Experimental study for leptonic and semileptonic decays in charm sector

Sifan Zhang on behalf of the BESIII collaboration including results from LHCb and BaBar

NJU, IHEP

May 9, 2019

Experimental study for leptonic and semilept

Banda Strategy & TRIUMP

BESIII

May 9, 2019 1 / 27

Motivation

- test the unitarity of quark mixing matrix and search for new physics.
- test the theoretical calculation on decay constants and form factors, especially LQCD.
- test the lepton flavor universality.
- help to understand the internal structure of light scalar mesons.

Experiments at the charm factory

Pair production at threshold, high efficiency and very low background.

BESIII

Experimental study for leptonic and semilept

May 9, 2019 3 / 27

Experiments at the B factory and LHCb

Experimental study for leptonic and semilept

May 9, 2019 4 / 27

D_{e}^{+} leptonic decays

Experimental study for leptonic and semilept

Comparison of $\left|V_{cs} ight|$ and $f_{D_s^+}$

Inputs:

PDG2018 from CKM unitarity: $|V_{cs}| = 0.97359^{+0.00010}_{-0.00011}$

$$\begin{array}{l} \mbox{LQCD average:} & f_{D_s^+}^{\rm LQCD} = 249.7 \pm 0.4 \ {\rm MeV} \\ f_{+}^{D \to K}(0)^{\rm LQCD} = 0.760 \pm 0.011 \end{array}$$

$$\begin{split} \mathcal{B}(D^+ \to \tau^+ \nu_\tau) &= (1.20 \pm 0.24_{\rm stat}) \times 10^{-3} \\ f_{D^+} |V_{cd}| &= 50.4 \pm 5.0_{\rm stat} ~{\rm MeV} \end{split}$$

$$\begin{split} \mathcal{B}(D^+ \to \mu^+ \nu_\mu) &= (3.71 \pm 0.19 \pm 0.06) \times 10^{-4} \\ f_{D^+} |V_{cd}| &= 46.7 \pm 1.2 \pm 0.4 \text{ MeV} \end{split}$$

$$R_{D^+} = \frac{\Gamma(D^+ \to \tau^+ \nu_{\tau})}{\Gamma(D^+ \to \mu^+ \nu_{\mu})} = 3.21 \pm 0.64$$

First evidence with 4σ statistical significance.

SM prediction 2.66 ± 0.01 .

Comparison of $\left|V_{cd}\right|$ and f_{D^+}

Inputs:

PDG2018 from CKM unitarity: $|V_{cd}| = 0.22438 \pm 0.00044$

LQCD average:

 $f_{D^{\pm}}^{\tilde{LQCD}} = 212.3 \pm 0.6 \text{ MeV}$

 $f_{\perp}^{D \to \pi}(0)^{\text{LQCD}} = 0.634 \pm 0.015$

May 9, 2019 8 / 27

 $D^0 \to K^-(\pi^-) e^+ \nu_e$

$\mathcal{B}(D^0 \to K^- e^+ \nu_e)$	$(3.505 \pm 0.014 \pm 0.033)\%$	$f_+^{D \to K}(0) V_{cs} $	$0.7172 \pm 0.0025 \pm 0.0035$
$\mathcal{B}(D^0 \to \pi^- e^+ \nu_e)$	$(0.295 \pm 0.004 \pm 0.003)\%$	$f_+^{D \to \pi}(0) V_{cd} $	$0.1435 \pm 0.0018 \pm 0.0009$

