Flavor Physics and CP Violation Victoria, British Columbia, 2019-05-06

Measurements of γ from tree-level decays

A. Bertolin on behalf of the LHCb collaboration

Outlook:

- \clubsuit short introduction to LHCb and γ
- **4** LHCb γ results:
 - some representative measurements included LHCb γ combination
 - the γ combination results
- \clubsuit future prospects on γ
- take home message

4 LHCb: the detector and its performance so far

single-arm forward spectrometer at the LHC

b anti-b pairs produced

detector paper: JINST 3 (2008) S08005 Run 1 performance: Int. J. Mod. Phys. A30 (2015) 1530022 Run 2 performance: JINST 14 (2019) P04013

optimized for beauty and charm physics at 2 < η < 5

key points:

• momentum resolution ($\sigma(p)/p \approx 0.5 \%$ (low momentum) to 1 % @ 200 GeV/c)

- impact parameter resolution $(\sigma(IP) \approx 15 \ \mu m \text{ at high } p_T)$
- primary and secondary vertices reco.
- decay time resolution ($\sigma(t)\approx 50~\text{fs}$)
- 'global' PID: e / μ / π / K
- (K id \approx 95 % π mis-id \approx 5 %, p < 100 GeV/c)
- γ and $\pi^0 \, \text{reconstruction}$

recorded lumi.: 2011→ 2012 (Run 1): 3.19 /fb ~ 3 10 ¹¹ b anti-b pairs prod. 2015 → 2018 (Run 2): 5.9 /fb ~ 2 x 6 10 ¹¹ b anti-b pairs prod.

CP violation: historical approach

BABAR
 2000-2008, 0.5 /ab

$$\gamma = (69^{+17}_{-16})^{\circ}$$
 PRD 87, 052015 (2013) "legacy paper"

 2000-2010, 0.8 /ab
 2000-2010, 0.8 /ab

so this presentation will focus on LHCb results, keeping in mind that a new player is coming into the game: <<

4 CP violation in the SM

CPV is one of the requirements for explaining the baryon asymmetry we observe today

a process must have been in place that took us from the equal amounts of matter - anti-matter produced in the Big Bang to the matter dominated Universe we are living in

in the SM charged current weak interactions between quarks are described by a matrix, V, 3 x 3, fulfilling V V* = I \Leftrightarrow 3 angles and 1 phase or 3 reals and 1 imaginary parameters **CKM matrix**

$$V = \begin{array}{c|c} \mathbf{d} & \mathbf{s} & \mathbf{b} \\ V = \mathbf{c} \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5 \left[1 - 2(\rho + i\eta)\right] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3 \left[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)\right] & -A\lambda^2 + \frac{1}{2}A\lambda^4 \left[1 - 2(\rho + i\eta)\right] & 1 - \frac{1}{2}A^2\lambda^4 \end{array} \right) + \mathcal{O}\left(\lambda^6\right) \quad \lambda \approx 0.22$$

 ρ + i η gives the CKM phase, only source of CPV in the SM quark sector

"intrinsic" connection between CPV in the beauty and charm sectors ... however the imaginary part of:

$$V_{cd} \propto \lambda^5$$

$$V_{ub} \propto \lambda^3$$

expect CPV suppression in charm w.r.t beauty ...

4 CP violation and γ

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \qquad \text{unitary condition relevant for beauty decays}$

can be represented as a triangle in a complex plane, with angles α , β and γ

 $\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \right]$ a.k.a. ϕ_{3}

- only CKM angle easily accessible in tree-level decays
- assuming no new physics in tree-level decays, has negligible theoretical uncertainty i.e. achievable accuracy dominated by experiments

any disagreement between tree-level determinations and the value inferred from global CKM fits would indicate physics beyond the SM ... due for example to new particles / mediators being exchanged in loops ...

... however the present γ uncertainty from tree processes only is not small enough, desirable to reduce it to look for new physics effects starting from solid grounds !

