dof}=1
\end{gathered}
$$

U_{1} Leptoquark Model

- No contributions to $b \rightarrow s \nu \bar{\nu}$ (at Tree Level) since

$$
\left(g_{1}-g_{2}\right)=0 .
$$

- Combined Fit of U_{1} Model:

9 Observables:

$$
\begin{aligned}
\text { Minimal : } & b \rightarrow s \mu \mu, R_{D}^{\tau / / \ell}, R_{D^{*}}^{\tau / \ell}, R_{D^{*}}^{e / \mu}, R_{J / \psi}^{\tau / \mu} \\
\text { LFV : } & \mathcal{B}\left(B \rightarrow K \tau^{ \pm} \mu^{\mp}\right), \mathcal{B}(\tau \rightarrow \phi \mu), \mathcal{B}\left(\Upsilon \rightarrow \mu^{ \pm} \tau^{\mp}\right) .
\end{aligned}
$$

4 Free Parameters:

$$
\begin{gathered}
h_{22}, h_{33}, h_{23}, h_{32} \Longrightarrow \text { d.o.f }=5 . \\
\chi_{\min }^{2} / \text { dof }=1
\end{gathered}
$$

Therefore U_{1} LQ can explain both the charged and neutral current B-anomalies simultaneously.

LQ Couplings: Pattern \& LFV Constraints

Using Minimal Observables only product of LQ couplings are constrained but the individual couplings remain unconstrained.

$$
\begin{array}{rll}
b \rightarrow s \mu^{+} \mu^{-} & : h_{32} h_{22} \\
b \rightarrow c \tau \bar{\nu} & : V_{c s} h_{33} h_{23}+V_{c b} h_{33}^{2} \\
B^{+} \rightarrow K^{+} \tau^{-} \mu^{+} & : & h_{32} h_{23} \\
B^{+} \rightarrow K^{+} \tau^{+} \mu^{-} & : & h_{33} h_{22} \\
\Upsilon(2 S) \rightarrow \mu^{ \pm} \tau^{\mp} & : & h_{33} h_{32} \\
\tau \rightarrow \mu \phi & : & h_{23} h_{22} .
\end{array}
$$

LQ Couplings: Pattern \& LFV Constraints

Using Minimal Observables only product of LQ couplings are constrained but the individual couplings remain unconstrained.

$$
\begin{array}{rll}
b \rightarrow s \mu^{+} \mu^{-} & : h_{32} h_{22} \\
b \rightarrow c \tau \bar{\nu} & : V_{c s} h_{33} h_{23}+V_{c b} h_{33}^{2} \\
B^{+} \rightarrow K^{+} \tau^{-} \mu^{+} & : & h_{32} h_{23} \\
B^{+} \rightarrow K^{+} \tau^{+} \mu^{-} & : & h_{33} h_{22} \\
\Upsilon(2 S) \rightarrow \mu^{ \pm} \tau^{\mp} & : & h_{33} h_{32} \\
\tau \rightarrow \mu \phi & : & h_{23} h_{22} .
\end{array}
$$

Lepton Flavor Violating Observables put additional constraints:

$$
\begin{aligned}
& |h 22| \leq 0.12,|h 32| \leq 0.7 \\
& |h 23| \leq 0.9,|h 33| \geq 0.1 .
\end{aligned}
$$

LQ Couplings: Pattern \& LFV Constraints

$$
\begin{array}{ccc}
R_{D^{(*)}} & R_{K^{(*)}} \\
A=(a, c): h_{33}=O(1.0), & h_{23}=O(0.1), & h_{32}=O(0.01), \quad h_{22}=O(0.1) \\
B=(b, c): h_{33}=O(0.1), & h_{23}=O(1.0), & h_{32}=O(0.01), \\
C=(a, d): h_{22}=O(0.1) \\
D=(b, d): h_{33}=O(1.0), & h_{23}=O(0.1), & h_{32}=O(0.1), \\
h_{22}=O(0.01) \\
& h_{23}=O(1.0), & h_{32}=O(0.1), \\
h_{22}=O(0.01)
\end{array}
$$

LQ Couplings: Pattern \& LFV Constraints

$$
\begin{array}{ccc}
R_{D^{(*)}} & R_{K}(*) \\
A=(a, c): h_{33}=O(1.0), & h_{23}=O(0.1), & h_{32}=O(0.01), \quad h_{22}=O(0.1) \\
B=(b, c): h_{33}=O(0.1), & h_{23}=O(1.0), & h_{32}=O(0.01), \\
C=(a, d): h_{22}=O(0.1) \\
D=(b, d): h_{33}=O(0.0), & h_{23}=O(0.1), & h_{32}=O(0.1), \\
h_{22}=O(0.01) \\
h_{23}=O(1.0), & h_{32}=O(0.1), & h_{22}=O(0.01)
\end{array}
$$

h_{33}	$\chi_{\min , S M+U_{1}}^{2}$	h_{23}
1.0	5.0	0.10 ± 0.04
0.5	5.2	0.26 ± 0.07
0.2	6.8	0.60 ± 0.15
0.1	11.3	0.70 ± 0.20

LQ Couplings: Pattern \& LFV Constraints

$$
\begin{array}{ccc}
R_{D^{(*)}} & R_{K}(*) \\
A=(a, c): h_{33}=O(1.0), & h_{23}=O(0.1), & h_{32}=O(0.01),
\end{array} h_{22}=O(0.1)
$$

h_{33}	$\chi_{\min , S M+U_{1}}^{2}$	h_{23}
1.0	5.0	0.10 ± 0.04
0.5	5.2	0.26 ± 0.07
0.2	6.8	0.60 ± 0.15
0.1	11.3	0.70 ± 0.20

LFV constraints prefer a large value of h_{33} coupling. A sizable $h_{23} \sim \mathcal{O}(0.1)$ is needed to fit the data.