▶ ৰ≣ ▶ ≣ পিও May 9, 2019 9 / 27

イロト イヨト イヨト イヨト

BESIII

$\mathcal{B}(D^+ \to \bar{K}^0 e^+ \nu_e) \text{ (via } K^0_S \text{)}$	$(8.60 \pm 0.06 \pm 0.15)\%$	
$f_+^{D\to K}(0) V_{cs} $	$0.7053 {\pm} 0.0040 {\pm} 0.0112$	
$\mathcal{B}(D^+ \to \bar{\pi}^0 e^+ \nu_e)$	$(0.363 \pm 0.008 \pm 0.005)\%$	
$f_{\pm}^{D \to \pi}(0) V_{cd} $	$0.1400 {\pm} 0.0026 {\pm} 0.0007$	
$\mathcal{B}(D^+ \to \bar{K}^0 e^+ \nu_e) \text{ (via } K^0_L \text{)}$	$(8.962 \pm 0.054 \pm 0.206)\%$	
$f_{\pm}^{D \to K}(0) V_{cs} $	$0.728 {\pm} 0.006 {\pm} 0.011$	

$D \to \bar{K} \mu^+ \nu_\mu$

May 9, 2019 11 / 27

$D \to \pi \mu^+ \nu_\mu$

$$\mathcal{B}(D^0 \to \pi^- \mu^+ \nu_\mu) = (0.272 \pm 0.008 \pm 0.006)\%$$
$$\mathcal{B}(D^+ \to \pi^0 \mu^+ \nu_\mu) = (0.350 \pm 0.011 \pm 0.010)\%$$
$$\frac{\Gamma(D^0 \to \pi^- \mu^+ \nu_\mu)}{\Gamma(D^0 \to \pi^- e^+ \nu_e)} = 0.922 \pm 0.037$$
$$\frac{\Gamma(D^+ \to \pi^0 \mu^+ \nu_\mu)}{\Gamma(D^+ \to \pi^0 e^+ \nu_e)} = 0.964 \pm 0.045$$

The LQCD calculations are taken from ETM's results published in PRD96(2017)054514, with

$$\frac{\Gamma(D \to \pi \mu^+ \nu_\mu)}{\Gamma(D \to \pi e^+ \nu_e)} = 0.985 \pm 0.002$$

Comparison of $f^{D \to K}_+(0)$ and $f^{D \to \pi}_+(0)$

Inputs: PDG2018 from CKM unitarity:

 $|V_{cs}| = 0.97359^{+0.00010}_{-0.00011}$

 $|V_{cd}| = 0.22438 \pm 0.00044$

 $D_e^+ \to \eta^{(\prime)} e^+ \nu_e$

 $\begin{array}{l} \text{Model independent} \\ \text{determination of } \eta - \eta' \\ \text{mixing angle.} \\ \frac{\Gamma(D_{k}^{+} \rightarrow \eta' e^{+} \nu_{e}) / \Gamma(D_{k}^{+} \rightarrow \eta e^{+} \nu_{e})}{\Gamma(D^{+} \rightarrow \eta' e^{+} \nu_{e}) / \Gamma(D^{+} \rightarrow \eta e^{+} \nu_{e})} \\ \simeq \cot^{4} \Phi_{P} \end{array}$

 $\Phi_P = (40.1 \pm 2.1 \pm 0.7)^{\circ}$

$D^+ \to K^- \pi^+ e^+ \nu_e$

 $\begin{aligned} r_V &= V(0)/A_1(0) = 1.411 \pm 0.058 \pm 0.007 \\ r_2 &= A_2(0)/A_1(0) = 0.788 \pm 0.042 \pm 0.008 \\ A_1(0) &= 0.589 \pm 0.010 \pm 0.012 \end{aligned}$

Not included in the nominal fit:

$$\begin{split} \mathcal{B}(D^+ \to \bar{K}^*(1410)^0 e^+ \nu_e) & (0 \pm 0.009 \pm 0.008)\% \\ < 0.028\% \ (90\% \ \text{C.L.}) \\ \mathcal{B}(D^+ \to \bar{K}_2^*(1430)^0 e^+ \nu_e) & (0.011 \pm 0.003 \pm 0.007)\% \\ < 0.023\% \ (90\% \ \text{C.L.}) \end{split}$$

