Charmonium and charm spectroscopy

Yu Hu IHEP, Beijing & DESY, Hamburg (on behalf of the BESIII Collaboration)

Conference on Flavor Physics and CP Violation, FPCP 2019 Victoria, 9th May 2019

Outline

• Main Experiments

- Charmonium spectroscopy
- Charm spectroscopy
 - The charm meson
 - The charm baryon

Summary

5m

10m

15m

20m

Charmonium spectroscopy

- Precise $\chi_{c1,2}$ parameters using $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$
- Measurement of $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$
- Charmonia from $B^+ \rightarrow p \overline{p} K^+$
- Charmonia from $B^+ \rightarrow \phi \phi + X$
- Near-threshold $D\overline{D}$ spectroscopy
- Alternative $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi D\overline{D}$

Charmonium Spectroscopy

Charmonium Spectroscopy

Precise $\chi_{c1,2}$ parameters using $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$

Fit $m(J/\psi\mu^+\mu^-)$ with a relativistic Breit-Wigner convolved with double-Gaussian.

$$\begin{split} \mathsf{M}(\chi_{c1}) &= 3510.71 \pm 0.04 \pm 0.09 \text{ MeV} \\ \mathsf{M}(\chi_{c2}) &= 3556.10 \pm 0.06 \pm 0.11 \text{ MeV} \\ \mathsf{M}(\chi_{c2}) - m(\chi_{c1}) &= 45.39 \pm 0.07 \pm 0.03 \text{ MeV} \\ \mathsf{\Gamma}(\chi_{c2}) &= 2.10 \pm 0.20 \pm 0.02 \text{ MeV} \end{split}$$

Measurement of $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$ with BESIII

- Via the process $\psi(3686) \rightarrow \gamma \chi_{cJ}$, $\chi_{cJ} \rightarrow J/\psi \mu^+ \mu^-$.
- Branching fractions of $\psi(3686) \rightarrow \gamma \chi_{cJ}$ and $J/\psi \rightarrow ll$ from PDG.
- Absolute branching fractions $\mathcal{B}(\chi_{cJ} \rightarrow J/\psi \mu^+ \mu^-)$ and ratios $\frac{\mathcal{B}(\chi_{cJ} \rightarrow J/\psi \mu^+ \mu^-)}{\mathcal{B}(\chi_{cJ} \rightarrow J/\psi e^+ e^-)}$:

```
\chi_{c0}:
B < 2.0 \times 10^{-5} @ 90\% \text{ C.L.}
R < 0.14 @ 90\% \text{ C.L.}
\chi_{c1}:
B = (2.51 \pm 0.18 \pm 0.20) \times 10^{-4}
R = (6.73 \pm 0.51 \pm 0.50) \times 10^{-2}
\chi_{c2}:
B = (2.33 \pm 0.18 \pm 0.29) \times 10^{-4}
R = (9.40 \pm 0.79 \pm 1.15) \times 10^{-2}
```


Charmonia from $B^+ \rightarrow p \overline{p} K^+$

- Exclusive reconstruction: clean sample, better control of background and resolution effects.
- First observe $\eta_c(2S) \rightarrow p\bar{p}$ (6.0 σ), relative branching fraction:

 $\begin{aligned} \mathcal{R}_{\eta_c(2S)} &\equiv \frac{\mathcal{B}(B^+ \to \eta_c(2S)K^+) \times \mathcal{B}(\eta_c(2S) \to p\bar{p})}{\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to p\bar{p})} \\ &= (1.58 \pm 0.33 \pm 0.09) \times 10^{-2} \\ \mathcal{R}_{\psi(3770)} < 9\,(10) \times 10^{-2}, \\ \mathcal{R}_{X(3872)} < 0.20\,(0.25) \times 10^{-2}. \end{aligned}$

LHCb THCp

• The mass differences and natural width of the $\eta_c(1S)$:

 $M_{J/\psi} - M_{\eta_c(1S)} = 110.2 \pm 0.5 \pm 0.9 \text{ MeV},$ $M_{\psi(2S)} - M_{\eta_c(2S)} = 52.5 \pm 1.7 \pm 0.6 \text{ MeV}$ $\Gamma_{\eta_c(1S)} = 34.0 \pm 1.9 \pm 1.3 \text{ MeV}$

Not depend on knowledge of the magnetic dipole transition line shapes in contrast to radiative decays method.

Charmonia from $B^+ \rightarrow \phi \phi + X$

 $\Gamma_{\eta_c(2S)}$

- Inclusive production of charmonium in bhadron decays, decays to ϕ meson pairs.
- First observe $\eta_c(2S) \rightarrow \phi \phi$.
- Competitive measurements of masses of width.

