

Future Accelerator Based Neutrino Beams

Vladimir SHILTSEV (Fermilab) Conference on Flavor Physics and CP Violation (FPCP 2019) 06-10 May 2019 – University of Victoria

Content:

- 1. Super-Beam Facilities and Upgrades how to achieve the ultimate energy and performance, R&D required :
 - Fermilab
 - J-PARC
- 2. New Proposals opportunities and synergies :
 - Protvino/ORKA
 - ESSvSB
 - ENUBET
 - vSTORM

May 10, 2019

Fermilab Accelerator Complex Users

- Proton Source (400 MeV Linac and 8 GeV Booster ring):
 - 8 GeV Booster Neutrino Beam (BNB)
 - ANNIE
 - MicroBooNE
 - MiniBooNE
 - MITPC
 - SciBath
 - ICARUS
 - SBND

8 GeV proton program expanding

🛟 Fermilab

- Mucool Test Area (MTA, 400 MeV beam test facility)
- 120 GeV Main Injector / 8 GeV Recycler:
 - NuMI: MINOS+, MINERvA, NOvA
 - LBNF/DUNE (future)
 - Fixed Target: SeaQuest, LArIAT, Test Beam Facility
 - Muon: g-2, Mu2e (future)

Fermilab Proton Complex Now: ~0.6e21 POTs/Year on v target

J-PARC sends neutrinos to Super-K (Hyper K)

		Materials and Li Experimental		ife Science I Facility	Nuclear and Particle Experimental Facility	
	E	L	Costr.			
Linac	400 MeV	330 m	2008			
RCS	3 GeV	350 m	2009	made and the second		
MR	30 GeV	1.6 km	2010		5	
Beamlines	30 GeV	200 m	2009			
Upgr Power			2020-28			
					Neutrino to Kamiokande	
		Lina (350	ac m)	3 GeV Synchrotron (25 Hz, 1MW)	50 GeV Synchrotron 30 GeV (0.75 MW) now 0.5 M	
				J-PARC = Japan Prote	on Accelerator Research Comp	
Concernent Provide State						

Fermilab and J-PARC Power Upgrades

40 kt LAr DUNE @ 2.4 MW & 1000 kt water Hyper-K @ 1.3 MW

* actually, comparable in terms of CPV sensitivity because of different v's spectrum, different baseline (1300 km vs 295 km) and detector technology

Ways to Increase Beam Power on Target

Brute force :

- increase the energy E magnets, RF
- decrease the cycle time T magnets, RF
- key challenge : cost (e.g., J-PARC TPC ~\$1.7B) and power
- Increase PPP (protons per pulse) N_p :
 - key challenges : many beam dynamics issues & cost
- In both cases need reliable horns and targets :
 - key challenge : *lifetime* gets worse with power

May 10, 2019

Fast Cycling Magnets + RF Cavities= 40-50% + 15-25% Cost *Major power consumers : e.g. FNAL MI:* incl. magnet PSs and RF sourcesMagnets 9 MW, RF 2.5 MW, pulsed 1 MWTunable frequency 1-5%

ab

10

Power Efficiency – Huge Issue

Key R&D:

Efficient magnets :

- NbTi SC 4 T/s for FAIR
- HTS 12 T/s at FNAL

- FFAG accelerators * Efficient power supplies :
 - Energy storage, e.g. capacitive, and recovery
- Efficient RF power sources:
- η =55% \rightarrow over 80%
- klystrons, magnetrons, solid-state, etc

J-PARC : 0.5 MW beams vs ~40 MW site power

Protons Per Pulse Challenge: to lower beam losses while increasing intensity

Intense Beams : Forces and Losses (1)

Net Force: Repels $eE-eE(v/c)^2 = eE(1-\beta^2) = eE/\gamma^2$

Space-charge effects (emittance growth, losses):

- a) proportional to current (N)
- b) scale inversely with beam size (o)
- c) scale with time at low energies (γ)

Linacs 5-20 MeV/m Rings 0.002-0.01 MeV/m

Ways to Increase "Protons Per Pulse"

- Increase the injection energy:
 - Gain about $N_p \sim \beta \gamma^2$, need (often costly) linacs
- Flatten the beams (using 2nd harm, RF) :
 - Makes SC force uniform, $N_p \sim \times 2$
- "Painting" beams at injection:
 - To linearize SC force across beams $N_p \sim x1.5$
- Better collimation system beams:
 - From η~80% to ~95% N_ρ~x1.5
- Make focusing lattice perfectly periodic:
 Eg P=24 in Fermilab Booster, P=3 in JPARC MR → N_p~x1.5
- Introduce Non-linear Integrable Optics :
 - Reduces the losses, allows $N_p \sim \times 1.5-2$
- Space-Charge Compensation by electron lenses :
- ¹⁵ Electrons to focus protons, $N_p \sim x1.5 2$