$P(\bar{K}^*(892)^0)$	Simple Pole plus BW with mass-dependent width	$(3.54 \pm 0.03 \pm 0.08)\%$	
${\sf S}(ar{K}^*_0(1430)^0$ and non-resonant part)	LASS plus BW with mass-dependent width	$(0.228\pm0.008\pm0.008)\%$	
	4	미 에 너희에 어떤 어떤 어떤 것이 같아.	5

BESIII

Experimental study for leptonic and semilept

May 9, 2019 16 / 27

$D^0 \to \bar{K}^0 \pi^- e^+ \nu_e$ and $D^+ \to \omega e^+ \nu_e$

 $D \to \pi \pi e^+ \nu_e$

BESIII

Experimental study for leptonic and semilept

$$D_s^+ \to K^{(*)0} e^+ \nu_e$$

BESII PRL122(2019)061801

$$\begin{split} &\mathcal{B}(D_s^+ \! \rightarrow \! K^0 e^+ \nu_e) \! = \! (3.25 \! \pm \! 0.38 \! \pm \! 0.16) \! \times \! 10^{-3} \\ & f_+^{D_s^+ \rightarrow K^0}(0) |V_{cd}| \! = \! 0.162 \! \pm \! 0.019 \! \pm \! 0.003 \\ & \mathcal{B}(D_s^+ \! \rightarrow \! K^0 e^+ \nu_e) \! = \! (2.37 \! \pm \! 0.26 \! \pm \! 0.20) \! \times \! 10^{-3} \\ & r_V \! = \! 1.67 \! \pm \! 0.34 \! \pm \! 0.16 \\ & r_2 \! = \! 0.77 \! \pm \! 0.28 \! \pm \! 0.07 \end{split}$$

$$\begin{split} f^{D^+_s \to K^0}_+(0) / f^{D^+ \to \pi^0}_+(0) &= 1.16 \pm 0.14 \pm 0.02 \\ r^{D^+_s \to K^{*0}}_V / r^{D^+ \to \rho^0}_V &= 1.13 \pm 0.26 \pm 0.11 \\ r^{D^+_s \to K^{*0}}_2 / r^{D^+ \to \rho^0}_2 &= 0.93 \pm 0.36 \pm 0.10 \end{split}$$

Agrees with U-spin $(d \leftrightarrow s)$ symmetry.

BESIII

Comparison of r_V and r_2 with theoretical calculations

BESII PRL121(2018)081802

A model-independent way to study the nature of light scalar mesons proposed by PRD82(2016)034016

$$R = \frac{\mathcal{B}(D^+ \to f_0(980)e^+\nu_e) + \mathcal{B}(D^+ \to f_0(500)e^+\nu_e)}{\mathcal{B}(D^+ \to a_0(980)^0e^+\nu_e)}$$

 $R=1.0\pm0.3$ for two-quark description; $R=3.0\pm0.9$ for tetraquark description.

We have R>2.7 @90% C.L. at BESIII Which favors the tetraquark description.

Decay	BF ($\times 10^{-4}$)	Significance
$D^0 \to a_0(980)^- e^+ \nu_e, a_0(980)^- \to \eta \pi^-$	$1.33^{+0.33}_{-0.29} \pm 0.09$	6.4σ
$D^+ \to a_0(980)^0 e^+ \nu_e, a_0(980)^0 \to \eta \pi^0$	$1.66^{+0.81}_{-0.66} \pm 0.11$ < 3.0 (90% C.L.)	2.9σ

May 9, 2019 21 / 27

 $\Lambda_c^+ \to \Lambda \ell^+ \nu_\ell$

0.567 fb $^{-1}$ data @4.6 GeV

Previously expected: $1.4\% \rightarrow 9.2\%$.

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) &= (3.63 \pm 0.38 \pm 0.20)\% \\ \mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) &= (3.49 \pm 0.46 \pm 0.26)\% \\ \frac{\Gamma(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\Gamma(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu)} &= 0.96 \pm 0.16 \pm 0.04 \end{split}$$

PRL118(2017)082001

$$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.80 \pm 0.19_{\mathrm{LQCD}} \pm 0.11_{\tau_{\Lambda_c}})\%$$

$$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) = (3.69 \pm 0.19_{\mathrm{LQCD}} \pm 0.11_{\tau_{\Lambda_c}})\%$$

BESIII

-0.1

0

0.1

0.2

-0.2

$D \to \gamma e^+ \nu_e$

Not subject to helicity suppression. Only photon energy larger than 10 MeV are considered.