LQ Couplings: Pattern \& LFV Constraints

$$
\begin{array}{ccc}
R_{D^{(*)}} & R_{K}(*) \\
A=(a, c): h_{33}=O(1.0), & h_{23}=O(0.1), & h_{32}=O(0.01), \quad h_{22}=O(0.1) \\
B=(b, c): h_{33}=O(0.1), & h_{23}=O(1.0), & h_{32}=O(0.01), \\
C=(a, d): h_{22}=O(0.1) \\
D=(b, d): h_{33}=O(1.0), & h_{23}=O(0.1), & h_{32}=O(0.1), \\
h_{22}=O(0.01) \\
& h_{23}=O(1.0), & h_{32}=O(0.1), \\
h_{22}=O(0.01)
\end{array}
$$

h_{33}	$\chi_{\min , S M+U_{1}}^{2}$	h_{23}
1.0	5.0	0.10 ± 0.04
0.5	5.2	0.26 ± 0.07
0.2	6.8	0.60 ± 0.15
0.1	11.3	0.70 ± 0.20

LFV constraints prefer a large value of h_{33} coupling. A sizable $h_{23} \sim \mathcal{O}(0.1)$ is needed to fit the data.

Predictions for U_{1} model

- Enhancement of same size in $b \rightarrow u \ell \bar{\nu}$ modes is predicted:

$$
R_{\pi \ell \bar{\nu}}^{\tau / \mu}=\frac{\mathcal{B}(B \rightarrow \pi \tau \bar{\nu})}{\mathcal{B}(B \rightarrow \pi \ell \bar{\nu})} \simeq R_{D^{*}}^{\tau / \ell} \simeq 1.20 .
$$

Predictions for U_{1} model

- Enhancement of same size in $b \rightarrow u \ell \bar{\nu}$ modes is predicted:

$$
R_{\pi \ell \bar{\nu}}^{\tau / \mu}=\frac{\mathcal{B}(B \rightarrow \pi \tau \bar{\nu})}{\mathcal{B}(B \rightarrow \pi \ell \bar{\nu})} \simeq R_{D^{*}}^{\tau / \ell} \simeq 1.20
$$

- RGE running induce $b \rightarrow s \nu \bar{\nu}$ mode:

$$
\mathcal{B}(B \rightarrow K \nu \bar{\nu}) \simeq 1.3 \times \mathcal{B}(B \rightarrow K \nu \bar{\nu})_{S M} .
$$

Predictions for U_{1} model

- Enhancement of same size in $b \rightarrow u \ell \bar{\nu}$ modes is predicted:

$$
R_{\pi \ell \bar{\nu}}^{\tau / \mu}=\frac{\mathcal{B}(B \rightarrow \pi \tau \bar{\nu})}{\mathcal{B}(B \rightarrow \pi \ell \bar{\nu})} \simeq R_{D^{*}}^{\tau / \ell} \simeq 1.20
$$

- RGE running induce $b \rightarrow s \nu \bar{\nu}$ mode:

$$
\mathcal{B}(B \rightarrow K \nu \bar{\nu}) \simeq 1.3 \times \mathcal{B}(B \rightarrow K \nu \bar{\nu})_{S M} .
$$

- More than two orders of enhancement is expected in the $b \rightarrow s \tau \tau$ modes!

$$
\mathcal{B}(B \rightarrow K \tau \bar{\tau}) \simeq 250 \times \mathcal{B}(B \rightarrow K \tau \bar{\tau})_{S M}
$$

Vector Boson (VB) Triplet Model

- An SM-like VB $\left(W^{\prime}, Z^{\prime}\right)$ which transforms as $(\mathbf{1}, \mathbf{3}, \mathbf{0})$ under the SM Gauge group is another possibility.

Six Couplings: $\quad\left(g_{\mu \mu}, g_{\tau \tau}, g_{\mu \tau}\right),\left(g_{s s}, g_{b b}, g_{s b}\right)$

Vector Boson (VB) Triplet Model

- An SM-like VB $\left(W^{\prime}, Z^{\prime}\right)$ which transforms as $(\mathbf{1}, \mathbf{3}, \mathbf{0})$ under the SM Gauge group is another possibility.