4 how to measure γ : the LHCb approach

JHEP12 (2016) 087

 γ can be determined by exploiting the interference between • b \rightarrow cW (V_{cb}), favoured

• b \rightarrow uW (V_{ub}), suppressed

transition amplitudes

 $A_{sup}/A_{fav} = r_B^X e^{i(\delta_B^X \pm \gamma)}$ (- is for b-quark, + for anti-b)

where r_{B}^{X} and δ_{B}^{X} are the ratio and the strong phase differences between the V_{cb} and V_{ub} transition amplitudes for the specific final state X these are also simultaneously determined

charm parameters can also get involved

□ which/typical B meson final states (h=K,π) ? B⁺ → D h⁺ B⁺ → D h⁺ π⁻ π⁺ B⁰ → D K^{*0} B⁰ → D K⁺ π⁻ where D is a neutral charm meson mixture of the D⁰ anti-D⁰ flavor eigenstates □ which/typical D meson final states ? CP-eigenstates, D → K⁺ K⁻ and D → π⁺ π⁻, Gronau-London-Wyler (GLW) method non CP-eigenstates, D⁰ → π⁻ K⁺, Atwood-Dunietz-Soni (ADS) self-conjugate multibody D meson decay, like K⁰_s π⁺ π⁻, with the D-Dalitz plot distributions, Giri-Grossman-Soffer-Zupan (GGSZ)

golden mode for illustration purposes

however due to the small branching ratios the most precise way to determine γ is through a combination of measurements from analyses of many decay modes

4 LHCb γ combination: inputs

B decay	D decay	Method	Ref.	$\mathrm{Dataset}^{\dagger}$	Status since last combination [3]	t
$B^+ \to DK^+$	$D ightarrow h^+ h^-$	GLW	[14]	Run 1 & 2	Minor update	_
$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1	As before	
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[15]	Run 1	As before	
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1	As before	
$B^+ \to DK^+$	$D \to K^0_{\rm S} h^+ h^-$	GGSZ	[17]	Run 1	As before	
$B^+ \to DK^+$	$D \to K^0_{\rm S} h^+ h^-$	GGSZ	[18]	Run 2	New latest LH	<mark>ICb result</mark> on γ
$B^+ \to DK^+$	$D \to K^0_{\rm S} K^+ \pi^-$	GLS	[19]	Run 1	As before	
$B^+ \to D^* K^+$	$D ightarrow h^+ h^-$	GLW	[14]	$\operatorname{Run} 1 \ \& \ 2$	Minor update	_
$B^+ \to DK^{*+}$	$D ightarrow h^+ h^-$	GLW/ADS	[20]	$\mathrm{Run}\;1\;\&\;2$	Updated results	recent result
$B^+ \to DK^{*+}$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[20]	$\operatorname{Run} 1 \ \& \ 2$	New	recent result
$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	GLW/ADS	[21]	Run 1	As before	
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[22]	Run 1	As before	
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[23]	Run 1	As before	
$B^0 \to DK^{*0}$	$D \to K^0_{\rm S} \pi^+ \pi^-$	GGSZ	[24]	Run 1	As before	large consitivity your different
$B^0_s \to D^\mp_s K^\pm$	$D_s^+{\rightarrow} h^+h^-\pi^+$	TD	[25]	Run 1	Updated results	analysis technique
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	[26]	Run 1	New	

[†] Run 1 corresponds to an integrated luminosity of $3 \,\text{fb}^{-1}$ taken at centre-of-mass energies of 7 and 8 TeV. Run 2 corresponds to an integrated luminosity of $2 \,\text{fb}^{-1}$ taken at a centre-of-mass energy of 13 TeV.

4 LHCb γ combination: $B^+ \rightarrow D K^+ (D \rightarrow K_s^0 h^+ h^-)$ input

- sensitivity to γ obtained comparing the D-Dalitz plot distribution for reconstructed B⁺ and B⁻
- D \rightarrow K⁰_s h⁺ h⁻ where h=K, π
- $B^- \rightarrow D K^-$ decay amplitude:

 $A_B(m_{-}^2, m_{+}^2) \propto A_D(m_{-}^2, m_{+}^2) + r_B e^{i(\delta_B - \gamma)} A_{\overline{D}}(m_{-}^2, m_{+}^2)$ favored suppressed

Bin number

• 'optimal binning' scheme: bins have been chosen to optimize the statistical sensitivity to γ

• strong-phase difference between the D⁰ and anti-D⁰ amplitudes at a given point in the Dalitz plot directly measured by the CLEO collaboration exploiting quantum-correlated pairs produced at the ψ (3770) resonance (c_{±i}, s_{±i})

 $x_{\pm} \equiv r_B \cos(\delta_B \pm \gamma)$ and $y_{\pm} \equiv r_B \sin(\delta_B \pm \gamma)$