Near-threshold $D\overline{D}$ spectroscopy

- First LHCb result with full Run 1 + Run 2 data.
- Promptly produced $D\overline{D}$ candidates selected.
- Fit performed in 3 overlapping mass regions to better model background.

arXiv:1903.12240 Run 1 + Run 2 9 fb⁻¹

[LHCb-PAPER-2019-005]

Near-threshold $D\overline{D}$ spectroscopy

Alternative $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi D\overline{D}$

X(3915) \checkmark Observed by Belle, confirmed by BaBar in $B \rightarrow (J/\psi\omega)K$ Observed by both Belle and BaBar in $\gamma\gamma \rightarrow J/\psi\omega$

BaBar: $J^P = 0^+ \Rightarrow \chi_{c0}(2P)$ candidate(PRD 86, 072002(2012))

Difficulties:

- Too narrow: 20 MeV (measured) versus >100 MeV(expected)
- Not seen in $D\overline{D}$ (expected $\Gamma > 100 \text{ MeV!}$)
- Unnaturally small $2^{3}P_{2} 2^{3}P_{1}$ mass splitting
- Belle search for alternative $\chi_{c0}(2P)$ via double-charmonium production in association with the J/ψ .
- Full amplitude analysis of $e^+e^- \rightarrow J/\psi D\overline{D}$.

 $M = 3862^{+26+40}_{-32-13} \text{ MeV/c}^2$ $\Gamma = 201^{+154+88}_{-67-82} \text{ MeV}$

Consistent with potential model expectations for $\chi_{c0}(2P)$

- The $J^{PC} = 0^{++}$ hypothesis is favored over 2^{++} with 2.5 σ (from MC pseudo-experiments).
- Better candidate for the $\chi_{c0}(2P)$ charmonium.

Charm spectroscopy

- B_c spectroscopy
- Charmed baryons
 - Λ_c^* states in $\Lambda_b^0 \to D^0 p \pi^-$
 - $\Xi_c(2930)^0$ and $\Xi_c(2930)^+$
 - Observation of exited Ω_c states
 - Observation of the doubly charmed baryon

B_c spectroscopy

- Unique system of two heavy quarks in a bound state.
- Expected rich spectrum predicted by QCD potential models and Lattice QCD.
- Less explored due to small production rate.
- States below BD threshold can only undergo radiative or pionic transitions to the ground state B_c^+ .
- In 2014, ATLAS reported a new resonance in the $B_c^+(J/\psi\pi^+)\pi^-\pi^+$ mass spectrum with mass:

Page 15

Observation of excited B_c

Charmed baryons

Nucleon / Strange baryons	Charmed baryon	Symbol	I	Content
		$\overline{N(p,n)}$	1/2	udq
C	99	Δ	3/2	qqq
q		$oldsymbol{\Lambda}$	0	sud
p 🥌		$\boldsymbol{\Sigma}$	1	sqq
		Ξ	1/2	ssq
q		${f \Omega}$	0	sss
		$\Lambda_{oldsymbol{c}}$	0	cud
Charmed baryons consist of a	$\Sigma_{oldsymbol{c}}$	1	cqq	
two light (u. d. c) quarke	Ξ_c	1/2	csq	

- two light (u, d, s) quarks.
- Large mass difference provides a natural way to classify these states using HQET.
- Di-quark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark.
- Di-quark as new degree of freedom.

ell	Stu	alea.	

0

1/2

()

()

css

ccq

CCS

CCC

 Ω_c

 Ξ_{cc}

 Ω_{cc}

 Ω_{ccc}

Not w

Currently observed charmed baryons

Λ_c^* states in $\Lambda_b^0 \to D^0 p \pi^-$

- Amplitude analysis (5D) of the angular distributions of the $\Lambda_b^0 \rightarrow D^0 p \pi^-$ decay.
- Detailed study of D^0p amplitude.
- $\Lambda_c(2880)^+$ preferred spin J = $\frac{5}{2}$.

$$\begin{split} \mathsf{M} &= 2881.75 \pm 0.29 \pm 0.07^{+0.14}_{-0.20} (\text{model}) \; \mathsf{MeV} \\ \Gamma &= 5.43^{+0.77}_{-0.71} \pm 0.29^{+0.75}_{-0.00} (\text{model}) \; \mathsf{MeV} \end{split}$$

• $\Lambda_c(2940)^+$ preferred $J^P = \frac{3}{2}^-$, but $\frac{1}{2}$ and $\frac{7}{2}$ not ruled out. First analysis constraining JP for this state.

 $M = 2944.8^{+3.5}_{-2.5} \pm 0.4^{+0.1}_{-4.6} \text{(model) MeV}$ $\Gamma = 27.7^{+8.2}_{-6.0} \pm 0.9^{+5.2}_{-10.4} \text{(model) MeV}$

• New resonance at threshold, designated as $\Lambda_{c}(2860)^{+}$, preferred $J^{P} = \frac{3}{2}^{+}$. $M = 2856.1^{+2.0}_{-1.7} \pm 0.5^{+1.1}_{-4.6}$ (model) MeV $\Gamma = 67.6^{+10.1}_{-8.1} \pm 1.4^{+5.9}_{-20.0}$ (model) MeV

Λ_c^* states in $\Lambda_b^0 \to D^0 p \pi^-$

- Amplitude analysis (5D) of the angular distributions of the $\Lambda_b^0 \rightarrow D^0 p \pi^-$ decay.
- Detailed study of D^0p amplitude.
- $\Lambda_c(2880)^+$ preferred spin J = $\frac{5}{2}$. M = 2881.75 ± 0.29 ± 0.07 $^{+0.14}_{-0.20}$ (model) MeV $\Gamma = 5.43^{+0.77}_{-0.71} \pm 0.29^{+0.75}_{-0.00}$ (model) MeV • $\Lambda_c(2940)^+$ preferred J^P = $\frac{3}{2}^-$, but $\frac{1}{2}$ and $\frac{7}{2}$ not ruled out. First analysis constraining JP for this state. ?