Six Couplings: $\quad\left(g_{\mu \mu}, g_{\tau \tau}, g_{\mu \tau}\right),\left(g_{s s}, g_{b b}, g_{s b}\right)$

- In addition to the Semi-Leptonic operators required to explain the B-Anomalies the four Fermion are also generated at the Tree Level.
- Additional constraints like $B_{s}-\bar{B}_{s}$ Mixing, $\tau \rightarrow 3 \mu, \tau \rightarrow \ell \nu \bar{\nu}$ come into play.

VB Triplet Model: Results

- Due to the constraints from $\tau \rightarrow \ell \nu \bar{\nu}$ and B_{s}-Mixing the $g_{\tau \tau} \sim \mathcal{O}(0.01-0.1)$ is small, so the NP effect in $b \rightarrow c \tau \bar{\nu}$ are limited.

VB Triplet Model: Results

- Due to the constraints from $\tau \rightarrow \ell \nu \bar{\nu}$ and B_{s}-Mixing the $g_{\tau \tau} \sim \mathcal{O}(0.01-0.1)$ is small, so the NP effect in $b \rightarrow c \tau \bar{\nu}$ are limited.
- Therefore, to explain $R_{D^{(*)}}$ we need the suppress the denominator i.e NP in $b \rightarrow c \mu \bar{\nu}$. But in the light direct searches at the LHC of heavy bosons in $b \bar{b} \rightarrow Z^{\prime} \rightarrow \mu \mu$ challenge this possibility.

VB Triplet Model: Results

- Due to the constraints from $\tau \rightarrow \ell \nu \bar{\nu}$ and B_{s}-Mixing the $g_{\tau \tau} \sim \mathcal{O}(0.01-0.1)$ is small, so the NP effect in $b \rightarrow c \tau \bar{\nu}$ are limited.
- Therefore, to explain $R_{D^{(*)}}$ we need the suppress the denominator i.e NP in $b \rightarrow c \mu \bar{\nu}$. But in the light direct searches at the LHC of heavy bosons in $b \bar{b} \rightarrow Z^{\prime} \rightarrow \mu \mu$ challenge this possibility.

VB Triplet Model: Results

- Due to the constraints from $\tau \rightarrow \ell \nu \bar{\nu}$ and B_{s}-Mixing the $g_{\tau \tau} \sim \mathcal{O}(0.01-0.1)$ is small, so the NP effect in $b \rightarrow c \tau \bar{\nu}$ are limited.
- Therefore, to explain $R_{D^{(*)}}$ we need the suppress the denominator i.e NP in $b \rightarrow c \mu \bar{\nu}$. But in the light direct searches at the LHC of heavy bosons in $b \bar{b} \rightarrow Z^{\prime} \rightarrow \mu \mu$ challenge this possibility.

- So, we conclude that the VB model is excluded.

Summary

- At present there are several anomalies in the B-decays, both in the neutral currents as well as the charge current transitions. The combined significance if about $4-5 \sigma$ and 4σ respectively.

Summary

- At present there are several anomalies in the B-decays, both in the neutral currents as well as the charge current transitions. The combined significance if about $4-5 \sigma$ and 4σ respectively.
- Assuming that NP is responsible for this, there are four one particle extensions of SM which in principle could be solution. Those are (SM + Scalar triplet LQ), (SM + Vector Triplet LQ), SM + Vector Singlet LQ or SM + Vector Boson Triplet Model.

Summary

- At present there are several anomalies in the B-decays, both in the neutral currents as well as the charge current transitions. The combined significance if about $4-5 \sigma$ and 4σ respectively.
- Assuming that NP is responsible for this, there are four one particle extensions of SM which in principle could be solution. Those are (SM + Scalar triplet LQ), (SM + Vector Triplet LQ), SM + Vector Singlet LQ or SM + Vector Boson Triplet Model.
- Taking the general couplings(real) to the second and the third generation only U_{1} (a Vector Singlet LQ) model can offer a combined explanation.

Summary

- At present there are several anomalies in the B-decays, both in the neutral currents as well as the charge current transitions. The combined significance if about $4-5 \sigma$ and 4σ respectively.
- Assuming that NP is responsible for this, there are four one particle extensions of SM which in principle could be solution. Those are (SM + Scalar triplet LQ), (SM + Vector Triplet LQ), SM + Vector Singlet LQ or SM + Vector Boson Triplet Model.
- Taking the general couplings(real) to the second and the third generation only U_{1} (a Vector Singlet LQ) model can offer a combined explanation.
- As a consequence a large enhancement (by orders of magnitude) are predicted in the $b \rightarrow s \tau \tau$ modes.

Summary

- At present there are several anomalies in the B-decays, both in the neutral currents as well as the charge current transitions. The combined significance if about $4-5 \sigma$ and 4σ respectively.
- Assuming that NP is responsible for this, there are four one particle extensions of SM which in principle could be solution. Those are (SM + Scalar triplet LQ), (SM + Vector Triplet LQ), SM + Vector Singlet LQ or SM + Vector Boson Triplet Model.
- Taking the general couplings(real) to the second and the third generation only U_{1} (a Vector Singlet LQ) model can offer a combined explanation.
- As a consequence a large enhancement (by orders of magnitude) are predicted in the $b \rightarrow s \tau \tau$ modes.

Thanks for your attention!