 $N_{\pm i}^{+} = h_{B^{+}} \left[F_{\mp i} + (x_{+}^{2}) + (y_{+}^{2}) F_{\pm i} + 2\sqrt{F_{i}F_{-i}} (x_{+}c_{\pm i} - (y_{+}s_{\pm i}) \right]$

 $N_{\pm i}^{-} = h_{B^{-}} \left[F_{\pm i} + (x_{-}^{2}) + (y_{-}^{2}) F_{\mp i} + 2\sqrt{F_{i}F_{-i}} (x_{-}c_{\pm i} + (y_{-})) \right]$

4 LHCb γ combination: $B^+ \rightarrow D K^+ (D \rightarrow K^0_s h^+ h^-)$ input (cont.)

 $D \rightarrow K^0_{\rm s} K^+ K^-$

 92 ± 10

 189 ± 15

 82 ± 10

JHEP08 (2018) 176

 193 ± 15

4 LHCb γ combination: $B^+ \rightarrow D K^+ (D \rightarrow K^0_s h^+ h^-)$ input (cont.)

- dots: data
- horizontal dotted line: expectation with no CPV
- continuous line: expectation with central values of $x_{\pm}\,y_{\pm}$

2015 \rightarrow 2016 data:

$$\gamma = (87^{+11}_{-12})^{\circ}$$

up to a two fold ambiguity resolved using the constraint $\gamma \in [0^{\circ}, 180^{\circ}]$

- most precise determination of γ from a single analysis
- statistically limited but more data have yet to come (2017 \rightarrow 2018)
- have to pay attention also to the CLEO input uncertainty

4 LHCb γ combination: B⁺ \rightarrow D K^{*+} (2,4-body D) input

JHEP11 (2017) 156

• sensitivity to γ obtained from the interference observed by reconstructing the D meson in final states accessible to both D⁰ and anti-D⁰

- 2-body and 4-body D decay modes (h⁺ h⁻, h⁺ $\pi^- \pi^+ \pi^-$ where h=K, π)
- 12 CP observables are measured, for illustration purposes 4 are given below:

$$A_{KK} = \frac{\Gamma\left(B^{-} \rightarrow D\left(K^{+}K^{-}\right)K^{*-}\right) - \Gamma\left(B^{+} \rightarrow D\left(K^{+}K^{-}\right)K^{*+}\right)}{\Gamma\left(B^{-} \rightarrow D\left(K^{+}K^{-}\right)K^{*-}\right) + \Gamma\left(B^{+} \rightarrow D\left(K^{+}K^{-}\right)K^{*+}\right)} = \mathsf{A}_{\pi\pi} \text{ defined with a K to } \pi \text{ swap}} \qquad \begin{array}{c} \text{equality holds as long as} \\ \text{ / if direct CP violation in} \\ D \text{ decays is small: true} \end{array}$$

$$R_{KK} = \frac{\Gamma\left(B^{-} \rightarrow D\left(K^{+}K^{-}\right)K^{*-}\right) + \Gamma\left(B^{+} \rightarrow D\left(K^{+}K^{-}\right)K^{*+}\right)}{\Gamma\left(B^{-} \rightarrow D\left(K^{-}\pi^{+}\right)K^{*-}\right) + \Gamma\left(B^{+} \rightarrow D\left(K^{+}\pi^{-}\right)K^{*+}\right)} \times \frac{\mathcal{B}(D^{0} \rightarrow K^{-}\pi^{+})}{\mathcal{B}(D^{0} \rightarrow K^{+}K^{-})} = \mathsf{R}_{\pi\pi} \text{ defined with}$$

$$a \text{ K to } \pi \text{ swap}$$

$$A_{KK} = A_{\pi\pi} \equiv A_{CP+}$$
$$R_{KK} = R_{\pi\pi} \equiv R_{CP+}$$

 $A_{CP+} = \frac{2\kappa r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2\kappa r_B \cos \delta_B \cos \gamma}$ $R_{CP+} = 1 + r_B^2 + 2\kappa r_B \cos \delta_B \cos \gamma$ $k: \text{ dilution factor for non K*(892)}^- \rightarrow K_s^0 \pi^- \text{ contributions}$