Option #1 : Proton Improvement Plan-II

Key elements:

Replace existing 400 MeV linac

IOTA: Integrable Optics Test Accelerator

10P

11

Space-Charge Compensation R&D

Very Important : Targetry, Foils, e-clouds

- Existing v targets and horns are good to ~0.8 MW; 1 MW and multi-MW targets are under development
 - Issues depend on pulse structure and include radiation damage and thermal shock-waves
 - R&D program to study material properties, new forms (foams, fibers, etc), new target designs (rotating, etc)
- Also under development: injection of high power beams (stripping foils, laser stripping), e-cloud effects, etc
- We learn from lower energy high power machines PSI and SNS (1.4 MW), RAL/ISIS, etc

Radiation Damage In Accelerator Target Environments

Proposed Facilities for Neutrino Research

Protvino-to-ORKA: L=2590km, E_v ~5 GeV

U-70 *p*+ synchrotron:

70 GeV protron beam 1.5 10¹³ p+ per pulse, T_{cycle} =10s 5 μ s (fast extraction), P_{avg} =15kW

Needed upgrades: Decay pipe ~180 m long Power to 90 kW by 2026:

- 5 10¹³ *p*+ per pulse, T_{cycle} =7 s
- 5 yrs of ORCA data taking

Then to 450 kW by 2035

- (no details yet)
- Super-ORCA

ESS Neutrino Super Beams $ESS\nu SB$

European Spallation Source:

~600 m SC linac, 1.83 B Euros

2 GeV x 62.5 mA x (η =4%) = **5 MW**

2.8 ms pulses

32 MW site power after all the measures $ESS\nu SB$

CDR 2021, TDR 2024 Construction start 2026-2029 Linac upgrade 14 Hz \rightarrow 28 Hz ($\eta \rightarrow 8\%$) Accumulator C~400 m to compress to μ s H- instead of p+, space charge effects Target station

Cost estimate 1.3 B Euro

Linac upgrade	230 MEUR
Accumulator ring	150 MEUR
Target Station	170 MEUR
Near and Far Detector	750 MEUR

~0.3 GeV neutrino beam is directed towards the north in the direction of the Garpenberg mine, 540 km away, which could host the far 1 megaton water Cerenkov detector

8 067 Ser. onf. 30 20 Dracos larcos 🚰 Fermila

ENUBET : SPS-based Short Baseline *v*'s

• to measure the cross sections as *f*(energy) with much better precision

SPS at CERN (max CNGS):

- *E*=400 GeV protron beam 2.25 10^{13} *p*+ per pulse,
- T_{cycle} =5.8s, 10 μ s (fast extr.)
- \rightarrow avg. *P*_beam = 510kW
- 8.5 GeV central energy of secondaries (pions, kaons)
- 0.5-3.5 GeV neutrino's

vSTORM

SPS at CERN :

E=100 GeV *P*_beam =156kW

4 10¹³ *p*+ per pulse

 T_{cycle} =3.6 s, 2 x 10 μ s (fast extr.)

 μ ± beams 1 GeV/c - 6 GeV/c momentum spread of 16%

Cost est. 160 MCHF @ CERN

2017 JINST 12 P07018 2017 JINST 12 P07020

Challenge: a) 300 µmrad emittance \rightarrow 0.5 dia magnets; b) survival ~60% after 100 turns for $\delta P/P$ ~10%

0.0

x (m)

01

0.2

0.3

-0.2 -0.1

Summary:

- Over the past decade we witness impressive progress of high energy high power accelerators for v research:
 - J-PARC achieved 500 kW of 30 GeV beam, Fermilab MI over 750 kW of 120 GeV
- Neutrino physics demands multi-MW facilities:
 - some of them in progress Fermilab's PIP-II linac upgrade
 - in general, many challenges faced beyond 1 MW
- Accelerator R&D is required and in many cases started:
 - On cost saving technologies (magnets, RF sources, etc)
 - On control of space-charge effects, instabilities and losses
 - To be tested at operational machines and IOTA ring
 - On MW and multi-MW neutrino targets and horns
- New proposals show promise and should be further studied :
 - Protvino/ORKA; ESSvSB; ENUBET; vSTORM

Thanks for Your Attention!