 $M = 2944.8^{+3.5}_{-2.5} \pm 0.4^{+0.1}_{-4.6} \text{(model) MeV}$ $\Gamma = 27.7^{+8.2}_{-6.0} \pm 0.9^{+5.2}_{-10.4} \text{(model) MeV}$

for the D-wave Λ_c^* with $3/2^+$.

Observation of $\Xi_c(2930)^0$ and evidence of $\Xi_c(2930)^+$

• First reported by Babar, now confirmed by Belle (711 fb^{-1} of data at the $\Upsilon(4S)$ resonance):

Observation of exited Ω_c **states**

- Excited Λ_c^+ , Σ_c , Ξ_c states have been reported but no excited Ω_c^0 states were observed before LHCb.
- Search via decay: $\Omega_c^{*0} \to \Xi_c^+ K^-, \Xi_c^+ \to p K^- \pi^+$.
- Cabibbo suppressed c → d weak decay, but much higher reconstruction efficiency and purity.
- 5 narrow states & evidence for 6th broader state at high mass.

Resonance	Mass (MeV)	Γ (MeV)
$\overline{\Omega_c(3000)^0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$
	0.5	<1.2 MeV, 95% C.L.
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5 \pm 0.4 \pm 0.2$
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5 \pm 0.5$	$8.7\pm1.0\pm0.8$
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$
	0.5	<2.6 MeV, 95% C.L.
$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$

PRL 118 (2017) 182001

Confirmation by Belle

LHCb	Belle		
$3000.4 \pm 0.2 \pm 0.1 \substack{+0.3 \\ -0.5}$	$3000.7 \pm 1.0 \pm 0.2(3.9\sigma)$		
$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$3050.2 \pm 0.4 \pm 0.2(4.6\sigma)$		
$3065.5 \pm 0.1 \pm 0.3 ^{+0.3}_{-0.5}$	$3064.9 \pm 0.6 \pm 0.2(7.2\sigma)$		
$3090.2 \pm 0.3 \pm 0.5 ^{+0.3}_{-0.5}$	$3089.3 \pm 1.2 \pm 0.2(5.7\sigma)$		
$3119 \pm 0.3 \pm 0.9 ^{+0.3}_{-0.5}$	- (0.4 <i>o</i>)		
$3188 \pm 5 \pm 13$	$3199 \pm 9 \pm 4(2.4\sigma)$		
	LHCb $3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$ $3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$ $3065.5 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$ $3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$ $3119 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$ $3188 \pm 5 \pm 13$		

- Belle also measured $\Omega_c^{*0} \to \Xi_c^+ K^-$, $\Xi_c^+ \to p K^- \pi^+$
- Ω_c^{*0} width fixed with the value from LHCb.
- All the Ω_c^{*0} except $\Omega_c(3119)^0$ confirmed.
- Matching between observed peaks and predictions requires spin parity information.

Observation of the doubly charmed baryon Ξ_{cc}^{++}

- Existence of doubly charmed baryons predicted by quark model.
- Observation of \mathcal{Z}_{cc}^{++} claimed by SELEX [PLB 628 (2005) 18-24].
- No evidence observed by BaBar, FOCUS, Belle and LHCb.
- Search in LHCb for $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^-$ (most promising channel).
- Data sample: 2.0 (8 TeV) + 1.7 (13 TeV) fb^{-1} .

The mass is measured with the 2016 (13 TeV) sample:

 $m(\Xi_{cc}^{++}) = 3621 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}/c^2$

Measurement of Ξ_{cc}^{++} **lifetime**

- Same data as $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^-$ analysis with extra trigger requirement.
- Decay-time distribution measured relative to $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$.
 - Same selection criteria, common systematic effects largely cancel.
 - Lifetime acceptances taken from simulation.

Result from fit to data:

 $\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022}(\text{stat}) \pm 0.014(\text{syst}) \text{ ps}$

Establishes the weakly decaying nature of $\mathcal{Z}_{cc}^{++}!$

Summary

- Wide range of interesting charmonium and charm spectroscopy results: only a small selection of recent results.
- Measurements of resonance parameters improved.
- New states have been just observed and fit the expectations.
 - Candidates for $\psi(1^3D_3)$ and $\chi_{c0}(2P)$.
 - Excited B_c states, excited Λ_c , Ξ_c , Ω_c states, and doubly charmed baryon Ξ_{cc}^{++} .
- BESIII will keep taking data in the region of charmonium. Belle II just started Phase III data taking. With the upgrade, LHCb will get much more data.
- Look forward to more exciting news!

Thanks for your attention!