4 LHCb γ combination: B⁺ \rightarrow D K^{*+} (2,4-body D) input (cont.)

 $K^{*+} \rightarrow K^0_{\ s} \pi^-$

4 LHCb γ combination: B⁺ \rightarrow D K^{*+} (2,4-body D) input (cont.)

numerical results for the 12 CP observables (2011 \rightarrow 2016 data): $A_{K\pi} = -0.004 \pm 0.023 \pm 0.008$ [_] λ $A_{KK} = 0.06 \pm 0.07 \pm 0.01$ 160 $A_{\pi\pi} = 0.15 \pm 0.13 \pm 0.02$ 140 $R_{KK} = 1.22 \pm 0.09 \pm 0.01$ 120- $R_{\pi\pi} = 1.08 \pm 0.14 \pm 0.03$ 100- $R_{K\pi}^+ = 0.020 \pm 0.006 \pm 0.001$ $R_{K\pi}^- = 0.002 \pm 0.004 \pm 0.001$ 80 $A_{K\pi\pi\pi} = -0.013 \pm 0.031 \pm 0.009$ 60 $A_{\pi\pi\pi\pi} = 0.02 \pm 0.11 \pm 0.01$ 40 $R_{\pi\pi\pi\pi} = 1.08 \pm 0.13 \pm 0.03$ $R^+_{K\pi\pi\pi} = 0.016 \pm 0.007 \pm 0.003$ 20 $R^-_{K\pi\pi\pi} = 0.006 \pm 0.006 \pm 0.004$

- $B^+ \rightarrow D K^{*+}$ alone has a limited sensitivity to γ
- results are consistent with γ ~ 70 ° and r $_{\rm B}$ ~ 0.1
- statistically limited but more data have yet to come (2017 \rightarrow 2018)
- valuable in constraining γ

4 LHCb γ combination: B⁰_s \rightarrow D_s K input

JHEP03 (2018) 059

4 LHCb γ combination: B⁰_s \rightarrow D_s K input (cont.)

JHEP03 (2018) 059

• most precise determination of γ from a B_s meson decay

• statistically limited but more data have yet to come (2015 \rightarrow 2018)

4 LHCb γ combination: results

- 98 observables
- 40 free parameters
- fit quality:

- given the χ^2 value at the best fit point and the n.d.f. the fit probability is 69.9 %

• the fraction of pseudoexperiments which are generated from the best fit point and have a χ^2 larger than that found in data is (69.6±0.5) %

- main results: γ (common free parameter) and $r_{\text{B}}\,\delta_{\text{B}}$ for every "B"

Quantity	Value	$68.3\%~\mathrm{CL}$	$95.5\%~\mathrm{CL}$
γ [°]	74.0	[68.2, 79.0]	[61.6, 83.7]
r_B^{DK}	0.0989	[0.0939, 0.1040]	[0.0891, 0.1087]
δ_B^{DK} [°]	131.2	[125.3, 136.3]	[118.3, 140.9]
$r_B^{D^*K^+}$	0.191	[0.153, 0.236]	[0.121, 0.287]
$\delta_B^{D^*K^+}$ [°]	331.6	[321.4, 339.8]	[309, 346]
$r_B^{DK^{*+}}$	0.092	[0.059, 0.110]	[0.034, 0.126]
$\delta_B^{DK^{*+}}$ [°]	40	[20, 132]	[5, 155]
$r_B^{DK^{*0}}$	0.221	[0.174, 0.265]	[0.123, 0.309]
$\delta_B^{DK^{*0}}$ [°]	187	[167, 210]	[148, 239]
$r_B^{DK\pi\pi}$	0.081	[0.054, 0.106]	[0.000, 0.125]
$\delta_B^{DK\pi\pi}$ [°]	351.4	[314.0, 359.8]	[180, 360]
$r_B^{D_s^{\mp}K^{\pm}}$	0.301	[0.215, 0.391]	[0.14, 0.49]
$\delta_B^{D_s^{\mp}K^{\pm}} [^{\circ}]$	355	[339, 372]	[321, 390]
$\delta_B^{D^{\mp}\pi^{\pm}}$ [°]	17	[0, 46]	[0, 76]