Acknowledgements

Yuri Alexahin, Paul Czarapata, Paul Derwent, Jeff Eldred, Steve Holmes, Valeri Lebedev, Sergei Nagaitsev, Bill Pellico, Eric Stern, Cheng-Yan Tan, Alexander Valishev, Bob Zwaska (all – Fermilab), Eric Prebys (UCI), Frank Schmidt (CERN), David Bruhwiler (RadiaSoft)

May 10, 2019

PIP-II Performance Goals

Performance Parameter	PIP	PIP-II	
Linac Beam Energy	400	800	MeV
Linac Beam Current	25	2	mA
Linac Beam Pulse Length	0.03	0.6	msec
Linac Pulse Repetition Rate	15	20	Hz
Linac Beam Power to Booster	4	18	kW
Booster Protons per Pulse	4.3×10 ¹²	6.5×10 ¹²	
Booster Pulse Repetition Rate	15	20	Hz
Booster Beam Power @ 8 GeV	80	160	kW
Beam Power to 8 GeV Program (max; MI @ 120 MeV)	32	80	kW
Main Injector Protons per Pulse	4.9×10 ¹³	7.6×10 ¹³	
Main Injector Cycle Time @ 60-120 GeV	1.33*	0.7-1.2	sec
LBNF Beam Power @ 60-120 GeV	0.7*	1.0-1.2	MW
LBNF Upgrade Potential @ 60-120 GeV	NA	>2	MW

*NOvA operations at 120 GeV

May 10, 2019

Fermilab

V.Shiltsev | Accelerators for v's

(How to Get Around) Space Charge Limit

 The maximum useful injected charge into the Booster is limited by the space charge tune-shift, which can drive harmonic instabilities.

(if not straightforward solution – double the energy - then)

- Two novel approaches to increase the SC tune-shift:
 - "Integrable Non-Linear Optics"

Space-Charge Compensation with Electron Lenses

 Possibly augmented with Superperiodic Focusing Lattice and ²⁸"flat long bunches" (multiple harmonics RF) May 10, 2019

Integrable Optics with Non-linear Magnets

- Additional integrals of transverse motion possible:
 - Special NL magnets
 - Special optics of the ring
 - Special longitudinal shape of the magnets (gap vs Z)
 - Makes particle dynamics stable with very large tunespread
 - Danilov, Nagaitsev, PRSTAB 13, 084002 (2010)

X (normalized units

Non-Linear Integrable Optics Test

- Such a magnet is built and installed in IOTA
- Additional integral will be confirmed – first with "pencil" electron beam in IOTA
- Later, with high brightness, space-charge dominated proton beam
- Expect to demonstrate greatly improved coherent and incoherent beam stability

Both Nonlinear IO and E-Lens SCC work in Simulations!→ experimental verification at the Integrable Optics Test Accelerator

IOTA/FAST: Centerpiece of Beam Physics Innovation

IOTA designed and constructed as an R&D Facility :

- Adaptable: broad spectrum of research
 - Nonlinear Integrable Optics
 - Space charge compensation
 - High-Bandwidth Beam Cooling
 - Beam Dynamics in High Brightness Rings:
- Accurate
- Affordable

32

http://fast.fnal.gov/

Novel Ideas for IOTA: Non-Linear I-Optics

084002 (2010)

PRAB 13.

Value of extra integrals of motion

In accelerators : $H_{\perp} = \frac{1}{2}(P_x^2 + P_y^2) - \frac{\tau c^2}{\beta(s)}U\left(\frac{X}{c\sqrt{\beta(s)}}, \frac{Y}{c\sqrt{\beta(s)}}\right)$

Courant-Snyder transformation, scaling

$$H_N = \frac{1}{2} (P_{xN}^2 + P_{yN}^2 + X_N^2 + Y_N^2) - \tau U(X_N, Y_N)$$

first invariant
33 V.Shiltsev | Accelerators for v's

Danilov & Nagaitsev gave in [1] a realizable potential Usuch that H_N admits a second invariant I_N

$$I = \left(xp_y - yp_x\right)^2 + c^2 p_x^2 + \frac{2c^2 t \cdot \xi\eta}{\xi^2 - \eta^2} \times$$

$$\left(\eta\sqrt{\xi^2-1}\cosh^{-1}\left(\xi\right)+\xi\sqrt{\eta^2-1}\left(\frac{\pi}{2}+\cosh^{-1}\left(\eta\right)\right)\right)$$

Electron Lenses : Introduced in 2000's

Proton Space-Charge: Compensated by Electrons

Electron Lens in IOTA

V.Shiltsev | Accelerators for v's

H- Foil Heating

May 10, 2019

Coherent Stability

Mitigation of Electron Cloud:

Avoid combined function magnets.

Use TiN or a-Carbon beampipe coating.

Transverse Instabilities:

Much less impedance than current Booster.

Transverse and longitudinal dampers like Booster.

No transition crossing.

IOTA Technologies

Nonlinear integrable optics:

Provides incredible **nonlinear focusing** without the usual loss in dynamic aperture. Mitigates **halo formation** and **collective effects**.

Electron lens/column:

Directly compensates **space-charge effects**, R&D underway to determine the best way to implement.

Both technologies tested at IOTA over the next several years.

For **robustness** of performance?

Or for **upper-bound** of performance?

Loss Limit reaching PIP goal of 2.4E17 pph – running above 2.1E17 pph