The BFs are predicated to be $10^{-5} \rightarrow 10^{-3}$ in various models.

 $\mathcal{B}(D^+ \to \gamma e^+ \nu_e) < 3.0 \times 10^{-5}$ @90% C.L.

Flavor-changing neutral currents

 $D^0 \rightarrow \ell^+ \ell^-$: GIM suppressed, $\sim 10^{-13}$ including long distance contribution

Enhanced by SUSY or leptoquark to 10^{-8a} and 10^{-7b} .

^aPRD79(2009)114030 ^bPLB682(2009)67

 $D^0 \rightarrow h(h')\ell^+\ell^-$: Long distance contribution (~10⁻⁶).

 ${\cal B}(D^0 o \mu^+ \mu^-) < 6.2 imes 10^{-9}$ @90% C.L.

 $\begin{array}{l} \mathcal{B}(D^0\to K^-\pi^+e^+e^-)=(4.0\pm 0.5\pm 0.2\pm 0.1)\times 10^{-6}\\ \mathcal{B}(D^0\to K^-\pi^+\mu^+\mu^-)=(4.17\pm 0.12\pm 0.40)\times 10^{-6}\\ \text{at }\rho/\omega \text{ region}.\\ \mathcal{B}(D^0\to K^-\pi^+e^+e^-)<3.1\times 10^{-6} \text{ @90\% C.L. at} \end{array}$

Refer to Abi Soffer's report for details (Parallel 1, Tuesday).

DLB757(2016)558

1850

BESIII

Experimental study for leptonic and semilept

continuum region.

May 9, 2019 24 / 27

 $m(K^{-}\pi^{+}\mu^{+}\mu^{-})$ [MeV/c²]) \bigcirc

FCNC: search for NP in short distance diagram

PRL121(2018)091801

 $\begin{array}{l} A_{\rm FB}(D^0\!\rightarrow\!\pi^+\pi^-\mu^+\mu^-)\!=\!(3.3\!\pm\!3.7\!\pm\!0.6)\%\\ A_{2\phi}(D^0\!\rightarrow\!\pi^+\pi^-\mu^+\mu^-)\!=\!(-0.6\!\pm\!3.7\!\pm\!0.6)\%\\ A_{\rm CP}(D^0\!\rightarrow\!\pi^+\pi^-\mu^+\mu^-)\!=\!(4.9\!\pm\!3.8\!\pm\!0.7)\%\\ A_{\rm FB}(D^0\!\rightarrow\!K^+K^-\mu^+\mu^-)\!=\!(0\!\pm\!11\!\pm\!2)\%\\ A_{2\phi}(D^0\!\rightarrow\!K^+K^-\mu^+\mu^-)\!=\!(9\!\pm\!11\!\pm\!1)\%\\ A_{\rm CP}(D^0\!\rightarrow\!K^+K^-\mu^+\mu^-)\!=\!(0\!\pm\!11\!\pm\!2)\% \end{array}$

BESIII

May 9, 2019 25 / 27

Experimental status of D rare decays

BESIII

Experimental study for leptonic and semilept

- Precise measurement of decay constants, form factors and quark mixing matrix elements → precision improved with BESIII measurement.
- Lepton flavor universality test \to no evidence of violation found in the charm sector at the precision of 1.5% for CF decays and 4% for SCS decays..
- Study the nature of light scalar mesons \rightarrow tetraquark description favored with BESIII's results.
- Rare decays especially FCNC process → limits improved by several magnitude with measurements at LHCb.
- Upcoming data at BESIII, LHCb and BelleII \rightarrow more results to be expected.

Thanks for your attention!