parameters of interest

4 LHCb γ combination: remark on "auxiliary" inputs

LHCb-CONF-2018-002

Decay	Parameters	Source
$D^0 – \overline{D}^0$ -mixing	x_D, y_D	HLFAV
$D \to K^+ \pi^-$	$r_D^{K\pi},\delta_D^{K\pi}$	HLFAV
$D \to h^+ h^-$	$A_{CP}^{\mathrm{dir}}(KK), A_{CP}^{\mathrm{dir}}(\pi\pi)$	HLFAV
$D \to K^\pm \pi^\mp \pi^+ \pi^-$	$\delta_D^{K3\pi},\kappa_D^{K3\pi},r_D^{K3\pi}$	CLEO+LHCb
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{\pi\pi\pi\pi}$	CLEO
$D \to K \pi \pi^0$	$\delta_D^{K2\pi},\kappa_D^{K2\pi},r_D^{K2\pi}$	CLEO+LHCb
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}, F_{KK\pi^0}$	CLEO
$D \to K^0_{\rm s} K^+ \pi^-$	$\delta_D^{K_SK\pi}, \kappa_D^{K_SK\pi}, r_D^{K_SK\pi}$	CLEO
$D \to K^0_{\rm s} K^+ \pi^-$	$r_D^{K_SK\pi}$	LHCb
$B^0 \to DK^{*0}$	$\kappa_B^{DK^{*0}}, \bar{R}_B^{DK^{*0}}, \bar{\Delta}_B^{DK^{*0}}$	LHCb
$B^+ \to DK^{*+}$	$\kappa_B^{DK^{*+}}$	LHCb
$B^0_s \to D^\mp_s K^\pm$	ϕ_s	HFLAV
$B^0\!\to D^{\mp}\pi^{\pm}$	β	HFLAV
$B^0\!\to D^{\mp}\pi^{\pm}$	$r_B^{D^\mp\pi^\pm}$	See text

• there are some

- whenever possible these are taken from data
 - whenever possible from LHCb data !
- Gaussian constrained in the combination
 - allowing them to float roughly doubles the uncertainty on γ

4 LHCb γ combination: contribution of the different inputs to the final result

LHCb-CONF-2018-002

- \bullet allows to probe the stability / strength of the final result on γ
- B⁺ are clearly driving the final result
- B⁰ and B⁰_s (a single measurement but with r=0.301 !), subdominant, have almost the same weight
- ... what about $B_c^{\pm} \rightarrow D_s^{\pm} D/\overline{D}$? small production rate but large, O(1), ratio of interfering amplitudes (PRD 65 034016)

+ LHCb γ combination: contribution of the different inputs to the final result (cont.)

LHCb-CONF-2018-002

multiple input channels allow to shrinks uncertainty !

- stable
- uncertainties nicely shrinking

4 LHCb γ combination: what's next?

- first of all not all the LHCb inputs are using the 3.2 + 5.9 /fb data sample collected up to 2018 expect improvements on a "short" time scale
- but an upgrade program is in place with fresh data starting to arrive from 2021

CERN-LHCC-2018-027 or LHCB-PUB-2018-009 or https://arxiv.org/abs/1808.08865

CERN-LHCC-2018-027 or LHCB-PUB-2018-009 or https://arxiv.org/abs/1808.08865

22

4 LHCb γ combination:take home message

• 2018 LHCb γ combination:

$$74.0^{+5.0}_{-5.8}$$

CKMfitter: 65.64
$$\substack{+0.97\\-3.42}$$

- 16 input measurements that can cross check each other
- present uncertainty is not yet what we need
- on a "short term" time scale:
 - extend all measurements to Run 1 + Run 2 data
 - add new channels ... some are really about to come !
- on a "long term" time scale:
 - fresh data from 2021
 - more new channels ?
 - $\ {\ }^{\circ}$ current projections indicate that with 23 /fb we could reach
 - a 1.5° accuracy, similar to the present global fit
- \bullet if the accuracy of the external inputs will not limit the LHCb measurement could reach a 0.35° uncertainty with 300 /fb
- LHCb alone is doing well, with very significant improvements w.r.t. BaBar and Belle, and has excellent potentialities
- \bullet Belle II will also be able to push towards a reduction of the γ uncertainty, expect the same sensitivity

so stay tuned for more updates and comparisons between tree-level and global fits only time will tell us if we will have surprises from these ...

Backupmaterial

Flavor tagging

Tagging performances

CERN-LHCC-2018-027 or LHCB-PUB-2018-009 or https://arxiv.org/abs/1808.08865

26